1 | """ |
---|
2 | IGOR 2D reduced file reader |
---|
3 | """ |
---|
4 | |
---|
5 | """ |
---|
6 | This software was developed by the University of Tennessee as part of the |
---|
7 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
8 | project funded by the US National Science Foundation. |
---|
9 | |
---|
10 | If you use DANSE applications to do scientific research that leads to |
---|
11 | publication, we ask that you acknowledge the use of the software with the |
---|
12 | following sentence: |
---|
13 | |
---|
14 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
15 | |
---|
16 | copyright 2008, University of Tennessee |
---|
17 | """ |
---|
18 | |
---|
19 | import os, sys |
---|
20 | import numpy |
---|
21 | import math, logging |
---|
22 | from DataLoader.data_info import Data2D, Detector |
---|
23 | |
---|
24 | # Look for unit converter |
---|
25 | has_converter = True |
---|
26 | try: |
---|
27 | from data_util.nxsunit import Converter |
---|
28 | except: |
---|
29 | has_converter = False |
---|
30 | |
---|
31 | class Reader: |
---|
32 | """ Simple data reader for Igor data files """ |
---|
33 | ## File type |
---|
34 | type = ["IGOR 2D files (*.ASC)|*.ASC"] |
---|
35 | ## Extension |
---|
36 | ext=['.ASC', '.asc'] |
---|
37 | |
---|
38 | def read(self,filename=None): |
---|
39 | """ Read file """ |
---|
40 | if not os.path.isfile(filename): |
---|
41 | raise ValueError, \ |
---|
42 | "Specified file %s is not a regular file" % filename |
---|
43 | |
---|
44 | # Read file |
---|
45 | f = open(filename,'r') |
---|
46 | buf = f.read() |
---|
47 | |
---|
48 | # Instantiate data object |
---|
49 | output = Data2D() |
---|
50 | output.filename = os.path.basename(filename) |
---|
51 | detector = Detector() |
---|
52 | if len(output.detector)>0: print str(output.detector[0]) |
---|
53 | output.detector.append(detector) |
---|
54 | |
---|
55 | size_x = 128 |
---|
56 | size_y = 128 |
---|
57 | output.data = numpy.zeros([size_x,size_y]) |
---|
58 | output.err_data = numpy.zeros([size_x,size_y]) |
---|
59 | |
---|
60 | data_conv_q = None |
---|
61 | data_conv_i = None |
---|
62 | |
---|
63 | if has_converter == True and output.Q_unit != '1/A': |
---|
64 | data_conv_q = Converter('1/A') |
---|
65 | # Test it |
---|
66 | data_conv_q(1.0, output.Q_unit) |
---|
67 | |
---|
68 | if has_converter == True and output.I_unit != '1/cm': |
---|
69 | data_conv_i = Converter('1/cm') |
---|
70 | # Test it |
---|
71 | data_conv_i(1.0, output.I_unit) |
---|
72 | |
---|
73 | |
---|
74 | # Get content |
---|
75 | dataStarted = False |
---|
76 | |
---|
77 | |
---|
78 | lines = buf.split('\n') |
---|
79 | itot = 0 |
---|
80 | x = [] |
---|
81 | y = [] |
---|
82 | |
---|
83 | ncounts = 0 |
---|
84 | |
---|
85 | xmin = None |
---|
86 | xmax = None |
---|
87 | ymin = None |
---|
88 | ymax = None |
---|
89 | |
---|
90 | i_x = 0 |
---|
91 | i_y = -1 |
---|
92 | |
---|
93 | isInfo = False |
---|
94 | isCenter = False |
---|
95 | for line in lines: |
---|
96 | |
---|
97 | # Find setup info line |
---|
98 | if isInfo: |
---|
99 | isInfo = False |
---|
100 | line_toks = line.split() |
---|
101 | # Wavelength in Angstrom |
---|
102 | try: |
---|
103 | wavelength = float(line_toks[1]) |
---|
104 | except: |
---|
105 | raise ValueError,"IgorReader: can't read this file, missing wavelength" |
---|
106 | # Distance in meters |
---|
107 | try: |
---|
108 | distance = float(line_toks[3]) |
---|
109 | except: |
---|
110 | raise ValueError,"IgorReader: can't read this file, missing distance" |
---|
111 | |
---|
112 | # Distance in meters |
---|
113 | try: |
---|
114 | transmission = float(line_toks[4]) |
---|
115 | except: |
---|
116 | raise ValueError,"IgorReader: can't read this file, missing transmission" |
---|
117 | |
---|
118 | if line.count("LAMBDA")>0: |
---|
119 | isInfo = True |
---|
120 | |
---|
121 | # Find center info line |
---|
122 | if isCenter: |
---|
123 | isCenter = False |
---|
124 | line_toks = line.split() |
---|
125 | # Center in bin number |
---|
126 | center_x = float(line_toks[0]) |
---|
127 | center_y = float(line_toks[1]) |
---|
128 | |
---|
129 | if line.count("BCENT")>0: |
---|
130 | isCenter = True |
---|
131 | |
---|
132 | |
---|
133 | # Find data start |
---|
134 | if line.count("***")>0: |
---|
135 | dataStarted = True |
---|
136 | |
---|
137 | # Check that we have all the info |
---|
138 | if wavelength == None \ |
---|
139 | or distance == None \ |
---|
140 | or center_x == None \ |
---|
141 | or center_y == None: |
---|
