source: sasmodels/sasmodels/models/parallelepiped.py @ 15a90c1

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 15a90c1 was 15a90c1, checked in by richardh, 7 years ago

more changes for new axes, and a bug in cylinder.py docs

  • Property mode set to 100644
File size: 9.4 KB
Line 
1# parallelepiped model
2# Note: model title and parameter table are inserted automatically
3r"""
4The form factor is normalized by the particle volume.
5For information about polarised and magnetic scattering, see
6the :ref:`magnetism` documentation.
7
8Definition
9----------
10
11| This model calculates the scattering from a rectangular parallelepiped
12| (\:numref:`parallelepiped-image`\).
13| If you need to apply polydispersity, see also :ref:`rectangular-prism`.
14
15.. _parallelepiped-image:
16
17.. figure:: img/parallelepiped_geometry.jpg
18
19   Parallelepiped with the corresponding definition of sides.
20
21.. note::
22
23   The edge of the solid used to have to satisfy the condition that $A < B < C$.
24   After some improvements to the effective radius calculation, used with an S(Q),
25   it is beleived that this is no longer the case.
26
27The 1D scattering intensity $I(q)$ is calculated as:
28
29.. Comment by Miguel Gonzalez:
30   I am modifying the original text because I find the notation a little bit
31   confusing. I think that in most textbooks/papers, the notation P(Q) is
32   used for the form factor (adim, P(Q=0)=1), although F(q) seems also to
33   be used. But here (as for many other models), P(q) is used to represent
34   the scattering intensity (in cm-1 normally). It would be good to agree on
35   a common notation.
36
37.. math::
38
39    I(q) = \frac{\text{scale}}{V} (\Delta\rho \cdot V)^2
40           \left< P(q, \alpha) \right> + \text{background}
41
42where the volume $V = A B C$, the contrast is defined as
43$\Delta\rho = \rho_\text{p} - \rho_\text{solvent}$,
44$P(q, \alpha)$ is the form factor corresponding to a parallelepiped oriented
45at an angle $\alpha$ (angle between the long axis C and $\vec q$),
46and the averaging $\left<\ldots\right>$ is applied over all orientations.
47
48Assuming $a = A/B < 1$, $b = B /B = 1$, and $c = C/B > 1$, the
49form factor is given by (Mittelbach and Porod, 1961)
50
51.. math::
52
53    P(q, \alpha) = \int_0^1 \phi_Q\left(\mu \sqrt{1-\sigma^2},a\right)
54        \left[S(\mu c \sigma/2)\right]^2 d\sigma
55
56with
57
58.. math::
59
60    \phi_Q(\mu,a) &= \int_0^1
61        \left\{S\left[\frac{\mu}{2}\cos\left(\frac{\pi}{2}u\right)\right]
62               S\left[\frac{\mu a}{2}\sin\left(\frac{\pi}{2}u\right)\right]
63               \right\}^2 du
64
65    S(x) &= \frac{\sin x}{x}
66
67    \mu &= qB
68
69
70The scattering intensity per unit volume is returned in units of |cm^-1|.
71
72NB: The 2nd virial coefficient of the parallelepiped is calculated based on
73the averaged effective radius, after appropriately
74sorting the three dimensions, to give an oblate or prolate particle, $(=\sqrt{A B / \pi})$ and
75length $(= C)$ values, and used as the effective radius for
76$S(q)$ when $P(q) \cdot S(q)$ is applied.
77
78To provide easy access to the orientation of the parallelepiped, we define
79three angles $\theta$, $\phi$ and $\Psi$. The definition of $\theta$ and
80$\phi$ is the same as for the cylinder model (see also figures below).
81
82.. Comment by Miguel Gonzalez:
83   The following text has been commented because I think there are two
84   mistakes. Psi is the rotational angle around C (but I cannot understand
85   what it means against the q plane) and psi=0 corresponds to a||x and b||y.
86
87   The angle $\Psi$ is the rotational angle around the $C$ axis against
88   the $q$ plane. For example, $\Psi = 0$ when the $B$ axis is parallel
89   to the $x$-axis of the detector.
90
91The angle $\Psi$ is the rotational angle around the $C$ axis.
92For $\theta = 0$ and $\phi = 0$, $\Psi = 0$ corresponds to the $B$ axis
93oriented parallel to the y-axis of the detector with $A$ along the z-axis.
94For other $\theta$, $\phi$ values, the parallelepiped has to be first rotated
95$\theta$ degrees around $z$ and $\phi$ degrees around $y$,
96before doing a final rotation of $\Psi$ degrees around the resulting $C$ to
97obtain the final orientation of the parallelepiped.
98For example, for $\theta = 0$ and $\phi = 90$, we have that $\Psi = 0$
99corresponds to $A$ along $x$ and $B$ along $y$,
100while for $\theta = 90$ and $\phi = 0$, $\Psi = 0$ corresponds to
101$A$ along $z$ and $B$ along $x$.
102
103.. _parallelepiped-orientation:
104
105.. figure:: img/parallelepiped_angle_definition.png
106
107    Definition of the angles for oriented parallelepiped, shown with $A < B < C$.
108
109.. figure:: img/parallelepiped_angle_projection.png
110
111    Examples of the angles for an oriented parallelepiped against the
112    detector plane.
113
114For a given orientation of the parallelepiped, the 2D form factor is
115calculated as
116
117.. math::
118
