1 | /** |
---|
2 | * Scattering model for multiblock copolymer |
---|
3 | * The below rpa_kernel is modified to fit on 'C' |
---|
4 | * originated from a IgorProcedure by B. HAMMOUDA, NIST, JULY 1998, |
---|
5 | * and it was tried to keep it as original as possible: JHCho (10/05/10) |
---|
6 | */ |
---|
7 | #include <math.h> |
---|
8 | #include "rpa.h" |
---|
9 | #include <stdio.h> |
---|
10 | #include <stdlib.h> |
---|
11 | |
---|
12 | double rpa_kernel(double dp[], double q) { |
---|
13 | int lCASE = dp[0]; |
---|
14 | |
---|
15 | double Na,Nb,Nc,Nd,Nab,Nac,Nad,Nbc,Nbd,Ncd; |
---|
16 | double Phia,Phib,Phic,Phid,Phiab,Phiac,Phiad; |
---|
17 | double Phibc,Phibd,Phicd; |
---|
18 | double va,vb,vc,vd,vab,vac,vad,vbc,vbd,vcd; |
---|
19 | double m; |
---|
20 | double ba,bb,bc,bd; |
---|
21 | double Xa,Xb,Xc,Xd; |
---|
22 | double Paa,S0aa,Pab,S0ab,Pac,S0ac,Pad,S0ad; |
---|
23 | double S0ba,Pbb,S0bb,Pbc,S0bc,Pbd,S0bd; |
---|
24 | double S0ca,S0cb,Pcc,S0cc,Pcd,S0cd; |
---|
25 | double S0da,S0db,S0dc,Pdd,S0dd; |
---|
26 | double Kaa,Kab,Kac,Kad,Kba,Kbb,Kbc,Kbd; |
---|
27 | double Kca,Kcb,Kcc,Kcd,Kda,Kdb,Kdc,Kdd; |
---|
28 | double Zaa,Zab,Zac,Zba,Zbb,Zbc,Zca,Zcb,Zcc; |
---|
29 | double DenT,T11,T12,T13,T21,T22,T23,T31,T32,T33; |
---|
30 | double Y1,Y2,Y3,X11,X12,X13,X21,X22,X23,X31,X32,X33; |
---|
31 | double ZZ,DenQ1,DenQ2,DenQ3,DenQ,Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33; |
---|
32 | double N11,N12,N13,N21,N22,N23,N31,N32,N33; |
---|
33 | double M11,M12,M13,M21,M22,M23,M31,M32,M33; |
---|
34 | double S11,S12,S13,S14,S21,S22,S23,S24; |
---|
35 | double S31,S32,S33,S34,S41,S42,S43,S44; |
---|
36 | double La,Lb,Lc,Ld,Lad,Lbd,Lcd,Nav,Intg; |
---|
37 | double scale, background; |
---|
38 | |
---|
39 | int ii=13; //dp[ii<13] = fittable, else fixed |
---|
40 | |
---|
41 | Na=1000.0; |
---|
42 | Nb=1000.0; |
---|
43 | Nc=1000.0; |
---|
44 | Nd=1000.0; //DEGREE OF POLYMERIZATION |
---|
45 | Phia=0.25; |
---|
46 | Phib=0.25; |
---|
47 | Phic=0.25; |
---|
48 | Phid=0.25 ; //VOL FRACTION |
---|
49 | Kab=-0.0004; |
---|
50 | Kac=-0.0004; |
---|
51 | Kad=-0.0004; //CHI PARAM |
---|
52 | Kbc=-0.0004; |
---|
53 | Kbd=-0.0004; |
---|
54 | Kcd=-0.0004; |
---|
55 | La=1.0e-12; |
---|
56 | Lb=1.0e-12; |
---|
57 | Lc=1.0e-12; |
---|
58 | Ld=0.0e-12; //SCATT. LENGTH |
---|
59 | va=100.0; |
---|
60 | vb=100.0; |
---|
61 | vc=100.0; |
---|
62 | vd=100.0 ; //SPECIFIC VOLUME |
---|
63 | ba=5.0; |
---|
64 | bb=5.0; |
---|
65 | bc=5.0; |
---|
66 | bd=5.0; //SEGMENT LENGTH |
---|
