[0f5bc9f] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | #include <math.h> |
---|
| 23 | #include "parameters.hh" |
---|
| 24 | #include <stdio.h> |
---|
[82c11d3] | 25 | #include <stdlib.h> |
---|
[0f5bc9f] | 26 | using namespace std; |
---|
[82c11d3] | 27 | #include "elliptical_cylinder.h" |
---|
[0f5bc9f] | 28 | |
---|
| 29 | extern "C" { |
---|
[82c11d3] | 30 | #include "libCylinder.h" |
---|
| 31 | #include "libStructureFactor.h" |
---|
| 32 | } |
---|
| 33 | |
---|
| 34 | typedef struct { |
---|
| 35 | double scale; |
---|
| 36 | double r_minor; |
---|
| 37 | double r_ratio; |
---|
| 38 | double length; |
---|
| 39 | double sldCyl; |
---|
| 40 | double sldSolv; |
---|
| 41 | double background; |
---|
| 42 | double cyl_theta; |
---|
| 43 | double cyl_phi; |
---|
| 44 | double cyl_psi; |
---|
| 45 | } EllipticalCylinderParameters; |
---|
| 46 | |
---|
| 47 | |
---|
| 48 | static double elliptical_cylinder_kernel(EllipticalCylinderParameters *pars, double q, double alpha, double nu) { |
---|
| 49 | double qr; |
---|
| 50 | double qL; |
---|
| 51 | double Be,Si; |
---|
| 52 | double r_major; |
---|
| 53 | double kernel; |
---|
| 54 | |
---|
| 55 | r_major = pars->r_ratio * pars->r_minor; |
---|
| 56 | |
---|
| 57 | qr = q*sin(alpha)*sqrt( r_major*r_major*sin(nu)*sin(nu) + pars->r_minor*pars->r_minor*cos(nu)*cos(nu) ); |
---|
| 58 | qL = q*pars->length*cos(alpha)/2.0; |
---|
| 59 | |
---|
| 60 | if (qr==0){ |
---|
| 61 | Be = 0.5; |
---|
| 62 | }else{ |
---|
| 63 | Be = NR_BessJ1(qr)/qr; |
---|
| 64 | } |
---|
| 65 | if (qL==0){ |
---|
| 66 | Si = 1.0; |
---|
| 67 | }else{ |
---|
| 68 | Si = sin(qL)/qL; |
---|
| 69 | } |
---|
| 70 | |
---|
| 71 | |
---|
| 72 | kernel = 2.0*Be * Si; |
---|
| 73 | return kernel*kernel; |
---|
| 74 | } |
---|
| 75 | |
---|
| 76 | /** |
---|
| 77 | * Function to evaluate 2D scattering function |
---|
| 78 | * @param pars: parameters of the cylinder |
---|
| 79 | * @param q: q-value |
---|
| 80 | * @param q_x: q_x / q |
---|
| 81 | * @param q_y: q_y / q |
---|
| 82 | * @return: function value |
---|
| 83 | */ |
---|
| 84 | static double elliptical_cylinder_analytical_2D_scaled(EllipticalCylinderParameters *pars, double q, double q_x, double q_y) { |
---|
| 85 | double cyl_x, cyl_y, cyl_z; |
---|
| 86 | double ell_x, ell_y; |
---|
| 87 | double q_z; |
---|
| 88 | double alpha, vol, cos_val; |
---|
| 89 | double nu, cos_nu; |
---|
| 90 | double answer; |
---|
| 91 | //convert angle degree to radian |
---|
| 92 | double pi = 4.0*atan(1.0); |
---|
| 93 | double theta = pars->cyl_theta * pi/180.0; |
---|
| 94 | double phi = pars->cyl_phi * pi/180.0; |
---|
| 95 | double psi = pars->cyl_psi * pi/180.0; |
---|
| 96 | |
---|
| 97 | //Cylinder orientation |
---|
| 98 | cyl_x = sin(theta) * cos(phi); |
---|
| 99 | cyl_y = sin(theta) * sin(phi); |
---|
| 100 | cyl_z = cos(theta); |
---|
| 101 | |
---|
| 102 | // q vector |
---|
| 103 | q_z = 0; |
---|
| 104 | |
---|
| 105 | // Compute the angle btw vector q and the |
---|
| 106 | // axis of the cylinder |
---|
| 107 | cos_val = cyl_x*q_x + cyl_y*q_y + cyl_z*q_z; |
---|
| 108 | |
---|
| 109 | // The following test should always pass |
---|
| 110 | if (fabs(cos_val)>1.0) { |
---|
| 111 | printf("cyl_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
| 112 | return 0; |
---|
| 113 | } |
---|
| 114 | |
---|
| 115 | // Note: cos(alpha) = 0 and 1 will get an |
---|
| 116 | // undefined value from CylKernel |
---|
| 117 | alpha = acos( cos_val ); |
---|