142 | raise ValueError, "IgorReader:Missing information in data file" |
---|
143 | |
---|
144 | if dataStarted == True: |
---|
145 | try: |
---|
146 | value = float(line) |
---|
147 | except: |
---|
148 | # Found a non-float entry, skip it |
---|
149 | continue |
---|
150 | |
---|
151 | # Get bin number |
---|
152 | if math.fmod(itot, 128)==0: |
---|
153 | i_x = 0 |
---|
154 | i_y += 1 |
---|
155 | else: |
---|
156 | i_x += 1 |
---|
157 | |
---|
158 | output.data[i_y][i_x] = value |
---|
159 | ncounts += 1 |
---|
160 | |
---|
161 | # Det 640 x 640 mm |
---|
162 | # Q = 4pi/lambda sin(theta/2) |
---|
163 | # Bin size is 0.5 cm |
---|
164 | theta = (i_x-center_x+1)*0.5 / distance / 100.0 |
---|
165 | qx = 4.0*math.pi/wavelength * math.sin(theta/2.0) |
---|
166 | |
---|
167 | if has_converter == True and output.Q_unit != '1/A': |
---|
168 | qx = data_conv_q(qx, units=output.Q_unit) |
---|
169 | |
---|
170 | if xmin==None or qx<xmin: |
---|
171 | xmin = qx |
---|
172 | if xmax==None or qx>xmax: |
---|
173 | xmax = qx |
---|
174 | |
---|
175 | theta = (i_y-center_y+1)*0.5 / distance / 100.0 |
---|
176 | qy = 4.0*math.pi/wavelength * math.sin(theta/2.0) |
---|
177 | |
---|
178 | if has_converter == True and output.Q_unit != '1/A': |
---|
179 | qy = data_conv_q(qy, units=output.Q_unit) |
---|
180 | |
---|
181 | if ymin==None or qy<ymin: |
---|
182 | ymin = qy |
---|
183 | if ymax==None or qy>ymax: |
---|
184 | ymax = qy |
---|
185 | |
---|
186 | if not qx in x: |
---|
187 | x.append(qx) |
---|
188 | if not qy in y: |
---|
189 | y.append(qy) |
---|
190 | |
---|
191 | itot += 1 |
---|
192 | |
---|
193 | |
---|
194 | theta = 0.25 / distance / 100.0 |
---|
195 | xstep = 4.0*math.pi/wavelength * math.sin(theta/2.0) |
---|
196 | |
---|
197 | theta = 0.25 / distance / 100.0 |
---|
198 | ystep = 4.0*math.pi/wavelength * math.sin(theta/2.0) |
---|
199 | |
---|
200 | # Store all data ###################################### |
---|
201 | # Store wavelength |
---|
202 | if has_converter==True and output.source.wavelength_unit != 'A': |
---|
203 | conv = Converter('A') |
---|
204 | wavelength = conv(wavelength, units=output.source.wavelength_unit) |
---|
205 | output.source.wavelength = wavelength |
---|
206 | |
---|
207 | # Store distance |
---|
208 | if has_converter==True and detector.distance_unit != 'm': |
---|
209 | conv = Converter('m') |
---|
210 | distance = conv(distance, units=detector.distance_unit) |
---|
211 | detector.distance = distance |
---|
212 | |
---|
213 | # Store transmission |
---|
214 | output.sample.transmission = transmission |
---|
215 | |
---|
216 | # Store pixel size |
---|
217 | pixel = 5.0 |
---|
218 | if has_converter==True and detector.pixel_size_unit != 'mm': |
---|
219 | conv = Converter('mm') |
---|
220 | pixel = conv(pixel, units=detector.pixel_size_unit) |
---|
221 | detector.pixel_size.x = pixel |
---|
222 | detector.pixel_size.y = pixel |
---|
223 | |
---|
224 | # Store beam center in distance units |
---|
225 | detector.beam_center.x = center_x*pixel |
---|
226 | detector.beam_center.y = center_y*pixel |
---|
227 | |
---|
228 | |
---|
229 | # Store limits of the image (2D array) |
---|
230 | xmin =xmin-xstep/2.0 |
---|
231 | xmax =xmax+xstep/2.0 |
---|
232 | ymin =ymin-ystep/2.0 |
---|
233 | ymax =ymax+ystep/2.0 |
---|
234 | if has_converter == True and output.Q_unit != '1/A': |
---|
235 | xmin = data_conv_q(xmin, units=output.Q_unit) |
---|
236 | xmax = data_conv_q(xmax, units=output.Q_unit) |
---|
237 | ymin = data_conv_q(ymin, units=output.Q_unit) |
---|
238 | ymax = data_conv_q(ymax, units=output.Q_unit) |
---|
239 | output.xmin = xmin |
---|
240 | output.xmax = xmax |
---|
241 | output.ymin = ymin |
---|
242 | output.ymax = ymax |
---|
243 | |
---|
244 | # Store x and y axis bin centers |
---|
245 | output.x_bins = x |
---|
246 | output.y_bins = y |
---|
247 | |
---|
248 | # Units |
---|
249 | if data_conv_q is not None: |
---|
250 | output.xaxis("\\rm{Q}", output.Q_unit) |
---|
251 | output.yaxis("\\rm{Q}", output.Q_unit) |
---|
252 | else: |
---|
253 | output.xaxis("\\rm{Q}", 'A^{-1}') |
---|
254 | output.yaxis("\\rm{Q}", 'A^{-1}') |
---|
255 | |
---|
256 | if data_conv_i is not None: |
---|
257 | output.zaxis("\\{I(Q)}", output.I_unit) |
---|
258 | else: |
---|
259 | output.zaxis("\\rm{I(Q)}","cm^{-1}") |
---|
260 | |
---|
261 | |
---|
262 | return output |
---|
263 | |
---|
264 | if __name__ == "__main__": |
---|
265 | reader = Reader() |
---|
266 | print reader.read("../test/MAR07232_rest.ASC") |
---|
267 | |
---|