67 | |
---|
68 | //lCASE was shifted to N-1 from the original code |
---|
69 | if (lCASE <= 1){ |
---|
70 | Phia=0.0000001; |
---|
71 | Phib=0.0000001; |
---|
72 | Phic=0.5; |
---|
73 | Phid=0.5; |
---|
74 | Nc=dp[ii+8]; |
---|
75 | Phic=dp[ii+9]; |
---|
76 | vc=dp[ii+10]; |
---|
77 | Lc=dp[ii+11]; |
---|
78 | bc=dp[3]; |
---|
79 | Nd=dp[ii+12]; |
---|
80 | Phid=dp[ii+13]; |
---|
81 | vd=dp[ii+14]; |
---|
82 | Ld=dp[ii+15]; |
---|
83 | bd=dp[4]; |
---|
84 | Kcd=dp[10]; |
---|
85 | scale=dp[11]; |
---|
86 | background=dp[12]; |
---|
87 | } |
---|
88 | else if ((lCASE > 1) && (lCASE <= 4)){ |
---|
89 | Phia=0.0000001; |
---|
90 | Phib=0.333333; |
---|
91 | Phic=0.333333; |
---|
92 | Phid=0.333333; |
---|
93 | Nb=dp[ii+4]; |
---|
94 | Phib=dp[ii+5]; |
---|
95 | vb=dp[ii+6]; |
---|
96 | Lb=dp[ii+7]; |
---|
97 | bb=dp[2]; |
---|
98 | Nc=dp[ii+8]; |
---|
99 | Phic=dp[ii+9]; |
---|
100 | vc=dp[ii+10]; |
---|
101 | Lc=dp[ii+11]; |
---|
102 | bc=dp[3]; |
---|
103 | Nd=dp[ii+12]; |
---|
104 | Phid=dp[ii+13]; |
---|
105 | vd=dp[ii+14]; |
---|
106 | Ld=dp[ii+15]; |
---|
107 | bd=dp[4]; |
---|
108 | Kbc=dp[8]; |
---|
109 | Kbd=dp[9]; |
---|
110 | Kcd=dp[10]; |
---|
111 | scale=dp[11]; |
---|
112 | background=dp[12]; |
---|
113 | } |
---|
114 | else { |
---|
115 | Phia=0.25; |
---|
116 | Phib=0.25; |
---|
117 | Phic=0.25; |
---|
118 | Phid=0.25; |
---|
119 | Na=dp[ii+0]; |
---|
120 | Phia=dp[ii+1]; |
---|
121 | va=dp[ii+2]; |
---|
122 | La=dp[ii+3]; |
---|
123 | ba=dp[1]; |
---|
124 | Nb=dp[ii+4]; |
---|
125 | Phib=dp[ii+5]; |
---|
126 | vb=dp[ii+6]; |
---|
127 | Lb=dp[ii+7]; |
---|
128 | bb=dp[2]; |
---|
129 | Nc=dp[ii+8]; |
---|
130 | Phic=dp[ii+9]; |
---|
131 | vc=dp[ii+10]; |
---|
132 | Lc=dp[ii+11]; |
---|
133 | bc=dp[3]; |
---|
134 | Nd=dp[ii+12]; |
---|
135 | Phid=dp[ii+13]; |
---|
136 | vd=dp[ii+14]; |
---|
137 | Ld=dp[ii+15]; |
---|
138 | bd=dp[4]; |
---|
139 | Kab=dp[5]; |
---|
140 | Kac=dp[6]; |
---|
141 | Kad=dp[7]; |
---|
142 | Kbc=dp[8]; |
---|
143 | Kbd=dp[9]; |
---|
144 | Kcd=dp[10]; |
---|
145 | scale=dp[11]; |
---|
146 | background=dp[12]; |
---|
147 | } |
---|
148 | |
---|
149 | Nab=pow((Na*Nb),(0.5)); |
---|
150 | Nac=pow((Na*Nc),(0.5)); |
---|
151 | Nad=pow((Na*Nd),(0.5)); |
---|
152 | Nbc=pow((Nb*Nc),(0.5)); |
---|
153 | Nbd=pow((Nb*Nd),(0.5)); |
---|
154 | Ncd=pow((Nc*Nd),(0.5)); |
---|
155 | |
---|
156 | vab=pow((va*vb),(0.5)); |
---|
157 | vac=pow((va*vc),(0.5)); |
---|
158 | vad=pow((va*vd),(0.5)); |
---|
159 | vbc=pow((vb*vc),(0.5)); |
---|
