1 | """ |
---|
2 | @organization: ParkFitting module contains SansParameter,Model,Data |
---|
3 | FitArrange, ParkFit,Parameter classes.All listed classes work together to perform a |
---|
4 | simple fit with park optimizer. |
---|
5 | """ |
---|
6 | import time |
---|
7 | import numpy |
---|
8 | |
---|
9 | import park |
---|
10 | from park import fit,fitresult |
---|
11 | from park import assembly |
---|
12 | from park.fitmc import FitSimplex, FitMC |
---|
13 | |
---|
14 | from sans.guitools.plottables import Data1D |
---|
15 | from Loader import Load |
---|
16 | from AbstractFitEngine import FitEngine, Parameter, FitArrange |
---|
17 | class SansParameter(park.Parameter): |
---|
18 | """ |
---|
19 | SANS model parameters for use in the PARK fitting service. |
---|
20 | The parameter attribute value is redirected to the underlying |
---|
21 | parameter value in the SANS model. |
---|
22 | """ |
---|
23 | def __init__(self, name, model): |
---|
24 | self._model, self._name = model,name |
---|
25 | self.set(model.getParam(name)) |
---|
26 | |
---|
27 | def _getvalue(self): return self._model.getParam(self.name) |
---|
28 | |
---|
29 | def _setvalue(self,value): |
---|
30 | self._model.setParam(self.name, value) |
---|
31 | |
---|
32 | value = property(_getvalue,_setvalue) |
---|
33 | |
---|
34 | def _getrange(self): |
---|
35 | lo,hi = self._model.details[self.name][1:] |
---|
36 | if lo is None: lo = -numpy.inf |
---|
37 | if hi is None: hi = numpy.inf |
---|
38 | return lo,hi |
---|
39 | |
---|
40 | def _setrange(self,r): |
---|
41 | self._model.details[self.name][1:] = r |
---|
42 | range = property(_getrange,_setrange) |
---|
43 | |
---|
44 | |
---|
45 | class Model(object): |
---|
46 | """ |
---|
47 | PARK wrapper for SANS models. |
---|
48 | """ |
---|
49 | def __init__(self, sans_model): |
---|
50 | self.model = sans_model |
---|
51 | sansp = sans_model.getParamList() |
---|
52 | parkp = [SansParameter(p,sans_model) for p in sansp] |
---|
53 | self.parameterset = park.ParameterSet(sans_model.name,pars=parkp) |
---|
54 | |
---|
55 | def eval(self,x): |
---|
56 | return self.model.run(x) |
---|
57 | |
---|
58 | class Data(object): |
---|
59 | """ Wrapper class for SANS data """ |
---|
60 | def __init__(self,x=None,y=None,dy=None,dx=None,sans_data=None): |
---|
61 | if not sans_data==None: |
---|
62 | self.x= sans_data.x |
---|
63 | self.y= sans_data.y |
---|
64 | self.dx= sans_data.dx |
---|
65 | self.dy= sans_data.dy |
---|
66 | else: |
---|
67 | if x!=None and y!=None and dy!=None: |
---|
68 | self.x=x |
---|
69 | self.y=y |
---|
70 | self.dx=dx |
---|
71 | self.dy=dy |
---|
72 | else: |
---|
73 | raise ValueError,\ |
---|
74 | "Data is missing x, y or dy, impossible to compute residuals later on" |
---|
75 | self.qmin=None |
---|
76 | self.qmax=None |
---|
77 | |
---|
78 | def setFitRange(self,mini=None,maxi=None): |
---|
79 | """ to set the fit range""" |
---|
80 | self.qmin=mini |
---|
81 | self.qmax=maxi |
---|
82 | |
---|
83 | def residuals(self, fn): |
---|
84 | """ @param fn: function that return model value |
---|
85 | @return residuals |
---|
86 | """ |
---|
87 | x,y,dy = [numpy.asarray(v) for v in (self.x,self.y,self.dy)] |
---|
88 | if self.qmin==None and self.qmax==None: |
---|
89 | self.fx = fn(x) |
---|
90 | return (y - fn(x))/dy |
---|
91 | |
---|
92 | else: |
---|
93 | self.fx = fn(x[idx]) |
---|
94 | idx = x>=self.qmin & x <= self.qmax |
---|
95 | return (y[idx] - fn(x[idx]))/dy[idx] |
---|
96 | |
---|
97 | |
---|
98 | def residuals_deriv(self, model, pars=[]): |
---|
99 | """ |
---|
100 | @return residuals derivatives . |
---|
101 | @note: in this case just return empty array |
---|
102 | """ |
---|
103 | return [] |
---|
104 | |
---|
105 | |
---|
106 | class ParkFit(FitEngine): |
---|
107 | """ |
---|
108 | ParkFit performs the Fit.This class can be used as follow: |