| 118 | |
---|
| 119 | //ellipse orientation: |
---|
| 120 | // the elliptical corss section was transformed and projected |
---|
| 121 | // into the detector plane already through sin(alpha)and furthermore psi remains as same |
---|
| 122 | // on the detector plane. |
---|
| 123 | // So, all we need is to calculate the angle (nu) of the minor axis of the ellipse wrt |
---|
| 124 | // the wave vector q. |
---|
| 125 | |
---|
| 126 | //x- y- component on the detector plane. |
---|
| 127 | ell_x = cos(psi); |
---|
| 128 | ell_y = sin(psi); |
---|
| 129 | |
---|
| 130 | // calculate the axis of the ellipse wrt q-coord. |
---|
| 131 | cos_nu = ell_x*q_x + ell_y*q_y; |
---|
| 132 | nu = acos(cos_nu); |
---|
| 133 | |
---|
| 134 | // The following test should always pass |
---|
| 135 | if (fabs(cos_nu)>1.0) { |
---|
| 136 | printf("cyl_ana_2D: Unexpected error: cos(nu)>1\n"); |
---|
| 137 | return 0; |
---|
| 138 | } |
---|
| 139 | |
---|
| 140 | answer = elliptical_cylinder_kernel(pars, q, alpha,nu); |
---|
| 141 | |
---|
| 142 | // Multiply by contrast^2 |
---|
| 143 | answer *= (pars->sldCyl - pars->sldSolv) * (pars->sldCyl - pars->sldSolv); |
---|
| 144 | |
---|
| 145 | //normalize by cylinder volume |
---|
| 146 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
| 147 | vol = acos(-1.0) * pars->r_minor * pars->r_minor * pars->r_ratio * pars->length; |
---|
| 148 | answer *= vol; |
---|
| 149 | |
---|
| 150 | //convert to [cm-1] |
---|
| 151 | answer *= 1.0e8; |
---|
| 152 | |
---|
| 153 | //Scale |
---|
| 154 | answer *= pars->scale; |
---|
| 155 | |
---|
| 156 | // add in the background |
---|
| 157 | answer += pars->background; |
---|
| 158 | |
---|
| 159 | return answer; |
---|
| 160 | } |
---|
| 161 | |
---|
| 162 | |
---|
| 163 | /** |
---|
| 164 | * Function to evaluate 2D scattering function |
---|
| 165 | * @param pars: parameters of the cylinder |
---|
| 166 | * @param q: q-value |
---|
| 167 | * @return: function value |
---|
| 168 | */ |
---|
| 169 | static double elliptical_cylinder_analytical_2DXY(EllipticalCylinderParameters *pars, double qx, double qy) { |
---|
| 170 | double q; |
---|
| 171 | q = sqrt(qx*qx+qy*qy); |
---|
| 172 | return elliptical_cylinder_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
[0f5bc9f] | 173 | } |
---|
| 174 | |
---|
| 175 | EllipticalCylinderModel :: EllipticalCylinderModel() { |
---|
[82c11d3] | 176 | scale = Parameter(1.0); |
---|
| 177 | r_minor = Parameter(20.0, true); |
---|
| 178 | r_minor.set_min(0.0); |
---|
| 179 | r_ratio = Parameter(1.5, true); |
---|
| 180 | r_ratio.set_min(0.0); |
---|
| 181 | length = Parameter(400.0, true); |
---|
| 182 | length.set_min(0.0); |
---|
| 183 | sldCyl = Parameter(4.e-6); |
---|
| 184 | sldSolv = Parameter(1.e-6); |
---|
| 185 | background = Parameter(0.0); |
---|
| 186 | cyl_theta = Parameter(57.325, true); |
---|
| 187 | cyl_phi = Parameter(0.0, true); |
---|
| 188 | cyl_psi = Parameter(0.0, true); |
---|
[0f5bc9f] | 189 | } |
---|
| 190 | |
---|
| 191 | /** |
---|
| 192 | * Function to evaluate 1D scattering function |
---|
| 193 | * The NIST IGOR library is used for the actual calculation. |
---|
| 194 | * @param q: q-value |
---|
| 195 | * @return: function value |
---|
| 196 | */ |
---|
| 197 | double EllipticalCylinderModel :: operator()(double q) { |
---|
[82c11d3] | 198 | double dp[7]; |
---|
| 199 | |
---|
| 200 | dp[0] = scale(); |
---|
| 201 | dp[1] = r_minor(); |
---|
| 202 | dp[2] = r_ratio(); |
---|
| 203 | dp[3] = length(); |
