[6e8b436] | 1 | <html> |
---|
| 2 | |
---|
| 3 | <head> |
---|
| 4 | <meta http-equiv=Content-Type content="text/html; charset=windows-1252"> |
---|
| 5 | <meta name=Generator content="Microsoft Word 12 (filtered)"> |
---|
| 6 | <style> |
---|
| 7 | <!-- |
---|
| 8 | /* Font Definitions */ |
---|
| 9 | @font-face |
---|
| 10 | {font-family:Wingdings; |
---|
| 11 | panose-1:5 0 0 0 0 0 0 0 0 0;} |
---|
| 12 | @font-face |
---|
| 13 | {font-family:"Cambria Math"; |
---|
| 14 | panose-1:2 4 5 3 5 4 6 3 2 4;} |
---|
| 15 | @font-face |
---|
| 16 | {font-family:Calibri; |
---|
| 17 | panose-1:2 15 5 2 2 2 4 3 2 4;} |
---|
| 18 | @font-face |
---|
| 19 | {font-family:Tahoma; |
---|
| 20 | panose-1:2 11 6 4 3 5 4 4 2 4;} |
---|
| 21 | /* Style Definitions */ |
---|
| 22 | p.MsoNormal, li.MsoNormal, div.MsoNormal |
---|
| 23 | {margin-top:0in; |
---|
| 24 | margin-right:0in; |
---|
| 25 | margin-bottom:10.0pt; |
---|
| 26 | margin-left:0in; |
---|
| 27 | line-height:115%; |
---|
| 28 | font-size:11.0pt; |
---|
| 29 | font-family:"Calibri","sans-serif";} |
---|
| 30 | p.MsoAcetate, li.MsoAcetate, div.MsoAcetate |
---|
| 31 | {mso-style-link:"Balloon Text Char"; |
---|
| 32 | margin:0in; |
---|
| 33 | margin-bottom:.0001pt; |
---|
| 34 | font-size:8.0pt; |
---|
| 35 | font-family:"Tahoma","sans-serif";} |
---|
| 36 | p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph |
---|
| 37 | {margin-top:0in; |
---|
| 38 | margin-right:0in; |
---|
| 39 | margin-bottom:10.0pt; |
---|
| 40 | margin-left:.5in; |
---|
| 41 | line-height:115%; |
---|
| 42 | font-size:11.0pt; |
---|
| 43 | font-family:"Calibri","sans-serif";} |
---|
| 44 | p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst |
---|
| 45 | {margin-top:0in; |
---|
| 46 | margin-right:0in; |
---|
| 47 | margin-bottom:0in; |
---|
| 48 | margin-left:.5in; |
---|
| 49 | margin-bottom:.0001pt; |
---|
| 50 | line-height:115%; |
---|
| 51 | font-size:11.0pt; |
---|
| 52 | font-family:"Calibri","sans-serif";} |
---|
| 53 | p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle |
---|
| 54 | {margin-top:0in; |
---|
| 55 | margin-right:0in; |
---|
| 56 | margin-bottom:0in; |
---|
| 57 | margin-left:.5in; |
---|
| 58 | margin-bottom:.0001pt; |
---|
| 59 | line-height:115%; |
---|
| 60 | font-size:11.0pt; |
---|
| 61 | font-family:"Calibri","sans-serif";} |
---|
| 62 | p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast |
---|
| 63 | {margin-top:0in; |
---|
| 64 | margin-right:0in; |
---|
| 65 | margin-bottom:10.0pt; |
---|
| 66 | margin-left:.5in; |
---|
| 67 | line-height:115%; |
---|
| 68 | font-size:11.0pt; |
---|
| 69 | font-family:"Calibri","sans-serif";} |
---|
| 70 | span.BalloonTextChar |
---|
| 71 | {mso-style-name:"Balloon Text Char"; |
---|
| 72 | mso-style-link:"Balloon Text"; |
---|
| 73 | font-family:"Tahoma","sans-serif";} |
---|
| 74 | .MsoPapDefault |
---|
| 75 | {margin-bottom:10.0pt; |
---|
| 76 | line-height:115%;} |
---|
| 77 | @page WordSection1 |
---|
| 78 | {size:8.5in 11.0in; |
---|
| 79 | margin:1.0in 1.0in 1.0in 1.0in;} |
---|
| 80 | div.WordSection1 |
---|
| 81 | {page:WordSection1;} |
---|
| 82 | /* List Definitions */ |
---|
| 83 | ol |
---|
| 84 | {margin-bottom:0in;} |
---|
| 85 | ul |
---|
| 86 | {margin-bottom:0in;} |
---|
| 87 | --> |
---|
| 88 | </style> |
---|
| 89 | |
---|
| 90 | </head> |
---|
| 91 | |
---|
| 92 | <body lang=EN-US> |
---|
| 93 | |
---|
| 94 | <div class=WordSection1> |
---|
| 95 | |
---|
| 96 | <p class=MsoNormal><span style='font-size:16.0pt;line-height:115%;font-family: |
---|
[5cc39f10] | 97 | "Times New Roman","serif"'><h4>Smear Computation </h4></span></p> |
---|
[6e8b436] | 98 | <p class=MsoNormal> </p> |
---|
| 99 | |
---|
| 100 | <ul style='margin-top:0in' type=disc> |
---|
| 101 | <li class=MsoNormal style='line-height:115%'><a href="#Slit Smear"><b>Slit Smear</b></a> |