---|
109 | #Do the fit Park |
---|
110 | create an engine: engine = ParkFit() |
---|
111 | Use data must be of type plottable |
---|
112 | Use a sans model |
---|
113 | |
---|
114 | Add data with a dictionnary of FitArrangeList where Uid is a key and data |
---|
115 | is saved in FitArrange object. |
---|
116 | engine.set_data(data,Uid) |
---|
117 | |
---|
118 | Set model parameter "M1"= model.name add {model.parameter.name:value}. |
---|
119 | @note: Set_param() if used must always preceded set_model() |
---|
120 | for the fit to be performed. |
---|
121 | engine.set_param( model,"M1", {'A':2,'B':4}) |
---|
122 | |
---|
123 | Add model with a dictionnary of FitArrangeList{} where Uid is a key and model |
---|
124 | is save in FitArrange object. |
---|
125 | engine.set_model(model,Uid) |
---|
126 | |
---|
127 | engine.fit return chisqr,[model.parameter 1,2,..],[[err1....][..err2...]] |
---|
128 | chisqr1, out1, cov1=engine.fit({model.parameter.name:value},qmin,qmax) |
---|
129 | @note: {model.parameter.name:value} is ignored in fit function since |
---|
130 | the user should make sure to call set_param himself. |
---|
131 | """ |
---|
132 | def __init__(self,data=[]): |
---|
133 | """ |
---|
134 | Creates a dictionary (self.fitArrangeList={})of FitArrange elements |
---|
135 | with Uid as keys |
---|
136 | """ |
---|
137 | self.fitArrangeList={} |
---|
138 | |
---|
139 | def createProblem(self): |
---|
140 | """ |
---|
141 | Extract sansmodel and sansdata from self.FitArrangelist ={Uid:FitArrange} |
---|
142 | Create parkmodel and park data ,form a list couple of parkmodel and parkdata |
---|
143 | create an assembly self.problem= park.Assembly([(parkmodel,parkdata)]) |
---|
144 | """ |
---|
145 | mylist=[] |
---|
146 | listmodel=[] |
---|
147 | for k,value in self.fitArrangeList.iteritems(): |
---|
148 | sansmodel=value.get_model() |
---|
149 | #wrap sans model |
---|
150 | parkmodel = Model(sansmodel) |
---|
151 | for p in parkmodel.parameterset: |
---|
152 | if p.isfixed(): |
---|
153 | p.set([-numpy.inf,numpy.inf]) |
---|
154 | |
---|
155 | Ldata=value.get_data() |
---|
156 | x,y,dy=self._concatenateData(Ldata) |
---|
157 | #wrap sansdata |
---|
158 | parkdata=Data(x,y,dy,None) |
---|
159 | couple=(parkmodel,parkdata) |
---|
160 | mylist.append(couple) |
---|
161 | |
---|
162 | self.problem = park.Assembly(mylist) |
---|
163 | |
---|
164 | |
---|
165 | def fit(self, qmin=None, qmax=None): |
---|
166 | """ |
---|
167 | Performs fit with park.fit module.It can perform fit with one model |
---|
168 | and a set of data, more than two fit of one model and sets of data or |
---|
169 | fit with more than two model associated with their set of data and constraints |
---|
170 | |
---|
171 | |
---|
172 | @param pars: Dictionary of parameter names for the model and their values. |
---|
173 | @param qmin: The minimum value of data's range to be fit |
---|
174 | @param qmax: The maximum value of data's range to be fit |
---|
175 | @note:all parameter are ignored most of the time.Are just there to keep ScipyFit |
---|
176 | and ParkFit interface the same. |
---|
177 | @return result.fitness: Value of the goodness of fit metric |
---|
178 | @return result.pvec: list of parameter with the best value found during fitting |
---|
179 | @return result.cov: Covariance matrix |
---|
180 | """ |
---|
181 | |
---|
182 | |
---|
183 | self.createProblem() |
---|
184 | pars=self.problem.fit_parameters() |
---|
185 | self.problem.eval() |
---|
186 | |
---|
187 | localfit = FitSimplex() |
---|
188 | localfit.ftol = 1e-8 |
---|
189 | fitter = FitMC(localfit=localfit) |
---|
190 | |
---|
191 | result = fit.fit(self.problem, |
---|
192 | fitter=fitter, |
---|
193 | handler= fitresult.ConsoleUpdate(improvement_delta=0.1)) |
---|
194 | |
---|
195 | return result.fitness,result.pvec,result.cov |
---|
196 | |
---|
197 | |
---|