[9ce41c6] | 1 | #!/usr/bin/env python |
---|
| 2 | |
---|
[79ac6f8] | 3 | ############################################################################## |
---|
| 4 | # This software was developed by the University of Tennessee as part of the |
---|
| 5 | # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 6 | # project funded by the US National Science Foundation. |
---|
| 7 | # |
---|
| 8 | # If you use DANSE applications to do scientific research that leads to |
---|
| 9 | # publication, we ask that you acknowledge the use of the software with the |
---|
| 10 | # following sentence: |
---|
| 11 | # |
---|
| 12 | # "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 13 | # |
---|
| 14 | # copyright 2008, University of Tennessee |
---|
| 15 | ############################################################################## |
---|
[9ce41c6] | 16 | |
---|
| 17 | |
---|
[79ac6f8] | 18 | """ |
---|
| 19 | Provide functionality for a C extension model |
---|
[9ce41c6] | 20 | |
---|
[79ac6f8] | 21 | :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY |
---|
| 22 | DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\prolate.h |
---|
| 23 | AND RE-RUN THE GENERATOR SCRIPT |
---|
[9ce41c6] | 24 | |
---|
| 25 | """ |
---|
| 26 | |
---|
| 27 | from sans.models.BaseComponent import BaseComponent |
---|
| 28 | from sans_extension.c_models import CProlateModel |
---|
| 29 | import copy |
---|
[96656e3] | 30 | |
---|
| 31 | def create_ProlateModel(): |
---|
| 32 | obj = ProlateModel() |
---|
| 33 | #CProlateModel.__init__(obj) is called by ProlateModel constructor |
---|
| 34 | return obj |
---|
| 35 | |
---|
[9ce41c6] | 36 | class ProlateModel(CProlateModel, BaseComponent): |
---|
[79ac6f8] | 37 | """ |
---|
| 38 | Class that evaluates a ProlateModel model. |
---|
| 39 | This file was auto-generated from ..\c_extensions\prolate.h. |
---|
| 40 | Refer to that file and the structure it contains |
---|
| 41 | for details of the model. |
---|
| 42 | List of default parameters: |
---|
[9ce41c6] | 43 | scale = 1.0 |
---|
| 44 | major_core = 100.0 [A] |
---|
| 45 | minor_core = 50.0 [A] |
---|
| 46 | major_shell = 110.0 [A] |
---|
| 47 | minor_shell = 60.0 [A] |
---|
[27972c1d] | 48 | contrast = 1e-006 [1/A^(2)] |
---|
| 49 | sld_solvent = 6.3e-006 [1/A^(2)] |
---|
[9ce41c6] | 50 | background = 0.001 [1/cm] |
---|
| 51 | |
---|
| 52 | """ |
---|
| 53 | |
---|
| 54 | def __init__(self): |
---|
| 55 | """ Initialization """ |
---|
| 56 | |
---|
| 57 | # Initialize BaseComponent first, then sphere |
---|
| 58 | BaseComponent.__init__(self) |
---|
[96656e3] | 59 | #apply(CProlateModel.__init__, (self,)) |
---|
[9ce41c6] | 60 | CProlateModel.__init__(self) |
---|
| 61 | |
---|
| 62 | ## Name of the model |
---|
| 63 | self.name = "ProlateModel" |
---|
| 64 | ## Model description |
---|
| 65 | self.description ="""[ProlateCoreShellModel] Calculates the form factor for a prolate |
---|
| 66 | ellipsoid particle with a core_shell structure. |
---|
| 67 | The form factor is averaged over all possible |
---|
| 68 | orientations of the ellipsoid such that P(q) |
---|
| 69 | = scale*<f^2>/Vol + bkg, where f is the |
---|
| 70 | single particle scattering amplitude. |
---|
| 71 | [Parameters]: |
---|
| 72 | major_core = radius of major_core, |
---|
| 73 | minor_core = radius of minor_core, |
---|
| 74 | major_shell = radius of major_shell, |
---|
| 75 | minor_shell = radius of minor_shell, |
---|
| 76 | contrast = SLD_core - SLD_shell |
---|
| 77 | sld_solvent = SLD_solvent |
---|
| 78 | background = Incoherent bkg |
---|
| 79 | scale = scale |
---|
| 80 | Note:It is the users' responsibility to ensure |