---|
| 102 | </li> |
---|
| 103 | <li class=MsoNormal style='line-height:115%'><a href="#Pinhole Smear"><b>Pinhole Smear</b></a> |
---|
| 104 | </li> |
---|
| 105 | <li class=MsoNormal style='line-height:115%'><a href="#2D Smear"><b>2D Smear</b></a> |
---|
| 106 | </li> |
---|
| 107 | </ul> |
---|
| 108 | <p class=MsoNormal> </p> |
---|
| 109 | <p class=MsoNormal> </p> |
---|
| 110 | <p class=MsoListParagraph><span style='font-size:14.0pt;line-height:115%; |
---|
[5cc39f10] | 111 | font-family:"Times New Roman","serif"'><h5><a name="Slit Smear">Slit Smear</a></h5></span></p> |
---|
[6e8b436] | 112 | |
---|
| 113 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The sit |
---|
| 114 | smeared scattering intensity for SANS is defined by</span></p> |
---|
| 115 | |
---|
| 116 | <p class=MsoNormal><img width=349 height=49 |
---|
| 117 | src="sm_image002.gif" align=left hspace=12></p> |
---|
| 118 | |
---|
| 119 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'> |
---|
| 120 | 1)</span><br clear=all> |
---|
| 121 | <span style='font-family:"Times New Roman","serif"'>where Norm = <span |
---|
| 122 | style='position:relative;top:15.0pt'><img width=137 height=49 |
---|
| 123 | src="sm_image003.gif"></span>.</span></p> |
---|
| 124 | |
---|
| 125 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The |
---|
| 126 | functions <span style='position:relative;top:6.0pt'><img width=43 height=25 |
---|
| 127 | src="sm_image004.gif"></span>and <span style='position: |
---|
| 128 | relative;top:6.0pt'><img width=43 height=25 |
---|
| 129 | src="sm_image005.gif"></span>refer to the slit width weighting |
---|
| 130 | function and the slit height weighting determined at the q point, respectively. |
---|
| 131 | Here, we assumes that the weighting function is described by a rectangular |
---|
| 132 | function, i.e.,</span></p> |
---|
| 133 | |
---|
| 134 | <p class=MsoNormal><span style='position:relative;top:7.0pt'><img width=134 |
---|
| 135 | height=26 src="sm_image006.gif"> |
---|
| 136 | </span><span style='font-family:"Times New Roman","serif";position:relative; |
---|
| 137 | top:7.0pt'>2)</span></p> |
---|
| 138 | |
---|
| 139 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>and </span></p> |
---|
| 140 | |
---|
| 141 | <p class=MsoNormal><span style='position:relative;top:7.0pt'><img width=136 |
---|
| 142 | height=26 src="sm_image007.gif"></span>, |
---|
| 143 | <span style='font-family:"Times New Roman","serif"'>3)</span></p> |
---|
| 144 | |
---|
| 145 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>so that </span><span |
---|
| 146 | style='position:relative;top:6.0pt'><img width=58 height=23 |
---|
| 147 | src="sm_image008.gif"></span> <span style='position:relative; |
---|
| 148 | top:16.0pt'><img width=76 height=51 src="sm_image009.gif"></span> <span |
---|
| 149 | style='font-family:"Times New Roman","serif"'>for</span> <span |
---|
| 150 | style='position:relative;top:3.0pt'><img width=40 height=15 |
---|
| 151 | src="sm_image010.gif"></span> <span style='font-family: |
---|
| 152 | "Times New Roman","serif"'>and <i>u</i>. The </span><span style='position:relative; |
---|
| 153 | top:6.0pt'><img width=28 height=24 src="sm_image011.gif"></span> <span |
---|
| 154 | style='font-family:"Times New Roman","serif"'>and </span><span |
---|
| 155 | style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
| 156 | src="sm_image012.gif"> </span><span style='font-family: |
---|
| 157 | "Times New Roman","serif"'>stand for the slit height (FWHM/2) and the slit |
---|
| 158 | width (FWHM/2) in the q space. Now the integral of Eq. (1) is simplified to</span></p> |
---|
| 159 | |
---|
| 160 | <p class=MsoNormal><img width=283 height=52 |
---|
| 161 | src="sm_image013.gif" align=left hspace=12><span |