160 | vbd=pow((vb*vd),(0.5)); |
---|
161 | vcd=pow((vc*vd),(0.5)); |
---|
162 | |
---|
163 | Phiab=pow((Phia*Phib),(0.5)); |
---|
164 | Phiac=pow((Phia*Phic),(0.5)); |
---|
165 | Phiad=pow((Phia*Phid),(0.5)); |
---|
166 | Phibc=pow((Phib*Phic),(0.5)); |
---|
167 | Phibd=pow((Phib*Phid),(0.5)); |
---|
168 | Phicd=pow((Phic*Phid),(0.5)); |
---|
169 | |
---|
170 | Xa=q*q*ba*ba*Na/6.0; |
---|
171 | Xb=q*q*bb*bb*Nb/6.0; |
---|
172 | Xc=q*q*bc*bb*Nc/6.0; |
---|
173 | Xd=q*q*bd*bb*Nd/6.0; |
---|
174 | |
---|
175 | Paa=2.0*(exp(-Xa)-1.0+Xa)/pow(Xa,2.0); |
---|
176 | S0aa=Na*Phia*va*Paa; |
---|
177 | Pab=((1.0-exp(-Xa))/Xa)*((1.0-exp(-Xb))/Xb); |
---|
178 | S0ab=(Phiab*vab*Nab)*Pab; |
---|
179 | Pac=((1.0-exp(-Xa))/Xa)*exp(-Xb)*((1.0-exp(-Xc))/Xc); |
---|
180 | S0ac=(Phiac*vac*Nac)*Pac; |
---|
181 | Pad=((1.0-exp(-Xa))/Xa)*exp(-Xb-Xc)*((1.0-exp(-Xd))/Xd); |
---|
182 | S0ad=(Phiad*vad*Nad)*Pad; |
---|
183 | |
---|
184 | S0ba=S0ab; |
---|
185 | Pbb=2.0*(exp(-Xb)-1.0+Xb)/pow(Xb,2.0); |
---|
186 | S0bb=Nb*Phib*vb*Pbb; |
---|
187 | Pbc=((1.0-exp(-Xb))/Xb)*((1.0-exp(-Xc))/Xc); |
---|
188 | S0bc=(Phibc*vbc*Nbc)*Pbc; |
---|
189 | Pbd=((1.0-exp(-Xb))/Xb)*exp(-Xc)*((1.0-exp(-Xd))/Xd); |
---|
190 | S0bd=(Phibd*vbd*Nbd)*Pbd; |
---|
191 | |
---|
192 | S0ca=S0ac; |
---|
193 | S0cb=S0bc; |
---|
194 | Pcc=2.0*(exp(-Xc)-1.0+Xc)/pow(Xc,2.0); |
---|
195 | S0cc=Nc*Phic*vc*Pcc; |
---|
196 | Pcd=((1.0-exp(-Xc))/Xc)*((1.0-exp(-Xd))/Xd); |
---|
197 | S0cd=(Phicd*vcd*Ncd)*Pcd; |
---|
198 | |
---|
199 | S0da=S0ad; |
---|
200 | S0db=S0bd; |
---|
201 | S0dc=S0cd; |
---|
202 | Pdd=2.0*(exp(-Xd)-1.0+Xd)/pow(Xd,2.0); |
---|
203 | S0dd=Nd*Phid*vd*Pdd; |
---|
204 | //lCASE was shifted to N-1 from the original code |
---|
205 | switch(lCASE){ |
---|
206 | case 0: |
---|
207 | S0aa=0.000001; |
---|
208 | S0ab=0.000002; |
---|
209 | S0ac=0.000003; |
---|
210 | S0ad=0.000004; |
---|
211 | S0bb=0.000005; |
---|
212 | S0bc=0.000006; |
---|
213 | S0bd=0.000007; |
---|
214 | S0cd=0.000008; |
---|
215 | break; |
---|
216 | case 1: |
---|
217 | S0aa=0.000001; |
---|
218 | S0ab=0.000002; |
---|
219 | S0ac=0.000003; |
---|
220 | S0ad=0.000004; |
---|
221 | S0bb=0.000005; |
---|
222 | S0bc=0.000006; |
---|
223 | S0bd=0.000007; |
---|
224 | break; |
---|
225 | case 2: |
---|
226 | S0aa=0.000001; |
---|
227 | S0ab=0.000002; |
---|
228 | S0ac=0.000003; |
---|
229 | S0ad=0.000004; |
---|
230 | S0bc=0.000005; |
---|
231 | S0bd=0.000006; |
---|
232 | S0cd=0.000007; |
---|
233 | break; |
---|
234 | case 3: |
---|
235 | S0aa=0.000001; |
