1 | #!/usr/bin/env python |
---|
2 | """ |
---|
3 | This software was developed by the University of Tennessee as part of the |
---|
4 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
5 | project funded by the US National Science Foundation. |
---|
6 | |
---|
7 | If you use DANSE applications to do scientific research that leads to |
---|
8 | publication, we ask that you acknowledge the use of the software with the |
---|
9 | following sentence: |
---|
10 | |
---|
11 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
12 | |
---|
13 | copyright 2008, University of Tennessee |
---|
14 | """ |
---|
15 | |
---|
16 | """ Provide functionality for a C extension model |
---|
17 | |
---|
18 | WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY |
---|
19 | DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\ellipsoid.h |
---|
20 | AND RE-RUN THE GENERATOR SCRIPT |
---|
21 | |
---|
22 | """ |
---|
23 | |
---|
24 | from sans.models.BaseComponent import BaseComponent |
---|
25 | from sans_extension.c_models import CEllipsoidModel |
---|
26 | import copy |
---|
27 | |
---|
28 | class EllipsoidModel(CEllipsoidModel, BaseComponent): |
---|
29 | """ Class that evaluates a EllipsoidModel model. |
---|
30 | This file was auto-generated from ..\c_extensions\ellipsoid.h. |
---|
31 | Refer to that file and the structure it contains |
---|
32 | for details of the model. |
---|
33 | List of default parameters: |
---|
34 | scale = 1.0 |
---|
35 | radius_a = 20.0 [A] |
---|
36 | radius_b = 400.0 [A] |
---|
37 | contrast = 3e-006 [1/A^(2)] |
---|
38 | background = 0.0 [1/cm] |
---|
39 | axis_theta = 1.57 [rad] |
---|
40 | axis_phi = 0.0 [rad] |
---|
41 | |
---|
42 | """ |
---|
43 | |
---|
44 | def __init__(self): |
---|
45 | """ Initialization """ |
---|
46 | |
---|
47 | # Initialize BaseComponent first, then sphere |
---|
48 | BaseComponent.__init__(self) |
---|
49 | CEllipsoidModel.__init__(self) |
---|
50 | |
---|
51 | ## Name of the model |
---|
52 | self.name = "EllipsoidModel" |
---|
53 | ## Model description |
---|
54 | self.description =""""P(q.alpha)= scale*f(q)^(2)+ bkg, where f(q)= 3*(scatter_sld |
---|
55 | - scatter_solvent)*V*[sin(q*r(Ra,Rb,alpha)) |
---|
56 | -q*r*cos(qr(Ra,Rb,alpha))] |
---|
57 | /[qr(Ra,Rb,alpha)]^(3)" |
---|
58 | |
---|
59 | r(Ra,Rb,alpha)= [Rb^(2)*(sin(alpha))^(2) |
---|
60 | + Ra^(2)*(cos(alpha))^(2)]^(1/2) |
---|
61 | |
---|
62 | scatter_sld: SLD of the scatter |
---|
63 | solvent_sld: SLD of the solvent |
---|
64 | contrast: SLD difference between scatter |
---|
65 | and solvent |
---|
66 | V: volune of the Eliipsoid |
---|
67 | Ra: radius along the rotation axis |
---|
68 | of the Ellipsoid |
---|
69 | Rb: radius perpendicular to the |
---|
70 | rotation axis of the ellipsoid""" |
---|
71 | |
---|
72 | ## Parameter details [units, min, max] |
---|
73 | self.details = {} |
---|
74 | self.details['scale'] = ['', None, None] |
---|
75 | self.details['radius_a'] = ['[A]', None, None] |
---|
76 | self.details['radius_b'] = ['[A]', None, None] |
---|
77 | self.details['contrast'] = ['[1/A^(2)]', None, None] |
---|
78 | self.details['background'] = ['[1/cm]', None, None] |
---|
79 | self.details['axis_theta'] = ['[rad]', None, None] |
---|
80 | self.details['axis_phi'] = ['[rad]', None, None] |
---|
81 | |
---|
82 | ## fittable parameters |
---|
83 | self.fixed=['axis_phi.width', 'axis_theta.width', 'radius_a.width', 'radius_b.width', 'length.width', 'r_minor.width'] |
---|
84 | |
---|
85 | ## parameters with orientation |
---|
86 | self.orientation_params =['axis_phi.width', 'axis_theta.width', 'axis_phi', 'axis_theta'] |
---|
87 | |
---|
88 | def clone(self): |
---|
89 | """ Return a identical copy of self """ |
---|
90 | return self._clone(EllipsoidModel()) |
---|
91 | |
---|
92 | def __getstate__(self): |
---|
93 | """ return object state for pickling and copying """ |
---|
94 | print "__dict__",self.__dict__ |
---|
95 | #self.__dict__['params'] = self.params |
---|
96 | #self.__dict__['dispersion'] = self.dispersion |
---|
97 | #self.__dict__['log'] = self.log |
---|
98 | model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} |
---|
99 | |
---|
100 | return self.__dict__, model_state |
---|
101 | |
---|
102 | def __setstate__(self, state): |
---|
103 | """ create object from pickled state """ |
---|
104 | |
---|
105 | self.__dict__, model_state = state |
---|
106 | self.params = model_state['params'] |
---|
107 | self.dispersion = model_state['dispersion'] |
---|
108 | self.log = model_state['log'] |
---|
109 | |
---|
110 | |
---|
111 | def run(self, x = 0.0): |
---|
112 | """ Evaluate the model |
---|
113 | @param x: input q, or [q,phi] |
---|
114 | @return: scattering function P(q) |
---|
115 | """ |
---|
116 | |
---|
117 | return CEllipsoidModel.run(self, x) |
---|
118 | |
---|
119 | def runXY(self, x = 0.0): |
---|
120 | """ Evaluate the model in cartesian coordinates |
---|
121 | @param x: input q, or [qx, qy] |
---|
122 | @return: scattering function P(q) |
---|
123 | """ |
---|
124 | |
---|
125 | return CEllipsoidModel.runXY(self, x) |
---|
126 | |
---|
127 | def evalDistribition(self, x = []): |
---|
128 | """ Evaluate the model in cartesian coordinates |
---|
129 | @param x: input q[], or [qx[], qy[]] |
---|
130 | @return: scattering function P(q[]) |
---|
131 | """ |
---|
132 | return CEllipsoidModel.evalDistribition(self, x) |
---|
133 | |
---|
134 | def calculate_ER(self): |
---|
135 | """ Calculate the effective radius for P(q)*S(q) |
---|
136 | @return: the value of the effective radius |
---|
137 | """ |
---|
138 | return CEllipsoidModel.calculate_ER(self) |
---|
139 | |
---|
140 | def set_dispersion(self, parameter, dispersion): |
---|
141 | """ |
---|
142 | Set the dispersion object for a model parameter |
---|
143 | @param parameter: name of the parameter [string] |
---|
144 | @dispersion: dispersion object of type DispersionModel |
---|
145 | """ |
---|
146 | return CEllipsoidModel.set_dispersion(self, parameter, dispersion.cdisp) |
---|
147 | |
---|
148 | |
---|
149 | # End of file |
---|