---|
| 162 | style='font-family:"Times New Roman","serif"'> |
---|
| 163 | 4)</span></p> |
---|
| 164 | |
---|
| 165 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"; |
---|
| 166 | position:relative;top:20.0pt'> </span></p> |
---|
| 167 | |
---|
| 168 | <p class=MsoListParagraphCxSpFirst style='margin-left:0in'><b><span |
---|
| 169 | style='font-family:"Times New Roman","serif"'>Numerical Implementation of Eq. |
---|
| 170 | (4) </span></b></p> |
---|
| 171 | |
---|
| 172 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;text-indent:-.25in'><span |
---|
| 173 | style='font-family:"Times New Roman","serif"'>1)<span style='font:7.0pt "Times New Roman"'> |
---|
| 174 | </span></span><span style='font-family:"Times New Roman","serif"'>For </span><span |
---|
| 175 | style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
| 176 | src="sm_image014.gif"></span>= 0 <span style='font-family: |
---|
| 177 | "Times New Roman","serif"'>and </span><span style='position:relative; |
---|
| 178 | top:6.0pt'><img width=28 height=24 src="sm_image015.gif"></span> = |
---|
| 179 | <span style='font-family:"Times New Roman","serif"'>constant:</span></p> |
---|
| 180 | |
---|
| 181 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
| 182 | <img |
---|
| 183 | src="sm_image016.gif"></p> |
---|
| 184 | |
---|
| 185 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 186 | style='font-family:"Times New Roman","serif"'>For discrete q values, at the q |
---|
| 187 | values from the data points and at the q values extended up to q<sub>N</sub>= |
---|
| 188 | q<sub>i</sub> + </span><span style='position:relative;top:6.0pt'><img width=28 |
---|
| 189 | height=24 src="sm_image011.gif"></span><span |
---|
| 190 | style='font-family:"Times New Roman","serif"'>, the smeared intensity can be |
---|
| 191 | calculated approximately,</span></p> |
---|
| 192 | |
---|
| 193 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><img |
---|
| 194 | src="sm_image017.gif">. <span |
---|
| 195 | style='font-family:"Times New Roman","serif"'>5)</span></p> |
---|
| 196 | |
---|
| 197 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 198 | style='position:relative;top:7.0pt'><img width=23 height=25 |
---|
| 199 | src="sm_image018.gif"></span> <span style='font-family: |
---|
| 200 | "Times New Roman","serif"'>= 0 for <i>I<sub>s</sub></i> in</span> <i><span |
---|
| 201 | style='font-family:"Times New Roman","serif"'>j < i</span></i><span |
---|
| 202 | style='font-family:"Times New Roman","serif"'> or<i> j>N-1</i>.</span></p> |
---|
| 203 | |
---|
| 204 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 205 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 206 | |
---|
| 207 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;text-indent:-.25in'><span |
---|
| 208 | style='font-family:"Times New Roman","serif"'>2)<span style='font:7.0pt "Times New Roman"'> |
---|
| 209 | </span></span><span style='font-family:"Times New Roman","serif"'>For </span><span |
---|
| 210 | style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
| 211 | src="sm_image014.gif"></span>= <span style='font-family: |
---|
| 212 | "Times New Roman","serif"'>constant </span> <span style='font-family:"Times New Roman","serif"'>and |
---|
| 213 | </span><span style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
| 214 | src="sm_image015.gif"></span> = <span style='font-family: |
---|
| 215 | "Times New Roman","serif"'>0:</span></p> |
---|
| 216 | |
---|
| 217 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 218 | style='font-family:"Times New Roman","serif"'>Similarly to 1), we get</span></p> |
---|
| 219 | |
---|
| 220 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
| 221 | <img |
---|
| 222 | src="sm_image019.gif"> |
---|
| 223 | <span |
---|
