[ae3ce4e] | 1 | #!/usr/bin/env python |
---|
[95986b5] | 2 | """ |
---|
| 3 | This software was developed by the University of Tennessee as part of the |
---|
| 4 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 5 | project funded by the US National Science Foundation. |
---|
| 6 | |
---|
| 7 | If you use DANSE applications to do scientific research that leads to |
---|
| 8 | publication, we ask that you acknowledge the use of the software with the |
---|
| 9 | following sentence: |
---|
| 10 | |
---|
| 11 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 12 | |
---|
| 13 | copyright 2008, University of Tennessee |
---|
| 14 | """ |
---|
| 15 | |
---|
[ae3ce4e] | 16 | """ Provide functionality for a C extension model |
---|
| 17 | |
---|
| 18 | WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY |
---|
[836fe6e] | 19 | DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\ellipsoid.h |
---|
[ae3ce4e] | 20 | AND RE-RUN THE GENERATOR SCRIPT |
---|
| 21 | |
---|
| 22 | """ |
---|
| 23 | |
---|
| 24 | from sans.models.BaseComponent import BaseComponent |
---|
| 25 | from sans_extension.c_models import CEllipsoidModel |
---|
| 26 | import copy |
---|
| 27 | |
---|
| 28 | class EllipsoidModel(CEllipsoidModel, BaseComponent): |
---|
| 29 | """ Class that evaluates a EllipsoidModel model. |
---|
[fe9c19b4] | 30 | This file was auto-generated from ..\c_extensions\ellipsoid.h. |
---|
| 31 | Refer to that file and the structure it contains |
---|
| 32 | for details of the model. |
---|
| 33 | List of default parameters: |
---|
[ae3ce4e] | 34 | scale = 1.0 |
---|
[1ed3834] | 35 | radius_a = 20.0 [A] |
---|
| 36 | radius_b = 400.0 [A] |
---|
[27972c1d] | 37 | contrast = 3e-006 [1/A^(2)] |
---|
[0824909] | 38 | background = 0.0 [1/cm] |
---|
| 39 | axis_theta = 1.57 [rad] |
---|
| 40 | axis_phi = 0.0 [rad] |
---|
[ae3ce4e] | 41 | |
---|
| 42 | """ |
---|
| 43 | |
---|
| 44 | def __init__(self): |
---|
| 45 | """ Initialization """ |
---|
| 46 | |
---|
| 47 | # Initialize BaseComponent first, then sphere |
---|
| 48 | BaseComponent.__init__(self) |
---|
| 49 | CEllipsoidModel.__init__(self) |
---|
| 50 | |
---|
| 51 | ## Name of the model |
---|
| 52 | self.name = "EllipsoidModel" |
---|
[836fe6e] | 53 | ## Model description |
---|
[1ed3834] | 54 | self.description =""""P(q.alpha)= scale*f(q)^(2)+ bkg, where f(q)= 3*(scatter_sld |
---|
| 55 | - scatter_solvent)*V*[sin(q*r(Ra,Rb,alpha)) |
---|
| 56 | -q*r*cos(qr(Ra,Rb,alpha))] |
---|
[9316609] | 57 | /[qr(Ra,Rb,alpha)]^(3)" |
---|
[1ed3834] | 58 | |
---|
[0824909] | 59 | r(Ra,Rb,alpha)= [Rb^(2)*(sin(alpha))^(2) |
---|
| 60 | + Ra^(2)*(cos(alpha))^(2)]^(1/2) |
---|
[1ed3834] | 61 | |
---|
| 62 | scatter_sld: SLD of the scatter |
---|
| 63 | solvent_sld: SLD of the solvent |
---|
| 64 | contrast: SLD difference between scatter |
---|
| 65 | and solvent |
---|
[9316609] | 66 | V: volune of the Eliipsoid |
---|
[1ed3834] | 67 | Ra: radius along the rotation axis |
---|
| 68 | of the Ellipsoid |
---|
| 69 | Rb: radius perpendicular to the |
---|
| 70 | rotation axis of the ellipsoid""" |
---|
[836fe6e] | 71 | |
---|
[fe9c19b4] | 72 | ## Parameter details [units, min, max] |
---|
[ae3ce4e] | 73 | self.details = {} |
---|
| 74 | self.details['scale'] = ['', None, None] |
---|
[1ed3834] | 75 | self.details['radius_a'] = ['[A]', None, None] |
---|