---|
| 81 | that shell radii are larger than core radii.""" |
---|
| 82 | |
---|
[fe9c19b4] | 83 | ## Parameter details [units, min, max] |
---|
[9ce41c6] | 84 | self.details = {} |
---|
| 85 | self.details['scale'] = ['', None, None] |
---|
| 86 | self.details['major_core'] = ['[A]', None, None] |
---|
| 87 | self.details['minor_core'] = ['[A]', None, None] |
---|
| 88 | self.details['major_shell'] = ['[A]', None, None] |
---|
| 89 | self.details['minor_shell'] = ['[A]', None, None] |
---|
[27972c1d] | 90 | self.details['contrast'] = ['[1/A^(2)]', None, None] |
---|
| 91 | self.details['sld_solvent'] = ['[1/A^(2)]', None, None] |
---|
[9ce41c6] | 92 | self.details['background'] = ['[1/cm]', None, None] |
---|
| 93 | |
---|
[fe9c19b4] | 94 | ## fittable parameters |
---|
[9ce41c6] | 95 | self.fixed=['major_core.width', 'minor_core.width', 'major_shell.width', 'minor_shell.width'] |
---|
| 96 | |
---|
[35aface] | 97 | ## non-fittable parameters |
---|
[96656e3] | 98 | self.non_fittable = [] |
---|
[35aface] | 99 | |
---|
[9ce41c6] | 100 | ## parameters with orientation |
---|
[96656e3] | 101 | self.orientation_params = [] |
---|
[9ce41c6] | 102 | |
---|
[96656e3] | 103 | def __reduce_ex__(self, proto): |
---|
[79ac6f8] | 104 | """ |
---|
[96656e3] | 105 | Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of |
---|
| 106 | c model. |
---|
[79ac6f8] | 107 | """ |
---|
[96656e3] | 108 | return (create_ProlateModel,tuple()) |
---|
[fe9c19b4] | 109 | |
---|
[96656e3] | 110 | def clone(self): |
---|
| 111 | """ Return a identical copy of self """ |
---|
| 112 | return self._clone(ProlateModel()) |
---|
[fe9c19b4] | 113 | |
---|
[9ce41c6] | 114 | |
---|
[79ac6f8] | 115 | def run(self, x=0.0): |
---|
| 116 | """ |
---|
| 117 | Evaluate the model |
---|
| 118 | |
---|
| 119 | :param x: input q, or [q,phi] |
---|
| 120 | |
---|
| 121 | :return: scattering function P(q) |
---|
| 122 | |
---|
[9ce41c6] | 123 | """ |
---|
| 124 | |
---|
| 125 | return CProlateModel.run(self, x) |
---|
| 126 | |
---|
[79ac6f8] | 127 | def runXY(self, x=0.0): |
---|
| 128 | """ |
---|
| 129 | Evaluate the model in cartesian coordinates |
---|
| 130 | |
---|
| 131 | :param x: input q, or [qx, qy] |
---|
| 132 | |
---|
| 133 | :return: scattering function P(q) |
---|
| 134 | |
---|
[9ce41c6] | 135 | """ |
---|
| 136 | |
---|
| 137 | return CProlateModel.runXY(self, x) |
---|
| 138 | |
---|
[79ac6f8] | 139 | def evalDistribution(self, x=[]): |
---|
| 140 | """ |
---|
| 141 | Evaluate the model in cartesian coordinates |
---|
| 142 | |
---|
| 143 | :param x: input q[], or [qx[], qy[]] |
---|
| 144 | |
---|
| 145 | :return: scattering function P(q[]) |
---|
| 146 | |
---|
[9ce41c6] | 147 | """ |
---|
[f9a1279] | 148 | return CProlateModel.evalDistribution(self, x) |
---|
[9ce41c6] | 149 | |
---|
| 150 | def calculate_ER(self): |
---|
[79ac6f8] | 151 | """ |
---|
| 152 | Calculate the effective radius for P(q)*S(q) |
---|
| 153 | |
---|
| 154 | :return: the value of the effective radius |
---|
| 155 | |
---|
[9ce41c6] | 156 | """ |
---|
| 157 | return CProlateModel.calculate_ER(self) |
---|
| 158 | |
---|
| 159 | def set_dispersion(self, parameter, dispersion): |
---|
| 160 | """ |
---|
[79ac6f8] | 161 | Set the dispersion object for a model parameter |
---|
| 162 | |
---|
| 163 | :param parameter: name of the parameter [string] |
---|
| 164 | :param dispersion: dispersion object of type DispersionModel |
---|
| 165 | |
---|
[9ce41c6] | 166 | """ |
---|
| 167 | return CProlateModel.set_dispersion(self, parameter, dispersion.cdisp) |
---|
| 168 | |
---|
| 169 | |
---|
| 170 | # End of file |
---|