| 224 | style='font-family:"Times New Roman","serif"'>6)</span></p> |
---|
| 225 | |
---|
| 226 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 227 | style='font-family:"Times New Roman","serif"'>for q<sub>p</sub> = q<sub>i</sub> |
---|
| 228 | - </span><span style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
| 229 | src="sm_image012.gif"></span><span style='font-family: |
---|
| 230 | "Times New Roman","serif"'> and</span> <span style='font-family:"Times New Roman","serif"'>q<sub>N</sub> |
---|
| 231 | = q<sub>i</sub> + </span><span style='position:relative;top:6.0pt'><img |
---|
| 232 | width=28 height=24 src="sm_image012.gif"></span>. <span |
---|
| 233 | style='position:relative;top:7.0pt'><img width=23 height=25 |
---|
| 234 | src="sm_image018.gif"></span> <span style='font-family: |
---|
| 235 | "Times New Roman","serif"'>= 0 for <i>I<sub>s</sub></i> in</span> <i><span |
---|
| 236 | style='font-family:"Times New Roman","serif"'>j < p</span></i><span |
---|
| 237 | style='font-family:"Times New Roman","serif"'> or<i> j>N-1</i>.</span></p> |
---|
| 238 | |
---|
| 239 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> </p> |
---|
| 240 | |
---|
| 241 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;text-indent:-.25in'><span |
---|
| 242 | style='font-family:"Times New Roman","serif"'>3)<span style='font:7.0pt "Times New Roman"'> |
---|
| 243 | </span></span><span style='font-family:"Times New Roman","serif"'>For </span><span |
---|
| 244 | style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
| 245 | src="sm_image014.gif"></span>= <span style='font-family: |
---|
| 246 | "Times New Roman","serif"'>constant </span> <span style='font-family:"Times New Roman","serif"'>and |
---|
| 247 | </span><span style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
| 248 | src="sm_image015.gif"></span> = <span style='font-family: |
---|
| 249 | "Times New Roman","serif"'>constant:</span></p> |
---|
| 250 | |
---|
| 251 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 252 | style='font-family:"Times New Roman","serif"'>This case, the best way is to |
---|
| 253 | perform the integration, Eq. (1), numerically for both slit height and width. |
---|
| 254 | However, the numerical integration is not correct enough unless given a large |
---|
| 255 | number of iteration, say at least 10000 by 10000 for each element of the matrix |
---|
| 256 | W, which will take minutes and minutes to finish the calculation for a set of |
---|
| 257 | typical SANS data. An alternative way which is correct for slit width << |
---|
| 258 | slit hight, is used in the SANSView: This method is a mixed method that |
---|
| 259 | combines the method 1) with the numerical integration for the slit width.</span></p> |
---|
| 260 | |
---|
| 261 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
| 262 | </p> |
---|
| 263 | |
---|
| 264 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
| 265 | <img |
---|
| 266 | src="sm_image020.gif"> <span style='font-family: |
---|
| 267 | "Times New Roman","serif"'>(7)</span></p> |
---|
| 268 | |
---|
| 269 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 270 | style='font-family:"Times New Roman","serif"'>for q<sub>p</sub> = q<sub>i</sub> |
---|
| 271 | - </span><span style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
| 272 | src="sm_image012.gif"></span><span style='font-family: |
---|
| 273 | "Times New Roman","serif"'> and</span> <span style='font-family:"Times New Roman","serif"'>q<sub>N</sub> |
---|
| 274 | = q<sub>i</sub> + </span><span style='position:relative;top:6.0pt'><img |
---|
| 275 | width=28 height=24 src="sm_image012.gif"></span>. <span |
---|
| 276 | style='position:relative;top:7.0pt'><img width=23 height=25 |
---|
| 277 | src="sm_image018.gif"></span> <span style='font-family: |
---|
