1 | /** |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2008, University of Tennessee |
---|
13 | */ |
---|
14 | |
---|
15 | /** |
---|
16 | * Scattering model classes |
---|
17 | * The classes use the IGOR library found in |
---|
18 | * sansmodels/src/libigor |
---|
19 | * |
---|
20 | */ |
---|
21 | |
---|
22 | #include <math.h> |
---|
23 | #include "parameters.hh" |
---|
24 | #include <stdio.h> |
---|
25 | #include <stdlib.h> |
---|
26 | using namespace std; |
---|
27 | #include "elliptical_cylinder.h" |
---|
28 | |
---|
29 | extern "C" { |
---|
30 | #include "libCylinder.h" |
---|
31 | #include "libStructureFactor.h" |
---|
32 | } |
---|
33 | |
---|
34 | typedef struct { |
---|
35 | double scale; |
---|
36 | double r_minor; |
---|
37 | double r_ratio; |
---|
38 | double length; |
---|
39 | double sldCyl; |
---|
40 | double sldSolv; |
---|
41 | double background; |
---|
42 | double cyl_theta; |
---|
43 | double cyl_phi; |
---|
44 | double cyl_psi; |
---|
45 | } EllipticalCylinderParameters; |
---|
46 | |
---|
47 | |
---|
48 | static double elliptical_cylinder_kernel(EllipticalCylinderParameters *pars, double q, double alpha, double nu) { |
---|
49 | double qr; |
---|
50 | double qL; |
---|
51 | double Be,Si; |
---|
52 | double r_major; |
---|
53 | double kernel; |
---|
54 | |
---|
55 | r_major = pars->r_ratio * pars->r_minor; |
---|
56 | |
---|
57 | qr = q*sin(alpha)*sqrt( r_major*r_major*sin(nu)*sin(nu) + pars->r_minor*pars->r_minor*cos(nu)*cos(nu) ); |
---|
58 | qL = q*pars->length*cos(alpha)/2.0; |
---|
59 | |
---|
60 | if (qr==0){ |
---|
61 | Be = 0.5; |
---|
62 | }else{ |
---|
63 | Be = NR_BessJ1(qr)/qr; |
---|
64 | } |
---|
65 | if (qL==0){ |
---|
66 | Si = 1.0; |
---|
67 | }else{ |
---|
68 | Si = sin(qL)/qL; |
---|
69 | } |
---|
70 | |
---|
71 | |
---|
72 | kernel = 2.0*Be * Si; |
---|
73 | return kernel*kernel; |
---|
74 | } |
---|
75 | |
---|
76 | /** |
---|
77 | * Function to evaluate 2D scattering function |
---|
78 | * @param pars: parameters of the cylinder |
---|
79 | * @param q: q-value |
---|
80 | * @param q_x: q_x / q |
---|
81 | * @param q_y: q_y / q |
---|
82 | * @return: function value |
---|
83 | */ |
---|
84 | static double elliptical_cylinder_analytical_2D_scaled(EllipticalCylinderParameters *pars, double q, double q_x, double q_y) { |
---|
85 | double cyl_x, cyl_y, cyl_z; |
---|
86 | double ell_x, ell_y; |
---|
87 | double q_z; |
---|
88 | double alpha, vol, cos_val; |
---|
89 | double nu, cos_nu; |
---|
90 | double answer; |
---|
91 | //convert angle degree to radian |
---|
92 | double pi = 4.0*atan(1.0); |
---|
93 | double theta = pars->cyl_theta * pi/180.0; |
---|
94 | double phi = pars->cyl_phi * pi/180.0; |
---|
95 | double psi = pars->cyl_psi * pi/180.0; |
---|
96 | |
---|
97 | //Cylinder orientation |
---|
98 | cyl_x = sin(theta) * cos(phi); |
---|
99 | cyl_y = sin(theta) * sin(phi); |
---|
100 | cyl_z = cos(theta); |
---|
101 | |
---|
102 | // q vector |
---|
103 | q_z = 0; |
---|
104 | |
---|
105 | // Compute the angle btw vector q and the |
---|
106 | // axis of the cylinder |
---|
107 | cos_val = cyl_x*q_x + cyl_y*q_y + cyl_z*q_z; |
---|
108 | |
---|
109 | // The following test should always pass |
---|
110 | if (fabs(cos_val)>1.0) { |
---|
111 | printf("cyl_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
112 | return 0; |