---|
| 204 | dp[4] = sldCyl(); |
---|
| 205 | dp[5] = sldSolv(); |
---|
| 206 | dp[6] = 0.0; |
---|
| 207 | |
---|
| 208 | // Get the dispersion points for the r_minor |
---|
| 209 | vector<WeightPoint> weights_rad; |
---|
| 210 | r_minor.get_weights(weights_rad); |
---|
| 211 | |
---|
| 212 | // Get the dispersion points for the r_ratio |
---|
| 213 | vector<WeightPoint> weights_rat; |
---|
| 214 | r_ratio.get_weights(weights_rat); |
---|
| 215 | |
---|
| 216 | // Get the dispersion points for the length |
---|
| 217 | vector<WeightPoint> weights_len; |
---|
| 218 | length.get_weights(weights_len); |
---|
| 219 | |
---|
| 220 | // Perform the computation, with all weight points |
---|
| 221 | double sum = 0.0; |
---|
| 222 | double norm = 0.0; |
---|
| 223 | double vol = 0.0; |
---|
| 224 | |
---|
| 225 | // Loop over r_minor weight points |
---|
| 226 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
| 227 | dp[1] = weights_rad[i].value; |
---|
| 228 | |
---|
| 229 | // Loop over r_ratio weight points |
---|
| 230 | for(size_t j=0; j<weights_rat.size(); j++) { |
---|
| 231 | dp[2] = weights_rat[j].value; |
---|
| 232 | |
---|
| 233 | // Loop over length weight points |
---|
| 234 | for(size_t k=0; k<weights_len.size(); k++) { |
---|
| 235 | dp[3] = weights_len[k].value; |
---|
| 236 | //Un-normalize by volume |
---|
| 237 | sum += weights_rad[i].weight |
---|
| 238 | * weights_len[k].weight |
---|
| 239 | * weights_rat[j].weight |
---|
| 240 | * EllipCyl20(dp, q) |
---|
| 241 | * pow(weights_rad[i].value,2) * weights_rat[j].value |
---|
| 242 | * weights_len[k].value; |
---|
| 243 | //Find average volume |
---|
| 244 | vol += weights_rad[i].weight |
---|
| 245 | * weights_len[k].weight |
---|
| 246 | * weights_rat[j].weight |
---|
| 247 | * pow(weights_rad[i].value,2) * weights_rat[j].value |
---|
| 248 | * weights_len[k].value; |
---|
| 249 | norm += weights_rad[i].weight |
---|
| 250 | * weights_len[k].weight |
---|
| 251 | * weights_rat[j].weight; |
---|
| 252 | } |
---|
| 253 | } |
---|
| 254 | } |
---|
| 255 | |
---|
| 256 | if (vol != 0.0 && norm != 0.0) { |
---|
| 257 | //Re-normalize by avg volume |
---|
| 258 | sum = sum/(vol/norm);} |
---|
| 259 | |
---|
| 260 | return sum/norm + background(); |
---|
[0f5bc9f] | 261 | } |
---|
| 262 | |
---|
| 263 | /** |
---|
| 264 | * Function to evaluate 2D scattering function |
---|
| 265 | * @param q_x: value of Q along x |
---|
| 266 | * @param q_y: value of Q along y |
---|
| 267 | * @return: function value |
---|
| 268 | */ |
---|
| 269 | double EllipticalCylinderModel :: operator()(double qx, double qy) { |
---|
[82c11d3] | 270 | EllipticalCylinderParameters dp; |
---|
| 271 | // Fill parameter array |
---|
| 272 | dp.scale = scale(); |
---|
| 273 | dp.r_minor = r_minor(); |
---|
| 274 | dp.r_ratio = r_ratio(); |
---|
| 275 | dp.length = length(); |
---|
| 276 | dp.sldCyl = sldCyl(); |
---|
| 277 | dp.sldSolv = sldSolv(); |
---|
| 278 | dp.background = 0.0; |
---|
| 279 | dp.cyl_theta = cyl_theta(); |
---|
| 280 | dp.cyl_phi = cyl_phi(); |
---|
| 281 | dp.cyl_psi = cyl_psi(); |
---|
| 282 | |
---|
| 283 | // Get the dispersion points for the r_minor |
---|
| 284 | vector<WeightPoint> weights_rad; |
---|
| 285 | r_minor.get_weights(weights_rad); |
---|
| 286 | |
---|
| 287 | // Get the dispersion points for the r_ratio |
---|
| 288 | vector<WeightPoint> weights_rat; |
---|
| 289 | r_ratio.get_weights(weights_rat); |
---|
| 290 | |
---|