| 76 | self.details['radius_b'] = ['[A]', None, None] |
---|
[27972c1d] | 77 | self.details['contrast'] = ['[1/A^(2)]', None, None] |
---|
[0824909] | 78 | self.details['background'] = ['[1/cm]', None, None] |
---|
| 79 | self.details['axis_theta'] = ['[rad]', None, None] |
---|
| 80 | self.details['axis_phi'] = ['[rad]', None, None] |
---|
[836fe6e] | 81 | |
---|
[fe9c19b4] | 82 | ## fittable parameters |
---|
[25a608f5] | 83 | self.fixed=['axis_phi.width', 'axis_theta.width', 'radius_a.width', 'radius_b.width', 'length.width', 'r_minor.width'] |
---|
| 84 | |
---|
| 85 | ## parameters with orientation |
---|
| 86 | self.orientation_params =['axis_phi.width', 'axis_theta.width', 'axis_phi', 'axis_theta'] |
---|
[ae3ce4e] | 87 | |
---|
| 88 | def clone(self): |
---|
| 89 | """ Return a identical copy of self """ |
---|
[95986b5] | 90 | return self._clone(EllipsoidModel()) |
---|
[fe9c19b4] | 91 | |
---|
| 92 | def __getstate__(self): |
---|
| 93 | """ return object state for pickling and copying """ |
---|
| 94 | print "__dict__",self.__dict__ |
---|
| 95 | #self.__dict__['params'] = self.params |
---|
| 96 | #self.__dict__['dispersion'] = self.dispersion |
---|
| 97 | #self.__dict__['log'] = self.log |
---|
| 98 | model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} |
---|
| 99 | |
---|
| 100 | return self.__dict__, model_state |
---|
| 101 | |
---|
| 102 | def __setstate__(self, state): |
---|
| 103 | """ create object from pickled state """ |
---|
| 104 | |
---|
| 105 | self.__dict__, model_state = state |
---|
| 106 | self.params = model_state['params'] |
---|
| 107 | self.dispersion = model_state['dispersion'] |
---|
| 108 | self.log = model_state['log'] |
---|
| 109 | |
---|
[ae3ce4e] | 110 | |
---|
| 111 | def run(self, x = 0.0): |
---|
| 112 | """ Evaluate the model |
---|
| 113 | @param x: input q, or [q,phi] |
---|
| 114 | @return: scattering function P(q) |
---|
| 115 | """ |
---|
| 116 | |
---|
| 117 | return CEllipsoidModel.run(self, x) |
---|
| 118 | |
---|
| 119 | def runXY(self, x = 0.0): |
---|
| 120 | """ Evaluate the model in cartesian coordinates |
---|
| 121 | @param x: input q, or [qx, qy] |
---|
| 122 | @return: scattering function P(q) |
---|
| 123 | """ |
---|
| 124 | |
---|
| 125 | return CEllipsoidModel.runXY(self, x) |
---|
[95986b5] | 126 | |
---|
[9bd69098] | 127 | def evalDistribition(self, x = []): |
---|
| 128 | """ Evaluate the model in cartesian coordinates |
---|
| 129 | @param x: input q[], or [qx[], qy[]] |
---|
| 130 | @return: scattering function P(q[]) |
---|
| 131 | """ |
---|
| 132 | return CEllipsoidModel.evalDistribition(self, x) |
---|
| 133 | |
---|
[5eb9154] | 134 | def calculate_ER(self): |
---|
| 135 | """ Calculate the effective radius for P(q)*S(q) |
---|
| 136 | @return: the value of the effective radius |
---|
| 137 | """ |
---|
| 138 | return CEllipsoidModel.calculate_ER(self) |
---|
| 139 | |
---|
[95986b5] | 140 | def set_dispersion(self, parameter, dispersion): |
---|
| 141 | """ |
---|
| 142 | Set the dispersion object for a model parameter |
---|
| 143 | @param parameter: name of the parameter [string] |
---|
| 144 | @dispersion: dispersion object of type DispersionModel |
---|
| 145 | """ |
---|
| 146 | return CEllipsoidModel.set_dispersion(self, parameter, dispersion.cdisp) |
---|
| 147 | |
---|
[ae3ce4e] | 148 | |
---|
| 149 | # End of file |
---|