---|
113 | } |
---|
114 | |
---|
115 | // Note: cos(alpha) = 0 and 1 will get an |
---|
116 | // undefined value from CylKernel |
---|
117 | alpha = acos( cos_val ); |
---|
118 | |
---|
119 | //ellipse orientation: |
---|
120 | // the elliptical corss section was transformed and projected |
---|
121 | // into the detector plane already through sin(alpha)and furthermore psi remains as same |
---|
122 | // on the detector plane. |
---|
123 | // So, all we need is to calculate the angle (nu) of the minor axis of the ellipse wrt |
---|
124 | // the wave vector q. |
---|
125 | |
---|
126 | //x- y- component on the detector plane. |
---|
127 | ell_x = cos(psi); |
---|
128 | ell_y = sin(psi); |
---|
129 | |
---|
130 | // calculate the axis of the ellipse wrt q-coord. |
---|
131 | cos_nu = ell_x*q_x + ell_y*q_y; |
---|
132 | nu = acos(cos_nu); |
---|
133 | |
---|
134 | // The following test should always pass |
---|
135 | if (fabs(cos_nu)>1.0) { |
---|
136 | printf("cyl_ana_2D: Unexpected error: cos(nu)>1\n"); |
---|
137 | return 0; |
---|
138 | } |
---|
139 | |
---|
140 | answer = elliptical_cylinder_kernel(pars, q, alpha,nu); |
---|
141 | |
---|
142 | // Multiply by contrast^2 |
---|
143 | answer *= (pars->sldCyl - pars->sldSolv) * (pars->sldCyl - pars->sldSolv); |
---|
144 | |
---|
145 | //normalize by cylinder volume |
---|
146 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
147 | vol = acos(-1.0) * pars->r_minor * pars->r_minor * pars->r_ratio * pars->length; |
---|
148 | answer *= vol; |
---|
149 | |
---|
150 | //convert to [cm-1] |
---|
151 | answer *= 1.0e8; |
---|
152 | |
---|
153 | //Scale |
---|
154 | answer *= pars->scale; |
---|
155 | |
---|
156 | // add in the background |
---|
157 | answer += pars->background; |
---|
158 | |
---|
159 | return answer; |
---|
160 | } |
---|
161 | |
---|
162 | |
---|
163 | /** |
---|
164 | * Function to evaluate 2D scattering function |
---|
165 | * @param pars: parameters of the cylinder |
---|
166 | * @param q: q-value |
---|
167 | * @return: function value |
---|
168 | */ |
---|
169 | static double elliptical_cylinder_analytical_2DXY(EllipticalCylinderParameters *pars, double qx, double qy) { |
---|
170 | double q; |
---|
171 | q = sqrt(qx*qx+qy*qy); |
---|
172 | return elliptical_cylinder_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
173 | } |
---|
174 | |
---|
175 | EllipticalCylinderModel :: EllipticalCylinderModel() { |
---|
176 | scale = Parameter(1.0); |
---|
177 | r_minor = Parameter(20.0, true); |
---|
178 | r_minor.set_min(0.0); |
---|
179 | r_ratio = Parameter(1.5, true); |
---|
180 | r_ratio.set_min(0.0); |
---|
181 | length = Parameter(400.0, true); |
---|
182 | length.set_min(0.0); |
---|
183 | sldCyl = Parameter(4.e-6); |
---|
184 | sldSolv = Parameter(1.e-6); |
---|
185 | background = Parameter(0.0); |
---|
186 | cyl_theta = Parameter(57.325, true); |
---|
187 | cyl_phi = Parameter(0.0, true); |
---|
188 | cyl_psi = Parameter(0.0, true); |
---|
189 | } |
---|
190 | |
---|
191 | /** |
---|
192 | * Function to evaluate 1D scattering function |
---|
193 | * The NIST IGOR library is used for the actual calculation. |
---|
194 | * @param q: q-value |
---|
195 | * @return: function value |
---|
196 | */ |
---|
197 | double EllipticalCylinderModel :: operator()(double q) { |
---|
198 | double dp[7]; |
---|