---|
236 | S0ab=0.000002; |
---|
237 | S0ac=0.000003; |
---|
238 | S0ad=0.000004; |
---|
239 | S0bc=0.000005; |
---|
240 | S0bd=0.000006; |
---|
241 | break; |
---|
242 | case 4: |
---|
243 | S0aa=0.000001; |
---|
244 | S0ab=0.000002; |
---|
245 | S0ac=0.000003; |
---|
246 | S0ad=0.000004; |
---|
247 | break; |
---|
248 | case 5: |
---|
249 | S0ab=0.000001; |
---|
250 | S0ac=0.000002; |
---|
251 | S0ad=0.000003; |
---|
252 | S0bc=0.000004; |
---|
253 | S0bd=0.000005; |
---|
254 | S0cd=0.000006; |
---|
255 | break; |
---|
256 | case 6: |
---|
257 | S0ab=0.000001; |
---|
258 | S0ac=0.000002; |
---|
259 | S0ad=0.000003; |
---|
260 | S0bc=0.000004; |
---|
261 | S0bd=0.000005; |
---|
262 | break; |
---|
263 | case 7: |
---|
264 | S0ab=0.000001; |
---|
265 | S0ac=0.000002; |
---|
266 | S0ad=0.000003; |
---|
267 | break; |
---|
268 | case 8: |
---|
269 | S0ac=0.000001; |
---|
270 | S0ad=0.000002; |
---|
271 | S0bc=0.000003; |
---|
272 | S0bd=0.000004; |
---|
273 | break; |
---|
274 | default : //case 9: |
---|
275 | break; |
---|
276 | } |
---|
277 | S0ba=S0ab; |
---|
278 | S0ca=S0ac; |
---|
279 | S0cb=S0bc; |
---|
280 | S0da=S0ad; |
---|
281 | S0db=S0bd; |
---|
282 | S0dc=S0cd; |
---|
283 | |
---|
284 | Kaa=0.0; |
---|
285 | Kbb=0.0; |
---|
286 | Kcc=0.0; |
---|
287 | Kdd=0.0; |
---|
288 | |
---|
289 | Kba=Kab; |
---|
290 | Kca=Kac; |
---|
291 | Kcb=Kbc; |
---|
292 | Kda=Kad; |
---|
293 | Kdb=Kbd; |
---|
294 | Kdc=Kcd; |
---|
295 | |
---|
296 | Zaa=Kaa-Kad-Kad; |
---|
297 | Zab=Kab-Kad-Kbd; |
---|
298 | Zac=Kac-Kad-Kcd; |
---|
299 | Zba=Kba-Kbd-Kad; |
---|
300 | Zbb=Kbb-Kbd-Kbd; |
---|
301 | Zbc=Kbc-Kbd-Kcd; |
---|
302 | Zca=Kca-Kcd-Kad; |
---|
303 | Zcb=Kcb-Kcd-Kbd; |
---|
304 | Zcc=Kcc-Kcd-Kcd; |
---|
305 | |
---|
306 | DenT=(-(S0ac*S0bb*S0ca) + S0ab*S0bc*S0ca + S0ac*S0ba*S0cb - S0aa*S0bc*S0cb - S0ab*S0ba*S0cc + S0aa*S0bb*S0cc); |
---|
307 | |
---|
308 | T11= (-(S0bc*S0cb) + S0bb*S0cc)/DenT; |
---|
309 | T12= (S0ac*S0cb - S0ab*S0cc)/DenT; |
---|
310 | T13= (-(S0ac*S0bb) + S0ab*S0bc)/DenT; |
---|
311 | T21= (S0bc*S0ca - S0ba*S0cc)/DenT; |
---|
312 | T22= (-(S0ac*S0ca) + S0aa*S0cc)/DenT; |
---|
313 | T23= (S0ac*S0ba - S0aa*S0bc)/DenT; |
---|
314 | T31= (-(S0bb*S0ca) + S0ba*S0cb)/DenT; |
---|
315 | T32= (S0ab*S0ca - S0aa*S0cb)/DenT; |
---|
316 | T33= (-(S0ab*S0ba) + S0aa*S0bb)/DenT; |
---|
317 | |
---|
318 | Y1=T11*S0ad+T12*S0bd+T13*S0cd+1.0; |
---|
319 | Y2=T21*S0ad+T22*S0bd+T23*S0cd+1.0; |
---|
320 | Y3=T31*S0ad+T32*S0bd+T33*S0cd+1.0; |
---|
321 | |
---|
