source: sasview/sansmodels/src/sans/models/OblateModel.py @ 5062bbf

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 5062bbf was 79ac6f8, checked in by Gervaise Alina <gervyh@…>, 14 years ago

working on documentation

  • Property mode set to 100644
File size: 5.9 KB
Line 
1#!/usr/bin/env python
2
3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
16
17
18"""
19Provide functionality for a C extension model
20
21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\oblate.h
23         AND RE-RUN THE GENERATOR SCRIPT
24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import COblateModel
29import copy   
30   
31class OblateModel(COblateModel, BaseComponent):
32    """
33    Class that evaluates a OblateModel model.
34    This file was auto-generated from ..\c_extensions\oblate.h.
35    Refer to that file and the structure it contains
36    for details of the model.
37    List of default parameters:
38         scale           = 1.0
39         major_core      = 200.0 [A]
40         minor_core      = 20.0 [A]
41         major_shell     = 250.0 [A]
42         minor_shell     = 30.0 [A]
43         contrast        = 1e-006 [1/A^(2)]
44         sld_solvent     = 6.3e-006 [1/A^(2)]
45         background      = 0.001 [1/cm]
46         axis_theta      = 1.0 [rad]
47         axis_phi        = 1.0 [rad]
48
49    """
50       
51    def __init__(self):
52        """ Initialization """
53       
54        # Initialize BaseComponent first, then sphere
55        BaseComponent.__init__(self)
56        COblateModel.__init__(self)
57       
58        ## Name of the model
59        self.name = "OblateModel"
60        ## Model description
61        self.description ="""[OblateCoreShellModel] Calculates the form factor for an oblate
62                ellipsoid particle with a core_shell structure.
63                The form factor is averaged over all possible
64                orientations of the ellipsoid such that P(q)
65                = scale*<f^2>/Vol + bkg, where f is the
66                single particle scattering amplitude.
67                [Parameters]:
68                major_core = radius of major_core,
69                minor_core = radius of minor_core,
70                major_shell = radius of major_shell,
71                minor_shell = radius of minor_shell,
72                contrast = SLD_core - SLD_shell
73                sld_solvent = SLD_solvent
74                background = Incoherent bkg
75                scale =scale
76                Note:It is the users' responsibility to ensure
77                that shell radii are larger than core radii."""
78       
79        ## Parameter details [units, min, max]
80        self.details = {}
81        self.details['scale'] = ['', None, None]
82        self.details['major_core'] = ['[A]', None, None]
83        self.details['minor_core'] = ['[A]', None, None]
84        self.details['major_shell'] = ['[A]', None, None]
85        self.details['minor_shell'] = ['[A]', None, None]
86        self.details['contrast'] = ['[1/A^(2)]', None, None]
87        self.details['sld_solvent'] = ['[1/A^(2)]', None, None]
88        self.details['background'] = ['[1/cm]', None, None]
89        self.details['axis_theta'] = ['[rad]', None, None]
90        self.details['axis_phi'] = ['[rad]', None, None]
91
92        ## fittable parameters
93        self.fixed=['major_core.width', 'minor_core.width', 'major_shell.width', 'minor_shell.width']
94       
95        ## parameters with orientation
96        self.orientation_params =['axis_phi', 'axis_theta', 'axis_phi.width', 'axis_theta.width']
97   
98    def clone(self):
99        """ Return a identical copy of self """
100        return self._clone(OblateModel())   
101       
102    def __getstate__(self):
103        """
104        return object state for pickling and copying
105        """
106        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
107       
108        return self.__dict__, model_state
109       
110    def __setstate__(self, state):
111        """
112        create object from pickled state
113       
114        :param state: the state of the current model
115       
116        """
117       
118        self.__dict__, model_state = state
119        self.params = model_state['params']
120        self.dispersion = model_state['dispersion']
121        self.log = model_state['log']
122       
123   
124    def run(self, x=0.0):
125        """
126        Evaluate the model
127       
128        :param x: input q, or [q,phi]
129       
130        :return: scattering function P(q)
131       
132        """
133       
134        return COblateModel.run(self, x)
135   
136    def runXY(self, x=0.0):
137        """
138        Evaluate the model in cartesian coordinates
139       
140        :param x: input q, or [qx, qy]
141       
142        :return: scattering function P(q)
143       
144        """
145       
146        return COblateModel.runXY(self, x)
147       
148    def evalDistribution(self, x=[]):
149        """
150        Evaluate the model in cartesian coordinates
151       
152        :param x: input q[], or [qx[], qy[]]
153       
154        :return: scattering function P(q[])
155       
156        """
157        return COblateModel.evalDistribution(self, x)
158       
159    def calculate_ER(self):
160        """
161        Calculate the effective radius for P(q)*S(q)
162       
163        :return: the value of the effective radius
164       
165        """       
166        return COblateModel.calculate_ER(self)
167       
168    def set_dispersion(self, parameter, dispersion):
169        """
170        Set the dispersion object for a model parameter
171       
172        :param parameter: name of the parameter [string]
173        :param dispersion: dispersion object of type DispersionModel
174       
175        """
176        return COblateModel.set_dispersion(self, parameter, dispersion.cdisp)
177       
178   
179# End of file
Note: See TracBrowser for help on using the repository browser.