199 | |
---|
200 | dp[0] = scale(); |
---|
201 | dp[1] = r_minor(); |
---|
202 | dp[2] = r_ratio(); |
---|
203 | dp[3] = length(); |
---|
204 | dp[4] = sldCyl(); |
---|
205 | dp[5] = sldSolv(); |
---|
206 | dp[6] = 0.0; |
---|
207 | |
---|
208 | // Get the dispersion points for the r_minor |
---|
209 | vector<WeightPoint> weights_rad; |
---|
210 | r_minor.get_weights(weights_rad); |
---|
211 | |
---|
212 | // Get the dispersion points for the r_ratio |
---|
213 | vector<WeightPoint> weights_rat; |
---|
214 | r_ratio.get_weights(weights_rat); |
---|
215 | |
---|
216 | // Get the dispersion points for the length |
---|
217 | vector<WeightPoint> weights_len; |
---|
218 | length.get_weights(weights_len); |
---|
219 | |
---|
220 | // Perform the computation, with all weight points |
---|
221 | double sum = 0.0; |
---|
222 | double norm = 0.0; |
---|
223 | double vol = 0.0; |
---|
224 | |
---|
225 | // Loop over r_minor weight points |
---|
226 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
227 | dp[1] = weights_rad[i].value; |
---|
228 | |
---|
229 | // Loop over r_ratio weight points |
---|
230 | for(size_t j=0; j<weights_rat.size(); j++) { |
---|
231 | dp[2] = weights_rat[j].value; |
---|
232 | |
---|
233 | // Loop over length weight points |
---|
234 | for(size_t k=0; k<weights_len.size(); k++) { |
---|
235 | dp[3] = weights_len[k].value; |
---|
236 | //Un-normalize by volume |
---|
237 | sum += weights_rad[i].weight |
---|
238 | * weights_len[k].weight |
---|
239 | * weights_rat[j].weight |
---|
240 | * EllipCyl20(dp, q) |
---|
241 | * pow(weights_rad[i].value,2) * weights_rat[j].value |
---|
242 | * weights_len[k].value; |
---|
243 | //Find average volume |
---|
244 | vol += weights_rad[i].weight |
---|
245 | * weights_len[k].weight |
---|
246 | * weights_rat[j].weight |
---|
247 | * pow(weights_rad[i].value,2) * weights_rat[j].value |
---|
248 | * weights_len[k].value; |
---|
249 | norm += weights_rad[i].weight |
---|
250 | * weights_len[k].weight |
---|
251 | * weights_rat[j].weight; |
---|
252 | } |
---|
253 | } |
---|
254 | } |
---|
255 | |
---|
256 | if (vol != 0.0 && norm != 0.0) { |
---|
257 | //Re-normalize by avg volume |
---|
258 | sum = sum/(vol/norm);} |
---|
259 | |
---|
260 | return sum/norm + background(); |
---|
261 | } |
---|
262 | |
---|
263 | /** |
---|
264 | * Function to evaluate 2D scattering function |
---|
265 | * @param q_x: value of Q along x |
---|
266 | * @param q_y: value of Q along y |
---|
267 | * @return: function value |
---|
268 | */ |
---|
269 | double EllipticalCylinderModel :: operator()(double qx, double qy) { |
---|
270 | EllipticalCylinderParameters dp; |
---|
271 | // Fill parameter array |
---|
272 | dp.scale = scale(); |
---|
273 | dp.r_minor = r_minor(); |
---|
274 | dp.r_ratio = r_ratio(); |
---|
275 | dp.length = length(); |
---|
276 | dp.sldCyl = sldCyl(); |
---|
277 | dp.sldSolv = sldSolv(); |
---|
278 | dp.background = 0.0; |
---|
279 | dp.cyl_theta = cyl_theta(); |
---|
280 | dp.cyl_phi = cyl_phi(); |
---|
281 | dp.cyl_psi = cyl_psi(); |
---|
282 | |
---|
283 | // Get the dispersion points for the r_minor |
---|
284 | vector<WeightPoint> weights_rad; |
---|
285 | r_minor.get_weights(weights_rad); |
---|
286 | |
---|
287 | // Get the dispersion points for the r_ratio |
---|
288 | vector<WeightPoint> weights_rat; |