| 278 | "Times New Roman","serif"'>= 0 for <i>I<sub>s</sub></i> in</span> <i><span |
---|
| 279 | style='font-family:"Times New Roman","serif"'>j < p</span></i><span |
---|
| 280 | style='font-family:"Times New Roman","serif"'> or<i> j>N-1</i>. </span></p> |
---|
| 281 | |
---|
| 282 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 283 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 284 | |
---|
| 285 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 286 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 287 | |
---|
| 288 | <p class=MsoListParagraphCxSpLast><span style='font-size:14.0pt;line-height: |
---|
[5cc39f10] | 289 | 115%;font-family:"Times New Roman","serif"'><h5><a name="Pinhole Smear">Pinhole Smear</a></h5></span></p> |
---|
[6e8b436] | 290 | |
---|
| 291 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The |
---|
| 292 | pinhole smearing computation is done similar to the Case 2) above except that |
---|
| 293 | the weight function used was the Gaussian function, so that the Eq. 6) for this |
---|
| 294 | case becomes</span></p> |
---|
| 295 | |
---|
| 296 | <p class=MsoNormal><img |
---|
| 297 | src="sm_image021.gif"><span |
---|
| 298 | style='font-family:"Times New Roman","serif"'> (8)</span></p> |
---|
| 299 | |
---|
| 300 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>For all |
---|
| 301 | the cases above, the weighting matrix <i>W</i> is calculated when the smearing |
---|
| 302 | is called at the first time, and it includes the ~ 60 q values (finely binned |
---|
| 303 | evenly) below (>0) and above the q range of data in order to cover all data |
---|
| 304 | points of the smearing computation for a given model and for a given slit size. |
---|
| 305 | The <i>Norm</i> factor is found numerically with the weighting matrix, and |
---|
| 306 | considered on <i>I<sub>s</sub></i> computation.</span></p> |
---|
| 307 | |
---|
| 308 | <p class=MsoListParagraphCxSpFirst style='margin-left:.25in'><span |
---|
| 309 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 310 | |
---|
| 311 | <p class=MsoListParagraphCxSpLast><span style='font-size:14.0pt;line-height: |
---|
[5cc39f10] | 312 | 115%;font-family:"Times New Roman","serif"'><h5><a name="2D Smear">2D Smear</a></h5></span></p> |
---|
[6e8b436] | 313 | |
---|
| 314 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The |
---|
| 315 | 2D smearing computation is done similar to the 1D pinhole smearing above |
---|
| 316 | except that the weight function used was the 2D elliptical Gaussian function</span></p> |
---|
| 317 | |
---|
| 318 | <p class=MsoNormal><img |
---|
| 319 | src="sm_image022.gif"><span |
---|
| 320 | style='font-family:"Times New Roman","serif"'> (9)</span></p> |
---|
| 321 | |
---|
| 322 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>In Eq |
---|
[8956bdb] | 323 | (9), x<sub>0</sub> = qcos</span><span style='font-family:Symbol'>(theta)</span><span |
---|
[6e8b436] | 324 | style='font-family:"Times New Roman","serif"'> and y<sub>0</sub>=qsin</span><span |
---|
[8956bdb] | 325 | style='font-family:Symbol'>(theta)</span><span style='font-family:"Times New Roman","serif"'> |
---|
[6e8b436] | 326 | , and the primed axes are in the coordinate rotated by an angle </span><span |
---|
[8956bdb] | 327 | style='font-family:Symbol'>theta</span><span style='font-family:"Times New Roman","serif"'> |
---|
[6e8b436] | 328 | around z-axis (below) so that x<sub>0</sub> = x<sub>0</sub>cos</span><span |
---|
[8956bdb] | 329 | style='font-family:Symbol'>(theta) + </span><span style='font-family:"Times New Roman","serif"'>y<sub>0</sub> |
---|
| 330 | sin</span><span style='font-family:Symbol'>(theta) </span><span style='font-family: |
---|
[6e8b436] | 331 | "Times New Roman","serif"'>and y<sub>0</sub> = -x<sub>0</sub>sin</span><span |
---|