322 | X11=Y1*Y1; |
---|
323 | X12=Y1*Y2; |
---|
324 | X13=Y1*Y3; |
---|
325 | X21=Y2*Y1; |
---|
326 | X22=Y2*Y2; |
---|
327 | X23=Y2*Y3; |
---|
328 | X31=Y3*Y1; |
---|
329 | X32=Y3*Y2; |
---|
330 | X33=Y3*Y3; |
---|
331 | |
---|
332 | ZZ=S0ad*(T11*S0ad+T12*S0bd+T13*S0cd)+S0bd*(T21*S0ad+T22*S0bd+T23*S0cd)+S0cd*(T31*S0ad+T32*S0bd+T33*S0cd); |
---|
333 | |
---|
334 | m=1.0/(S0dd-ZZ); |
---|
335 | |
---|
336 | N11=m*X11+Zaa; |
---|
337 | N12=m*X12+Zab; |
---|
338 | N13=m*X13+Zac; |
---|
339 | N21=m*X21+Zba; |
---|
340 | N22=m*X22+Zbb; |
---|
341 | N23=m*X23+Zbc; |
---|
342 | N31=m*X31+Zca; |
---|
343 | N32=m*X32+Zcb; |
---|
344 | N33=m*X33+Zcc; |
---|
345 | |
---|
346 | M11= N11*S0aa + N12*S0ab + N13*S0ac; |
---|
347 | M12= N11*S0ab + N12*S0bb + N13*S0bc; |
---|
348 | M13= N11*S0ac + N12*S0bc + N13*S0cc; |
---|
349 | M21= N21*S0aa + N22*S0ab + N23*S0ac; |
---|
350 | M22= N21*S0ab + N22*S0bb + N23*S0bc; |
---|
351 | M23= N21*S0ac + N22*S0bc + N23*S0cc; |
---|
352 | M31= N31*S0aa + N32*S0ab + N33*S0ac; |
---|
353 | M32= N31*S0ab + N32*S0bb + N33*S0bc; |
---|
354 | M33= N31*S0ac + N32*S0bc + N33*S0cc; |
---|
355 | |
---|
356 | DenQ1=1.0+M11-M12*M21+M22+M11*M22-M13*M31-M13*M22*M31; |
---|
357 | DenQ2= M12*M23*M31+M13*M21*M32-M23*M32-M11*M23*M32+M33+M11*M33; |
---|
358 | DenQ3= -M12*M21*M33+M22*M33+M11*M22*M33; |
---|
359 | DenQ=DenQ1+DenQ2+DenQ3; |
---|
360 | |
---|
361 | Q11= (1.0 + M22-M23*M32 + M33 + M22*M33)/DenQ; |
---|
362 | Q12= (-M12 + M13*M32 - M12*M33)/DenQ; |
---|
363 | Q13= (-M13 - M13*M22 + M12*M23)/DenQ; |
---|
364 | Q21= (-M21 + M23*M31 - M21*M33)/DenQ; |
---|
365 | Q22= (1.0 + M11 - M13*M31 + M33 + M11*M33)/DenQ; |
---|
366 | Q23= (M13*M21 - M23 - M11*M23)/DenQ; |
---|
367 | Q31= (-M31 - M22*M31 + M21*M32)/DenQ; |
---|
368 | Q32= (M12*M31 - M32 - M11*M32)/DenQ; |
---|
369 | Q33= (1.0 + M11 - M12*M21 + M22 + M11*M22)/DenQ; |
---|
370 | |
---|
371 | S11= Q11*S0aa + Q21*S0ab + Q31*S0ac; |
---|
372 | S12= Q12*S0aa + Q22*S0ab + Q32*S0ac; |
---|
373 | S13= Q13*S0aa + Q23*S0ab + Q33*S0ac; |
---|
374 | S14=-S11-S12-S13; |
---|
375 | S21= Q11*S0ba + Q21*S0bb + Q31*S0bc; |
---|
376 | S22= Q12*S0ba + Q22*S0bb + Q32*S0bc; |
---|
377 | S23= Q13*S0ba + Q23*S0bb + Q33*S0bc; |
---|
378 | S24=-S21-S22-S23; |
---|
379 | S31= Q11*S0ca + Q21*S0cb + Q31*S0cc; |
---|
380 | S32= Q12*S0ca + Q22*S0cb + Q32*S0cc; |
---|
381 | S33= Q13*S0ca + Q23*S0cb + Q33*S0cc; |
---|
382 | S34=-S31-S32-S33; |
---|
383 | S41=S14; |
---|
384 | S42=S24; |
---|
385 | S43=S34; |
---|
386 | S44=S11+S22+S33+2.0*S12+2.0*S13+2.0*S23; |