---|
289 | r_ratio.get_weights(weights_rat); |
---|
290 | |
---|
291 | // Get the dispersion points for the length |
---|
292 | vector<WeightPoint> weights_len; |
---|
293 | length.get_weights(weights_len); |
---|
294 | |
---|
295 | // Get angular averaging for theta |
---|
296 | vector<WeightPoint> weights_theta; |
---|
297 | cyl_theta.get_weights(weights_theta); |
---|
298 | |
---|
299 | // Get angular averaging for phi |
---|
300 | vector<WeightPoint> weights_phi; |
---|
301 | cyl_phi.get_weights(weights_phi); |
---|
302 | |
---|
303 | // Get angular averaging for psi |
---|
304 | vector<WeightPoint> weights_psi; |
---|
305 | cyl_psi.get_weights(weights_psi); |
---|
306 | |
---|
307 | // Perform the computation, with all weight points |
---|
308 | double sum = 0.0; |
---|
309 | double norm = 0.0; |
---|
310 | double norm_vol = 0.0; |
---|
311 | double vol = 0.0; |
---|
312 | double pi = 4.0*atan(1.0); |
---|
313 | // Loop over minor radius weight points |
---|
314 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
315 | dp.r_minor = weights_rad[i].value; |
---|
316 | |
---|
317 | |
---|
318 | // Loop over length weight points |
---|
319 | for(size_t j=0; j<weights_len.size(); j++) { |
---|
320 | dp.length = weights_len[j].value; |
---|
321 | |
---|
322 | // Loop over r_ration weight points |
---|
323 | for(size_t m=0; m<weights_rat.size(); m++) { |
---|
324 | dp.r_ratio = weights_rat[m].value; |
---|
325 | |
---|
326 | // Average over theta distribution |
---|
327 | for(size_t k=0; k<weights_theta.size(); k++) { |
---|
328 | dp.cyl_theta = weights_theta[k].value; |
---|
329 | |
---|
330 | // Average over phi distribution |
---|
331 | for(size_t l=0; l<weights_phi.size(); l++) { |
---|
332 | dp.cyl_phi = weights_phi[l].value; |
---|
333 | |
---|
334 | // Average over phi distribution |
---|
335 | for(size_t o=0; o<weights_psi.size(); o++) { |
---|
336 | dp.cyl_psi = weights_psi[o].value; |
---|
337 | //Un-normalize by volume |
---|
338 | double _ptvalue = weights_rad[i].weight |
---|
339 | * weights_len[j].weight |
---|
340 | * weights_rat[m].weight |
---|
341 | * weights_theta[k].weight |
---|
342 | * weights_phi[l].weight |
---|
343 | * weights_psi[o].weight |
---|
344 | * elliptical_cylinder_analytical_2DXY(&dp, qx, qy) |
---|
345 | * pow(weights_rad[i].value,2) |
---|
346 | * weights_len[j].value |
---|
347 | * weights_rat[m].value; |
---|
348 | if (weights_theta.size()>1) { |
---|
349 | _ptvalue *= fabs(sin(weights_theta[k].value*pi/180.0)); |
---|
350 | } |
---|
351 | sum += _ptvalue; |
---|
352 | //Find average volume |
---|
353 | vol += weights_rad[i].weight |
---|
354 | * weights_len[j].weight |
---|
355 | * weights_rat[m].weight |
---|
356 | * pow(weights_rad[i].value,2) |
---|
357 | * weights_len[j].value |
---|
358 | * weights_rat[m].value; |
---|
359 | //Find norm for volume |
---|
360 | norm_vol += weights_rad[i].weight |
---|
361 | * weights_len[j].weight |
---|
362 | * weights_rat[m].weight; |
---|
363 | |
---|
364 | norm += weights_rad[i].weight |
---|
365 | * weights_len[j].weight |
---|
366 | * weights_rat[m].weight |
---|
367 | * weights_theta[k].weight |
---|
368 | * weights_phi[l].weight |
---|
369 | * weights_psi[o].weight; |
---|
370 | |
---|
371 | } |
---|
372 | } |
---|
373 | } |
---|
374 | } |
---|
375 | } |
---|
376 | } |
---|
