source: sasview/sansmodels/src/sans/models/ProlateModel.py @ b9b9930

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since b9b9930 was 35aface, checked in by Jae Cho <jhjcho@…>, 14 years ago

addede new models and attr. non_fittable

  • Property mode set to 100644
File size: 5.7 KB
Line 
1#!/usr/bin/env python
2
3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
16
17
18"""
19Provide functionality for a C extension model
20
21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\prolate.h
23         AND RE-RUN THE GENERATOR SCRIPT
24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import CProlateModel
29import copy   
30   
31class ProlateModel(CProlateModel, BaseComponent):
32    """
33    Class that evaluates a ProlateModel model.
34    This file was auto-generated from ..\c_extensions\prolate.h.
35    Refer to that file and the structure it contains
36    for details of the model.
37    List of default parameters:
38         scale           = 1.0
39         major_core      = 100.0 [A]
40         minor_core      = 50.0 [A]
41         major_shell     = 110.0 [A]
42         minor_shell     = 60.0 [A]
43         contrast        = 1e-006 [1/A^(2)]
44         sld_solvent     = 6.3e-006 [1/A^(2)]
45         background      = 0.001 [1/cm]
46
47    """
48       
49    def __init__(self):
50        """ Initialization """
51       
52        # Initialize BaseComponent first, then sphere
53        BaseComponent.__init__(self)
54        CProlateModel.__init__(self)
55       
56        ## Name of the model
57        self.name = "ProlateModel"
58        ## Model description
59        self.description ="""[ProlateCoreShellModel] Calculates the form factor for a prolate
60                ellipsoid particle with a core_shell structure.
61                The form factor is averaged over all possible
62                orientations of the ellipsoid such that P(q)
63                = scale*<f^2>/Vol + bkg, where f is the
64                single particle scattering amplitude.
65                [Parameters]:
66                major_core = radius of major_core,
67                minor_core = radius of minor_core,
68                major_shell = radius of major_shell,
69                minor_shell = radius of minor_shell,
70                contrast = SLD_core - SLD_shell
71                sld_solvent = SLD_solvent
72                background = Incoherent bkg
73                scale = scale
74                Note:It is the users' responsibility to ensure
75                that shell radii are larger than core radii."""
76       
77        ## Parameter details [units, min, max]
78        self.details = {}
79        self.details['scale'] = ['', None, None]
80        self.details['major_core'] = ['[A]', None, None]
81        self.details['minor_core'] = ['[A]', None, None]
82        self.details['major_shell'] = ['[A]', None, None]
83        self.details['minor_shell'] = ['[A]', None, None]
84        self.details['contrast'] = ['[1/A^(2)]', None, None]
85        self.details['sld_solvent'] = ['[1/A^(2)]', None, None]
86        self.details['background'] = ['[1/cm]', None, None]
87
88        ## fittable parameters
89        self.fixed=['major_core.width', 'minor_core.width', 'major_shell.width', 'minor_shell.width']
90       
91        ## non-fittable parameters
92        self.non_fittable=[]
93       
94        ## parameters with orientation
95        self.orientation_params =[]
96   
97    def clone(self):
98        """ Return a identical copy of self """
99        return self._clone(ProlateModel())   
100       
101    def __getstate__(self):
102        """
103        return object state for pickling and copying
104        """
105        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
106       
107        return self.__dict__, model_state
108       
109    def __setstate__(self, state):
110        """
111        create object from pickled state
112       
113        :param state: the state of the current model
114       
115        """
116       
117        self.__dict__, model_state = state
118        self.params = model_state['params']
119        self.dispersion = model_state['dispersion']
120        self.log = model_state['log']
121       
122   
123    def run(self, x=0.0):
124        """
125        Evaluate the model
126       
127        :param x: input q, or [q,phi]
128       
129        :return: scattering function P(q)
130       
131        """
132       
133        return CProlateModel.run(self, x)
134   
135    def runXY(self, x=0.0):
136        """
137        Evaluate the model in cartesian coordinates
138       
139        :param x: input q, or [qx, qy]
140       
141        :return: scattering function P(q)
142       
143        """
144       
145        return CProlateModel.runXY(self, x)
146       
147    def evalDistribution(self, x=[]):
148        """
149        Evaluate the model in cartesian coordinates
150       
151        :param x: input q[], or [qx[], qy[]]
152       
153        :return: scattering function P(q[])
154       
155        """
156        return CProlateModel.evalDistribution(self, x)
157       
158    def calculate_ER(self):
159        """
160        Calculate the effective radius for P(q)*S(q)
161       
162        :return: the value of the effective radius
163       
164        """       
165        return CProlateModel.calculate_ER(self)
166       
167    def set_dispersion(self, parameter, dispersion):
168        """
169        Set the dispersion object for a model parameter
170       
171        :param parameter: name of the parameter [string]
172        :param dispersion: dispersion object of type DispersionModel
173       
174        """
175        return CProlateModel.set_dispersion(self, parameter, dispersion.cdisp)
176       
177   
178# End of file
Note: See TracBrowser for help on using the repository browser.