source: sasview/sansmodels/src/sans/models/CappedCylinderModel.py @ b1a65b6

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since b1a65b6 was 96656e3, checked in by Jae Cho <jhjcho@…>, 14 years ago

update models due to changes of template

  • Property mode set to 100644
File size: 5.7 KB
Line 
1#!/usr/bin/env python
2
3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
16
17
18"""
19Provide functionality for a C extension model
20
21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\capcyl.h
23         AND RE-RUN THE GENERATOR SCRIPT
24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import CCappedCylinderModel
29import copy   
30
31def create_CappedCylinderModel():
32    obj = CappedCylinderModel()
33    #CCappedCylinderModel.__init__(obj) is called by CappedCylinderModel constructor
34    return obj
35
36class CappedCylinderModel(CCappedCylinderModel, BaseComponent):
37    """
38    Class that evaluates a CappedCylinderModel model.
39    This file was auto-generated from ..\c_extensions\capcyl.h.
40    Refer to that file and the structure it contains
41    for details of the model.
42    List of default parameters:
43         scale           = 1.0
44         rad_cyl         = 20.0 [A]
45         len_cyl         = 400.0 [A]
46         rad_cap         = 40.0 [A]
47         sld_capcyl      = 1e-006 [1/A^(2)]
48         sld_solv        = 6.3e-006 [1/A^(2)]
49         background      = 0.0 [1/cm]
50         theta           = 0.0 [deg]
51         phi             = 0.0 [deg]
52
53    """
54       
55    def __init__(self):
56        """ Initialization """
57       
58        # Initialize BaseComponent first, then sphere
59        BaseComponent.__init__(self)
60        #apply(CCappedCylinderModel.__init__, (self,))
61        CCappedCylinderModel.__init__(self)
62       
63        ## Name of the model
64        self.name = "CappedCylinderModel"
65        ## Model description
66        self.description ="""Calculates the scattering from a cylinder with spherical section end-caps.
67                That is, a sphereocylinder
68                with end caps that have a radius larger than
69                that of the cylinder and the center of the
70                end cap radius lies within the cylinder.
71                Note: As the length of cylinder -->0,
72                it becomes a ConvexLens.
73                It must be that rad_cyl <(=) rad_cap.
74                [Parameters];
75                scale: volume fraction of spheres,
76                background:incoherent background,
77                rad_cyl: radius of the cylinder,
78                len_cyl: length of the cylinder,
79                rad_cap: radius of the semi-spherical cap,
80                sld_capcyl: SLD of the capped cylinder,
81                sld_solv: SLD of the solvent."""
82       
83        ## Parameter details [units, min, max]
84        self.details = {}
85        self.details['scale'] = ['', None, None]
86        self.details['rad_cyl'] = ['[A]', None, None]
87        self.details['len_cyl'] = ['[A]', None, None]
88        self.details['rad_cap'] = ['[A]', None, None]
89        self.details['sld_capcyl'] = ['[1/A^(2)]', None, None]
90        self.details['sld_solv'] = ['[1/A^(2)]', None, None]
91        self.details['background'] = ['[1/cm]', None, None]
92        self.details['theta'] = ['[deg]', None, None]
93        self.details['phi'] = ['[deg]', None, None]
94
95        ## fittable parameters
96        self.fixed=['rad_cyl.width', 'len_cyl', 'rad_cap', 'phi.width', 'theta.width']
97       
98        ## non-fittable parameters
99        self.non_fittable = []
100       
101        ## parameters with orientation
102        self.orientation_params = ['phi', 'theta', 'phi.width', 'theta.width']
103   
104    def __reduce_ex__(self, proto):
105        """
106        Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of
107        c model.
108        """
109        return (create_CappedCylinderModel,tuple())
110       
111    def clone(self):
112        """ Return a identical copy of self """
113        return self._clone(CappedCylinderModel())   
114       
115   
116    def run(self, x=0.0):
117        """
118        Evaluate the model
119       
120        :param x: input q, or [q,phi]
121       
122        :return: scattering function P(q)
123       
124        """
125       
126        return CCappedCylinderModel.run(self, x)
127   
128    def runXY(self, x=0.0):
129        """
130        Evaluate the model in cartesian coordinates
131       
132        :param x: input q, or [qx, qy]
133       
134        :return: scattering function P(q)
135       
136        """
137       
138        return CCappedCylinderModel.runXY(self, x)
139       
140    def evalDistribution(self, x=[]):
141        """
142        Evaluate the model in cartesian coordinates
143       
144        :param x: input q[], or [qx[], qy[]]
145       
146        :return: scattering function P(q[])
147       
148        """
149        return CCappedCylinderModel.evalDistribution(self, x)
150       
151    def calculate_ER(self):
152        """
153        Calculate the effective radius for P(q)*S(q)
154       
155        :return: the value of the effective radius
156       
157        """       
158        return CCappedCylinderModel.calculate_ER(self)
159       
160    def set_dispersion(self, parameter, dispersion):
161        """
162        Set the dispersion object for a model parameter
163       
164        :param parameter: name of the parameter [string]
165        :param dispersion: dispersion object of type DispersionModel
166       
167        """
168        return CCappedCylinderModel.set_dispersion(self, parameter, dispersion.cdisp)
169       
170   
171# End of file
Note: See TracBrowser for help on using the repository browser.