| 291 | // Get the dispersion points for the length |
---|
| 292 | vector<WeightPoint> weights_len; |
---|
| 293 | length.get_weights(weights_len); |
---|
| 294 | |
---|
| 295 | // Get angular averaging for theta |
---|
| 296 | vector<WeightPoint> weights_theta; |
---|
| 297 | cyl_theta.get_weights(weights_theta); |
---|
| 298 | |
---|
| 299 | // Get angular averaging for phi |
---|
| 300 | vector<WeightPoint> weights_phi; |
---|
| 301 | cyl_phi.get_weights(weights_phi); |
---|
| 302 | |
---|
| 303 | // Get angular averaging for psi |
---|
| 304 | vector<WeightPoint> weights_psi; |
---|
| 305 | cyl_psi.get_weights(weights_psi); |
---|
| 306 | |
---|
| 307 | // Perform the computation, with all weight points |
---|
| 308 | double sum = 0.0; |
---|
| 309 | double norm = 0.0; |
---|
| 310 | double norm_vol = 0.0; |
---|
| 311 | double vol = 0.0; |
---|
| 312 | double pi = 4.0*atan(1.0); |
---|
| 313 | // Loop over minor radius weight points |
---|
| 314 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
| 315 | dp.r_minor = weights_rad[i].value; |
---|
| 316 | |
---|
| 317 | |
---|
| 318 | // Loop over length weight points |
---|
| 319 | for(size_t j=0; j<weights_len.size(); j++) { |
---|
| 320 | dp.length = weights_len[j].value; |
---|
| 321 | |
---|
| 322 | // Loop over r_ration weight points |
---|
| 323 | for(size_t m=0; m<weights_rat.size(); m++) { |
---|
| 324 | dp.r_ratio = weights_rat[m].value; |
---|
| 325 | |
---|
| 326 | // Average over theta distribution |
---|
| 327 | for(size_t k=0; k<weights_theta.size(); k++) { |
---|
| 328 | dp.cyl_theta = weights_theta[k].value; |
---|
| 329 | |
---|
| 330 | // Average over phi distribution |
---|
| 331 | for(size_t l=0; l<weights_phi.size(); l++) { |
---|
| 332 | dp.cyl_phi = weights_phi[l].value; |
---|
| 333 | |
---|
| 334 | // Average over phi distribution |
---|
| 335 | for(size_t o=0; o<weights_psi.size(); o++) { |
---|
| 336 | dp.cyl_psi = weights_psi[o].value; |
---|
| 337 | //Un-normalize by volume |
---|
| 338 | double _ptvalue = weights_rad[i].weight |
---|
| 339 | * weights_len[j].weight |
---|
| 340 | * weights_rat[m].weight |
---|
| 341 | * weights_theta[k].weight |
---|
| 342 | * weights_phi[l].weight |
---|
| 343 | * weights_psi[o].weight |
---|
| 344 | * elliptical_cylinder_analytical_2DXY(&dp, qx, qy) |
---|
| 345 | * pow(weights_rad[i].value,2) |
---|
| 346 | * weights_len[j].value |
---|
| 347 | * weights_rat[m].value; |
---|
| 348 | if (weights_theta.size()>1) { |
---|
| 349 | _ptvalue *= fabs(sin(weights_theta[k].value*pi/180.0)); |
---|
| 350 | } |
---|
| 351 | sum += _ptvalue; |
---|
| 352 | //Find average volume |
---|
| 353 | vol += weights_rad[i].weight |
---|
| 354 | * weights_len[j].weight |
---|
| 355 | * weights_rat[m].weight |
---|
| 356 | * pow(weights_rad[i].value,2) |
---|
| 357 | * weights_len[j].value |
---|
| 358 | * weights_rat[m].value; |
---|
| 359 | //Find norm for volume |
---|
| 360 | norm_vol += weights_rad[i].weight |
---|
| 361 | * weights_len[j].weight |
---|
| 362 | * weights_rat[m].weight; |
---|
| 363 | |
---|
| 364 | norm += weights_rad[i].weight |
---|
| 365 | * weights_len[j].weight |
---|
| 366 | * weights_rat[m].weight |
---|
| 367 | * weights_theta[k].weight |
---|
| 368 | * weights_phi[l].weight |
---|
| 369 | * weights_psi[o].weight; |
---|
| 370 | |
---|
| 371 | } |
---|
| 372 | } |
---|
| 373 | } |
---|
| 374 | } |
---|
| 375 | } |
---|
| 376 | } |
---|
| 377 | // Averaging in theta needs an extra normalization |
---|
