source: sasview/sansmodels/src/sans/models/CappedCylinderModel.py @ b9b9930

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since b9b9930 was 4628e31, checked in by Jae Cho <jhjcho@…>, 14 years ago

changed the unit of angles into degrees

  • Property mode set to 100644
File size: 5.8 KB
Line 
1#!/usr/bin/env python
2
3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
16
17
18"""
19Provide functionality for a C extension model
20
21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\capcyl.h
23         AND RE-RUN THE GENERATOR SCRIPT
24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import CCappedCylinderModel
29import copy   
30   
31class CappedCylinderModel(CCappedCylinderModel, BaseComponent):
32    """
33    Class that evaluates a CappedCylinderModel model.
34    This file was auto-generated from ..\c_extensions\capcyl.h.
35    Refer to that file and the structure it contains
36    for details of the model.
37    List of default parameters:
38         scale           = 1.0
39         rad_cyl         = 20.0 [A]
40         len_cyl         = 400.0 [A]
41         rad_cap         = 40.0 [A]
42         sld_capcyl      = 1e-006 [1/A^(2)]
43         sld_solv        = 6.3e-006 [1/A^(2)]
44         background      = 0.0 [1/cm]
45         theta           = 0.0 [deg]
46         phi             = 0.0 [deg]
47
48    """
49       
50    def __init__(self):
51        """ Initialization """
52       
53        # Initialize BaseComponent first, then sphere
54        BaseComponent.__init__(self)
55        CCappedCylinderModel.__init__(self)
56       
57        ## Name of the model
58        self.name = "CappedCylinderModel"
59        ## Model description
60        self.description ="""Calculates the scattering from a cylinder with spherical section end-caps.
61                That is, a sphereocylinder
62                with end caps that have a radius larger than
63                that of the cylinder and the center of the
64                end cap radius lies within the cylinder.
65                Note: As the length of cylinder -->0,
66                it becomes a ConvexLens.
67                It must be that rad_cyl <(=) rad_cap.
68                [Parameters];
69                scale: volume fraction of spheres,
70                background:incoherent background,
71                rad_cyl: radius of the cylinder,
72                len_cyl: length of the cylinder,
73                rad_cap: radius of the semi-spherical cap,
74                sld_capcyl: SLD of the capped cylinder,
75                sld_solv: SLD of the solvent."""
76       
77        ## Parameter details [units, min, max]
78        self.details = {}
79        self.details['scale'] = ['', None, None]
80        self.details['rad_cyl'] = ['[A]', None, None]
81        self.details['len_cyl'] = ['[A]', None, None]
82        self.details['rad_cap'] = ['[A]', None, None]
83        self.details['sld_capcyl'] = ['[1/A^(2)]', None, None]
84        self.details['sld_solv'] = ['[1/A^(2)]', None, None]
85        self.details['background'] = ['[1/cm]', None, None]
86        self.details['theta'] = ['[deg]', None, None]
87        self.details['phi'] = ['[deg]', None, None]
88
89        ## fittable parameters
90        self.fixed=['rad_cyl.width', 'len_cyl', 'rad_cap', 'phi.width', 'theta.width']
91       
92        ## non-fittable parameters
93        self.non_fittable=[]
94       
95        ## parameters with orientation
96        self.orientation_params =['phi', 'theta', 'phi.width', 'theta.width']
97   
98    def clone(self):
99        """ Return a identical copy of self """
100        return self._clone(CappedCylinderModel())   
101       
102    def __getstate__(self):
103        """
104        return object state for pickling and copying
105        """
106        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
107       
108        return self.__dict__, model_state
109       
110    def __setstate__(self, state):
111        """
112        create object from pickled state
113       
114        :param state: the state of the current model
115       
116        """
117       
118        self.__dict__, model_state = state
119        self.params = model_state['params']
120        self.dispersion = model_state['dispersion']
121        self.log = model_state['log']
122       
123   
124    def run(self, x=0.0):
125        """
126        Evaluate the model
127       
128        :param x: input q, or [q,phi]
129       
130        :return: scattering function P(q)
131       
132        """
133       
134        return CCappedCylinderModel.run(self, x)
135   
136    def runXY(self, x=0.0):
137        """
138        Evaluate the model in cartesian coordinates
139       
140        :param x: input q, or [qx, qy]
141       
142        :return: scattering function P(q)
143       
144        """
145       
146        return CCappedCylinderModel.runXY(self, x)
147       
148    def evalDistribution(self, x=[]):
149        """
150        Evaluate the model in cartesian coordinates
151       
152        :param x: input q[], or [qx[], qy[]]
153       
154        :return: scattering function P(q[])
155       
156        """
157        return CCappedCylinderModel.evalDistribution(self, x)
158       
159    def calculate_ER(self):
160        """
161        Calculate the effective radius for P(q)*S(q)
162       
163        :return: the value of the effective radius
164       
165        """       
166        return CCappedCylinderModel.calculate_ER(self)
167       
168    def set_dispersion(self, parameter, dispersion):
169        """
170        Set the dispersion object for a model parameter
171       
172        :param parameter: name of the parameter [string]
173        :param dispersion: dispersion object of type DispersionModel
174       
175        """
176        return CCappedCylinderModel.set_dispersion(self, parameter, dispersion.cdisp)
177       
178   
179# End of file
Note: See TracBrowser for help on using the repository browser.