---|
387 | |
---|
388 | Nav=6.022045e+23; |
---|
389 | Lad=(La/va-Ld/vd)*sqrt(Nav); |
---|
390 | Lbd=(Lb/vb-Ld/vd)*sqrt(Nav); |
---|
391 | Lcd=(Lc/vc-Ld/vd)*sqrt(Nav); |
---|
392 | |
---|
393 | Intg=pow(Lad,2.0)*S11+pow(Lbd,2.0)*S22+pow(Lcd,2.0)*S33+2.0*Lad*Lbd*S12+2.0*Lbd*Lcd*S23+2.0*Lad*Lcd*S13; |
---|
394 | |
---|
395 | Intg *= scale; |
---|
396 | Intg += background; |
---|
397 | |
---|
398 | return Intg; |
---|
399 | |
---|
400 | } |
---|
401 | /** |
---|
402 | * Function to evaluate 1D scattering function |
---|
403 | * @param pars: parameters of the sphere |
---|
404 | * @param q: q-value |
---|
405 | * @return: function value |
---|
406 | */ |
---|
407 | double rpa_analytical_1D(RPAParameters *pars, double q) { |
---|
408 | double dp[29]; |
---|
409 | //Fittable parameters |
---|
410 | dp[0] = pars->lcase_n; |
---|
411 | |
---|
412 | dp[1] = pars->ba; |
---|
413 | dp[2] = pars->bb; |
---|
414 | dp[3] = pars->bc; |
---|
415 | dp[4] = pars->bd; |
---|
416 | |
---|
417 | dp[5] = pars->Kab; |
---|
418 | dp[6] = pars->Kac; |
---|
419 | dp[7] = pars->Kad; |
---|
420 | dp[8] = pars->Kbc; |
---|
421 | dp[9] = pars->Kbd; |
---|
422 | dp[10] = pars->Kcd; |
---|
423 | |
---|
424 | dp[11] = pars->scale; |
---|
425 | dp[12] = pars->background; |
---|
426 | |
---|
427 | //Fixed parameters |
---|
428 | dp[13] = pars->Na; |
---|
429 | dp[14] = pars->Phia; |
---|
430 | dp[15] = pars->va; |
---|
431 | dp[16] = pars->La; |
---|
432 | |
---|
433 | dp[17] = pars->Nb; |
---|
434 | dp[18] = pars->Phib; |
---|
435 | dp[19] = pars->vb; |
---|
436 | dp[20] = pars->Lb; |
---|
437 | |
---|
438 | dp[21] = pars->Nc; |
---|
439 | dp[22] = pars->Phic; |
---|
440 | dp[23] = pars->vc; |
---|
441 | dp[24] = pars->Lc; |
---|
442 | |
---|
443 | dp[25] = pars->Nd; |
---|
444 | dp[26] = pars->Phid; |
---|
445 | dp[27] = pars->vd; |
---|
446 | dp[28] = pars->Ld; |
---|
447 | |
---|
448 | return rpa_kernel(dp, q); |
---|
449 | } |
---|
450 | |
---|
451 | /** |
---|
452 | * Function to evaluate 2D scattering function |
---|
453 | * @param pars: parameters of the sphere |
---|
454 | * @param q: q-value |
---|
455 | * @return: function value |
---|
456 | */ |
---|
457 | double rpa_analytical_2D(RPAParameters *pars, double q, double phi) { |
---|
458 | return rpa_analytical_1D(pars,q); |
---|
459 | } |
---|
460 | |
---|
461 | double rpa_analytical_2DXY(RPAParameters *pars, double qx, double qy){ |
---|
462 | return rpa_analytical_1D(pars,sqrt(qx*qx+qy*qy)); |
---|
463 | } |
---|