source: sasmodels/sasmodels/models/parallelepiped.py @ 4aaf89a

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 4aaf89a was 4aaf89a, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

triaxial ellipsoid/parallelepiped: choose the pair of lengths that are closest to each other as the equatorial plane when computing ER

  • Property mode set to 100644
File size: 9.0 KB
RevLine 
[5933c7f]1# parallelepiped model
2# Note: model title and parameter table are inserted automatically
3r"""
4The form factor is normalized by the particle volume.
[9f60c06]5For information about polarised and magnetic scattering, see
[9a4811a]6the :ref:`magnetism` documentation.
[5933c7f]7
8Definition
9----------
10
[40a87fa]11| This model calculates the scattering from a rectangular parallelepiped
[416f5c7]12| (\:numref:`parallelepiped-image`\).
[5933c7f]13| If you need to apply polydispersity, see also :ref:`rectangular-prism`.
14
15.. _parallelepiped-image:
16
17.. figure:: img/parallelepiped_geometry.jpg
18
19   Parallelepiped with the corresponding definition of sides.
20
21.. note::
22
23   The edge of the solid must satisfy the condition that $A < B < C$.
24   This requirement is not enforced in the model, so it is up to the
25   user to check this during the analysis.
26
27The 1D scattering intensity $I(q)$ is calculated as:
28
29.. Comment by Miguel Gonzalez:
30   I am modifying the original text because I find the notation a little bit
31   confusing. I think that in most textbooks/papers, the notation P(Q) is
32   used for the form factor (adim, P(Q=0)=1), although F(q) seems also to
33   be used. But here (as for many other models), P(q) is used to represent
34   the scattering intensity (in cm-1 normally). It would be good to agree on
35   a common notation.
36
37.. math::
38
[40a87fa]39    I(q) = \frac{\text{scale}}{V} (\Delta\rho \cdot V)^2
40           \left< P(q, \alpha) \right> + \text{background}
[5933c7f]41
42where the volume $V = A B C$, the contrast is defined as
[40a87fa]43$\Delta\rho = \rho_\text{p} - \rho_\text{solvent}$,
[5933c7f]44$P(q, \alpha)$ is the form factor corresponding to a parallelepiped oriented
[40a87fa]45at an angle $\alpha$ (angle between the long axis C and $\vec q$),
[5933c7f]46and the averaging $\left<\ldots\right>$ is applied over all orientations.
47
48Assuming $a = A/B < 1$, $b = B /B = 1$, and $c = C/B > 1$, the
49form factor is given by (Mittelbach and Porod, 1961)
50
51.. math::
52
53    P(q, \alpha) = \int_0^1 \phi_Q\left(\mu \sqrt{1-\sigma^2},a\right)
54        \left[S(\mu c \sigma/2)\right]^2 d\sigma
55
56with
57
58.. math::
59
[40a87fa]60    \phi_Q(\mu,a) &= \int_0^1
[5933c7f]61        \left\{S\left[\frac{\mu}{2}\cos\left(\frac{\pi}{2}u\right)\right]
62               S\left[\frac{\mu a}{2}\sin\left(\frac{\pi}{2}u\right)\right]
63               \right\}^2 du
64
[40a87fa]65    S(x) &= \frac{\sin x}{x}
[5933c7f]66
[40a87fa]67    \mu &= qB
[5933c7f]68
69
70The scattering intensity per unit volume is returned in units of |cm^-1|.
71
72NB: The 2nd virial coefficient of the parallelepiped is calculated based on
73the averaged effective radius $(=\sqrt{A B / \pi})$ and
74length $(= C)$ values, and used as the effective radius for
75$S(q)$ when $P(q) \cdot S(q)$ is applied.
76
77To provide easy access to the orientation of the parallelepiped, we define
78three angles $\theta$, $\phi$ and $\Psi$. The definition of $\theta$ and
79$\phi$ is the same as for the cylinder model (see also figures below).