377 | // Averaging in theta needs an extra normalization |
---|
378 | // factor to account for the sin(theta) term in the |
---|
379 | // integration (see documentation). |
---|
380 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
381 | |
---|
382 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
383 | //Re-normalize by avg volume |
---|
384 | sum = sum/(vol/norm_vol);} |
---|
385 | |
---|
386 | return sum/norm + background(); |
---|
387 | |
---|
388 | } |
---|
389 | |
---|
390 | /** |
---|
391 | * Function to evaluate 2D scattering function |
---|
392 | * @param pars: parameters of the cylinder |
---|
393 | * @param q: q-value |
---|
394 | * @param phi: angle phi |
---|
395 | * @return: function value |
---|
396 | */ |
---|
397 | double EllipticalCylinderModel :: evaluate_rphi(double q, double phi) { |
---|
398 | double qx = q*cos(phi); |
---|
399 | double qy = q*sin(phi); |
---|
400 | return (*this).operator()(qx, qy); |
---|
401 | } |
---|
402 | /** |
---|
403 | * Function to calculate effective radius |
---|
404 | * @return: effective radius value |
---|
405 | */ |
---|
406 | double EllipticalCylinderModel :: calculate_ER() { |
---|
407 | EllipticalCylinderParameters dp; |
---|
408 | dp.r_minor = r_minor(); |
---|
409 | dp.r_ratio = r_ratio(); |
---|
410 | dp.length = length(); |
---|
411 | double rad_out = 0.0; |
---|
412 | double suf_rad = sqrt(dp.r_minor*dp.r_minor*dp.r_ratio); |
---|
413 | |
---|
414 | // Perform the computation, with all weight points |
---|
415 | double sum = 0.0; |
---|
416 | double norm = 0.0; |
---|
417 | |
---|
418 | // Get the dispersion points for the r_minor |
---|
419 | vector<WeightPoint> weights_rad; |
---|
420 | r_minor.get_weights(weights_rad); |
---|
421 | |
---|
422 | // Get the dispersion points for the r_ratio |
---|
423 | vector<WeightPoint> weights_rat; |
---|
424 | r_ratio.get_weights(weights_rat); |
---|
425 | |
---|
426 | // Get the dispersion points for the length |
---|
427 | vector<WeightPoint> weights_len; |
---|
428 | length.get_weights(weights_len); |
---|
429 | |
---|
430 | // Loop over minor radius weight points |
---|
431 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
432 | dp.r_minor = weights_rad[i].value; |
---|
433 | |
---|
434 | // Loop over length weight points |
---|
435 | for(size_t j=0; j<weights_len.size(); j++) { |
---|
436 | dp.length = weights_len[j].value; |
---|
437 | |
---|
438 | // Loop over r_ration weight points |
---|
439 | for(size_t m=0; m<weights_rat.size(); m++) { |
---|
440 | dp.r_ratio = weights_rat[m].value; |
---|
441 | //Calculate surface averaged radius |
---|
442 | suf_rad = sqrt(dp.r_minor * dp.r_minor * dp.r_ratio); |
---|
443 | |
---|
444 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
445 | sum +=weights_rad[i].weight *weights_len[j].weight |
---|
446 | * weights_rat[m].weight*DiamCyl(dp.length, suf_rad)/2.0; |
---|
447 | norm += weights_rad[i].weight *weights_len[j].weight* weights_rat[m].weight; |
---|
448 | } |
---|
449 | } |
---|
450 | } |
---|
451 | if (norm != 0){ |
---|
452 | //return the averaged value |
---|
453 | rad_out = sum/norm;} |
---|
454 | else{ |
---|
455 | //return normal value |
---|
456 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
457 | rad_out = DiamCyl(dp.length, suf_rad)/2.0;} |
---|
458 | |
---|
459 | return rad_out; |
---|
460 | } |
---|