| 378 | // factor to account for the sin(theta) term in the |
---|
| 379 | // integration (see documentation). |
---|
| 380 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
| 381 | |
---|
| 382 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
| 383 | //Re-normalize by avg volume |
---|
| 384 | sum = sum/(vol/norm_vol);} |
---|
| 385 | |
---|
| 386 | return sum/norm + background(); |
---|
[c451be9] | 387 | |
---|
[0f5bc9f] | 388 | } |
---|
| 389 | |
---|
| 390 | /** |
---|
| 391 | * Function to evaluate 2D scattering function |
---|
| 392 | * @param pars: parameters of the cylinder |
---|
| 393 | * @param q: q-value |
---|
| 394 | * @param phi: angle phi |
---|
| 395 | * @return: function value |
---|
| 396 | */ |
---|
| 397 | double EllipticalCylinderModel :: evaluate_rphi(double q, double phi) { |
---|
[82c11d3] | 398 | double qx = q*cos(phi); |
---|
| 399 | double qy = q*sin(phi); |
---|
| 400 | return (*this).operator()(qx, qy); |
---|
[0f5bc9f] | 401 | } |
---|
[5eb9154] | 402 | /** |
---|
| 403 | * Function to calculate effective radius |
---|
| 404 | * @return: effective radius value |
---|
| 405 | */ |
---|
| 406 | double EllipticalCylinderModel :: calculate_ER() { |
---|
[82c11d3] | 407 | EllipticalCylinderParameters dp; |
---|
| 408 | dp.r_minor = r_minor(); |
---|
| 409 | dp.r_ratio = r_ratio(); |
---|
| 410 | dp.length = length(); |
---|
| 411 | double rad_out = 0.0; |
---|
| 412 | double suf_rad = sqrt(dp.r_minor*dp.r_minor*dp.r_ratio); |
---|
| 413 | |
---|
| 414 | // Perform the computation, with all weight points |
---|
| 415 | double sum = 0.0; |
---|
| 416 | double norm = 0.0; |
---|
| 417 | |
---|
| 418 | // Get the dispersion points for the r_minor |
---|
| 419 | vector<WeightPoint> weights_rad; |
---|
| 420 | r_minor.get_weights(weights_rad); |
---|
| 421 | |
---|
| 422 | // Get the dispersion points for the r_ratio |
---|
| 423 | vector<WeightPoint> weights_rat; |
---|
| 424 | r_ratio.get_weights(weights_rat); |
---|
| 425 | |
---|
| 426 | // Get the dispersion points for the length |
---|
| 427 | vector<WeightPoint> weights_len; |
---|
| 428 | length.get_weights(weights_len); |
---|
| 429 | |
---|
| 430 | // Loop over minor radius weight points |
---|
| 431 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
| 432 | dp.r_minor = weights_rad[i].value; |
---|
| 433 | |
---|
| 434 | // Loop over length weight points |
---|
| 435 | for(size_t j=0; j<weights_len.size(); j++) { |
---|
| 436 | dp.length = weights_len[j].value; |
---|
| 437 | |
---|
| 438 | // Loop over r_ration weight points |
---|
| 439 | for(size_t m=0; m<weights_rat.size(); m++) { |
---|
| 440 | dp.r_ratio = weights_rat[m].value; |
---|
| 441 | //Calculate surface averaged radius |
---|
| 442 | suf_rad = sqrt(dp.r_minor * dp.r_minor * dp.r_ratio); |
---|
| 443 | |
---|
| 444 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
| 445 | sum +=weights_rad[i].weight *weights_len[j].weight |
---|
| 446 | * weights_rat[m].weight*DiamCyl(dp.length, suf_rad)/2.0; |
---|
| 447 | norm += weights_rad[i].weight *weights_len[j].weight* weights_rat[m].weight; |
---|
| 448 | } |
---|
| 449 | } |
---|
| 450 | } |
---|
| 451 | if (norm != 0){ |
---|
| 452 | //return the averaged value |
---|
| 453 | rad_out = sum/norm;} |
---|
| 454 | else{ |
---|
| 455 | //return normal value |
---|
| 456 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
| 457 | rad_out = DiamCyl(dp.length, suf_rad)/2.0;} |
---|
| 458 | |
---|
| 459 | return rad_out; |
---|
[5eb9154] | 460 | } |
---|