[8956bdb] | 332 | style='font-family:Symbol'>(theta) + </span><span style='font-family:"Times New Roman","serif"'>y<sub>0</sub> |
---|
| 333 | cos</span><span style='font-family:Symbol'>(theta) .</span><span style='font-family: |
---|
[6e8b436] | 334 | "Times New Roman","serif"'> Note that the rotation angle is zero for x-y |
---|
| 335 | symmetric elliptical Gaussian distribution</span><span style='font-family:Symbol'>. |
---|
| 336 | </span><span style='font-family:"Times New Roman","serif"'>The A is a |
---|
| 337 | normalization factor.</span></p> |
---|
| 338 | |
---|
| 339 | <p class=MsoNormal align=center style='text-align:center'><span |
---|
| 340 | style='font-family:"Times New Roman","serif"'><img width=439 height=376 |
---|
| 341 | id="Object 1" src="sm_image023.gif"></span></p> |
---|
| 342 | |
---|
| 343 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 344 | |
---|
| 345 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Now we |
---|
| 346 | consider a numerical integration where each bins in </span><span |
---|
[8956bdb] | 347 | style='font-family:Symbol'>THETA</span><span style='font-family:"Times New Roman","serif"'> |
---|
[6e8b436] | 348 | and R are <b>evenly </b>(this is to simplify the equation below) distributed by |
---|
[8956bdb] | 349 | </span><span style='font-family:Symbol'>Delta_THETA </span><span style='font-family: |
---|
| 350 | "Times New Roman","serif"'>and </span><span style='font-family:Symbol'>Delta</span><span |
---|
[6e8b436] | 351 | style='font-family:"Times New Roman","serif"'>R, respectively, and it is |
---|
| 352 | assumed that I(x, y) is constant within the bins which in turn becomes</span></p> |
---|
| 353 | |
---|
| 354 | <p class=MsoNormal><img |
---|
| 355 | src="sm_image024.gif"></p> |
---|
| 356 | |
---|
| 357 | <p class=MsoNormal> <span |
---|
| 358 | style='font-family:"Times New Roman","serif"'>(10)</span></p> |
---|
| 359 | |
---|
| 360 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Since we |
---|
| 361 | have found the weighting factor on each bin points, it is convenient to |
---|
| 362 | transform x-y back to x-y coordinate (rotating it by -</span><span |
---|
[8956bdb] | 363 | style='font-family:Symbol'>(theta)</span><span style='font-family:"Times New Roman","serif"'> |
---|
[6e8b436] | 364 | around z axis). Then, for the polar symmetric smear,</span></p> |
---|
| 365 | |
---|
| 366 | <p class=MsoNormal><img |
---|
| 367 | src="sm_image025.gif"><span |
---|
| 368 | style='position:relative;top:35.0pt'> </span>(11)</p> |
---|
| 369 | |
---|
| 370 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>where,</span></p> |
---|
| 371 | |
---|
| 372 | <p class=MsoNormal><img |
---|
| 373 | src="sm_image026.gif"></p> |
---|
| 374 | |
---|
| 375 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>while |
---|
| 376 | for the x-y symmetric smear,</span></p> |
---|
| 377 | |
---|
| 378 | <p class=MsoNormal><img |
---|
| 379 | src="sm_image027.gif"><span |
---|
| 380 | style='font-family:"Times New Roman","serif"'> (12)</span></p> |
---|
| 381 | |
---|
| 382 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>where,</span></p> |
---|
| 383 | |
---|
| 384 | <p class=MsoNormal><img |
---|
| 385 | src="sm_image028.gif"></p> |
---|
| 386 | |
---|
| 387 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Here, the |
---|
| 388 | current version of the SANSVIEW uses the Eq. (11) for 2D smearing assuming that |
---|
| 389 | all the Gaussian weighting functions are aligned in the polar coordinate. </span></p> |
---|
[50764a4] | 390 | <p> In the control panel, the higher accuracy indicates more and finer binnng points |
---|
| 391 | so that it costs more in time. </p> |
---|
| 392 | |
---|
[6e8b436] | 393 | |
---|
| 394 | </div> |
---|
| 395 | |
---|
| 396 | </body> |
---|
| 397 | |
---|
| 398 | </html> |
---|