80
81.. Comment by Miguel Gonzalez:
82   The following text has been commented because I think there are two
83   mistakes. Psi is the rotational angle around C (but I cannot understand
84   what it means against the q plane) and psi=0 corresponds to a||x and b||y.
85
86   The angle $\Psi$ is the rotational angle around the $C$ axis against
87   the $q$ plane. For example, $\Psi = 0$ when the $B$ axis is parallel
88   to the $x$-axis of the detector.
89
90The angle $\Psi$ is the rotational angle around the $C$ axis.
91For $\theta = 0$ and $\phi = 0$, $\Psi = 0$ corresponds to the $B$ axis
92oriented parallel to the y-axis of the detector with $A$ along the z-axis.
93For other $\theta$, $\phi$ values, the parallelepiped has to be first rotated
94$\theta$ degrees around $z$ and $\phi$ degrees around $y$,
95before doing a final rotation of $\Psi$ degrees around the resulting $C$ to
96obtain the final orientation of the parallelepiped.
97For example, for $\theta = 0$ and $\phi = 90$, we have that $\Psi = 0$
98corresponds to $A$ along $x$ and $B$ along $y$,
99while for $\theta = 90$ and $\phi = 0$, $\Psi = 0$ corresponds to
100$A$ along $z$ and $B$ along $x$.
101
102.. _parallelepiped-orientation:
103
104.. figure:: img/parallelepiped_angle_definition.jpg
105
106    Definition of the angles for oriented parallelepipeds.
107
108.. figure:: img/parallelepiped_angle_projection.jpg
109
[40a87fa]110    Examples of the angles for oriented parallelepipeds against the
111    detector plane.
[5933c7f]112
[40a87fa]113For a given orientation of the parallelepiped, the 2D form factor is
114calculated as
[5933c7f]115
116.. math::
117
[40a87fa]118    P(q_x, q_y) = \left[\frac{\sin(qA\cos\alpha/2)}{(qA\cos\alpha/2)}\right]^2
119                  \left[\frac{\sin(qB\cos\beta/2)}{(qB\cos\beta/2)}\right]^2
120                  \left[\frac{\sin(qC\cos\gamma/2)}{(qC\cos\gamma/2)}\right]^2
[5933c7f]121
122with
123
124.. math::
125
[40a87fa]126    \cos\alpha &= \hat A \cdot \hat q,
127
128    \cos\beta  &= \hat B \cdot \hat q,
129
130    \cos\gamma &= \hat C \cdot \hat q
[5933c7f]131
132and the scattering intensity as:
133
134.. math::
135
[40a87fa]136    I(q_x, q_y) = \frac{\text{scale}}{V} V^2 \Delta\rho^2 P(q_x, q_y)
137            + \text{background}
[5933c7f]138
139.. Comment by Miguel Gonzalez:
140   This reflects the logic of the code, as in parallelepiped.c the call
[40a87fa]141   to _pkernel returns $P(q_x, q_y)$ and then this is multiplied by
142   $V^2 * (\Delta \rho)^2$. And finally outside parallelepiped.c it will be
143   multiplied by scale, normalized by $V$ and the background added. But
144   mathematically it makes more sense to write
145   $I(q_x, q_y) = \text{scale} V \Delta\rho^2 P(q_x, q_y) + \text{background}$,
[5933c7f]146   with scale being the volume fraction.
147
148
149Validation
150----------
151
152Validation of the code was done by comparing the output of the 1D calculation
153to the angular average of the output of a 2D calculation over all possible
[40a87fa]154angles.
[5933c7f]155
156This model is based on form factor calculations implemented in a c-library
157provided by the NIST Center for Neutron Research (Kline, 2006).
158
159References
160----------
161
[76e5041]162P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
163
164R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
[5933c7f]165"""
166
167import numpy as np
168from numpy import pi, inf, sqrt
169
170name = "parallelepiped"
171title = "Rectangular parallelepiped with uniform scattering length density."
172description = """
[76e5041]173    I(q)= scale*V*(sld - sld_solvent)^2*P(q,alpha)+background
[5933c7f]174        P(q,alpha) = integral from 0 to 1 of ...
175           phi(mu*sqrt(1-sigma^2),a) * S(mu*c*sigma/2)^2 * dsigma
176        with
177            phi(mu,a) = integral from 0 to 1 of ..
178            (S((mu/2)*cos(pi*u/2))*S((mu*a/2)*sin(pi*u/2)))^2 * du
179            S(x) = sin(x)/x
180            mu = q*B
181        V: Volume of the rectangular parallelepiped
182        alpha: angle between the long axis of the
183            parallelepiped and the q-vector for 1D
184"""
185category = "shape:parallelepiped"
186
187#             ["name", "units", default, [lower, upper], "type","description"],
[42356c8]188parameters = [["sld", "1e-6/Ang^2", 4, [-inf, inf], "sld",
[5933c7f]189               "Parallelepiped scattering length density"],
[42356c8]190              ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld",
[5933c7f]191               "Solvent scattering length density"],
[a807206]192              ["length_a", "Ang", 35, [0, inf], "volume",
[5933c7f]193               "Shorter side of the parallelepiped"],
[a807206]194              ["length_b", "Ang", 75, [0, inf], "volume",
[5933c7f]195               "Second side of the parallelepiped"],
[a807206]196              ["length_c", "Ang", 400, [0, inf], "volume",
[5933c7f]197               "Larger side of the parallelepiped"],
198              ["theta", "degrees", 60, [-inf, inf], "orientation",
199               "In plane angle"],
200              ["phi", "degrees", 60, [-inf, inf], "orientation",
201               "Out of plane angle"],
202              ["psi", "degrees", 60, [-inf, inf], "orientation",
203               "Rotation angle around its own c axis against q plane"],
204             ]
205
206source = ["lib/gauss76.c", "parallelepiped.c"]
207
[a807206]208def ER(length_a, length_b, length_c):
[5933c7f]209    """
[4aaf89a]210    Return effective radius (ER) for P(q)*S(q)
[5933c7f]211    """
[4aaf89a]212    # now that axes can be in any size order, need to sort a,b,c where a~b and c is either much smaller
213    # or much larger
214    abc = np.vstack((length_a, length_b, length_c))
215    abc = np.sort(abc, axis=0)
216    selector = (abc[1] - abc[0]) > (abc[2] - abc[1])
217    length = np.where(selector, abc[0], abc[2])
[5933c7f]218    # surface average radius (rough approximation)
[4aaf89a]219    radius = np.sqrt(np.where(~selector, abc[0]*abc[1], abc[1]*abc[2]) / pi)
[5933c7f]220
[4aaf89a]221    ddd = 0.75 * radius * (2*radius*length + (length + radius)*(length + pi*radius))
[5933c7f]222    return 0.5 * (ddd) ** (1. / 3.)
223
224# VR defaults to 1.0
225
226# parameters for demo
227demo = dict(scale=1, background=0,
[ed0827a]228            sld=6.3, sld_solvent=1.0,
[a807206]229            length_a=35, length_b=75, length_c=400,
[5933c7f]230            theta=45, phi=30, psi=15,
[a807206]231            length_a_pd=0.1, length_a_pd_n=10,
232            length_b_pd=0.1, length_b_pd_n=1,
233            length_c_pd=0.1, length_c_pd_n=1,
[5933c7f]234            theta_pd=10, theta_pd_n=1,
235            phi_pd=10, phi_pd_n=1,
236            psi_pd=10, psi_pd_n=10)
237
238qx, qy = 0.2 * np.cos(2.5), 0.2 * np.sin(2.5)
239tests = [[{}, 0.2, 0.17758004974],
240         [{}, [0.2], [0.17758004974]],
241         [{'theta':10.0, 'phi':10.0}, (qx, qy), 0.00560296014],
242         [{'theta':10.0, 'phi':10.0}, [(qx, qy)], [0.00560296014]],
243        ]
244del qx, qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.