119    P(q_x, q_y) = \left[\frac{\sin(\tfrac{1}{2}qA\cos\alpha)}{(\tfrac{1}{2}qA\cos\alpha)}\right]^2
120                  \left[\frac{\sin(\tfrac{1}{2}qB\cos\beta)}{(\tfrac{1}{2}qB\cos\beta)}\right]^2
121                  \left[\frac{\sin(\tfrac{1}{2}qC\cos\gamma)}{(\tfrac{1}{2}qC\cos\gamma)}\right]^2
122
123with
124
125.. math::
126
127    \cos\alpha &= \hat A \cdot \hat q,
128
129    \cos\beta  &= \hat B \cdot \hat q,
130
131    \cos\gamma &= \hat C \cdot \hat q
132
133and the scattering intensity as:
134
135.. math::
136
137    I(q_x, q_y) = \frac{\text{scale}}{V} V^2 \Delta\rho^2 P(q_x, q_y)
138            + \text{background}
139
140.. Comment by Miguel Gonzalez:
141   This reflects the logic of the code, as in parallelepiped.c the call
142   to _pkernel returns $P(q_x, q_y)$ and then this is multiplied by
143   $V^2 * (\Delta \rho)^2$. And finally outside parallelepiped.c it will be
144   multiplied by scale, normalized by $V$ and the background added. But
145   mathematically it makes more sense to write
146   $I(q_x, q_y) = \text{scale} V \Delta\rho^2 P(q_x, q_y) + \text{background}$,
147   with scale being the volume fraction.
148
149
150Validation
151----------
152
153Validation of the code was done by comparing the output of the 1D calculation
154to the angular average of the output of a 2D calculation over all possible
155angles.
156
157
158References
159----------
160
161P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
162
163R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
164
165Authorship and Verification
166----------------------------
167
168* **Author:** This model is based on form factor calculations implemented in a c-library
169provided by the NIST Center for Neutron Research (Kline, 2006).
170* **Last Modified by:**  Paul Kienzle **Date:** April 05, 2017
171* **Last Reviewed by:**  Richard Heenan **Date:** April 06, 2017
172
173"""
174
175import numpy as np
176from numpy import pi, inf, sqrt
177
178name = "parallelepiped"
179title = "Rectangular parallelepiped with uniform scattering length density."
180description = """
181    I(q)= scale*V*(sld - sld_solvent)^2*P(q,alpha)+background
182        P(q,alpha) = integral from 0 to 1 of ...
183           phi(mu*sqrt(1-sigma^2),a) * S(mu*c*sigma/2)^2 * dsigma
184        with
185            phi(mu,a) = integral from 0 to 1 of ..
186            (S((mu/2)*cos(pi*u/2))*S((mu*a/2)*sin(pi*u/2)))^2 * du
187            S(x) = sin(x)/x
188            mu = q*B
189        V: Volume of the rectangular parallelepiped
190        alpha: angle between the long axis of the
191            parallelepiped and the q-vector for 1D
192"""
193category = "shape:parallelepiped"
194
195#             ["name", "units", default, [lower, upper], "type","description"],
196parameters = [["sld", "1e-6/Ang^2", 4, [-inf, inf], "sld",
197               "Parallelepiped scattering length density"],
198              ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld",
199               "Solvent scattering length density"],
200              ["length_a", "Ang", 35, [0, inf], "volume",
201               "Shorter side of the parallelepiped"],
202              ["length_b", "Ang", 75, [0, inf], "volume",
203               "Second side of the parallelepiped"],
204              ["length_c", "Ang", 400, [0, inf], "volume",
205               "Larger side of the parallelepiped"],
206              ["theta", "degrees", 60, [-inf, inf], "orientation",
207               "In plane angle"],
208              ["phi", "degrees", 60, [-inf, inf], "orientation",
209               "Out of plane angle"],
210              ["psi", "degrees", 60, [-inf, inf], "orientation",
211               "Rotation angle around its own c axis against q plane"],
212             ]
213
214source = ["lib/gauss76.c", "parallelepiped.c"]
215
216def ER(length_a, length_b, length_c):
217    """
218    Return effective radius (ER) for P(q)*S(q)
219    """
220    # now that axes can be in any size order, need to sort a,b,c where a~b and c is either much smaller
221    # or much larger
222    abc = np.vstack((length_a, length_b, length_c))
223    abc = np.sort(abc, axis=0)
224    selector = (abc[1] - abc[0]) > (abc[2] - abc[1])
225    length = np.where(selector, abc[0], abc[2])
226    # surface average radius (rough approximation)
227    radius = np.sqrt(np.where(~selector, abc[0]*abc[1], abc[1]*abc[2]) / pi)
228
229    ddd = 0.75 * radius * (2*radius*length + (length + radius)*(length + pi*radius))
230    return 0.5 * (ddd) ** (1. / 3.)
231
232# VR defaults to 1.0
233
234# parameters for demo
235demo = dict(scale=1, background=0,
236            sld=6.3, sld_solvent=1.0,
237            length_a=35, length_b=75, length_c=400,
238            theta=45, phi=30, psi=15,
239            length_a_pd=0.1, length_a_pd_n=10,
240            length_b_pd=0.1, length_b_pd_n=1,
241            length_c_pd=0.1, length_c_pd_n=1,
242            theta_pd=10, theta_pd_n=1,
243            phi_pd=10, phi_pd_n=1,
244            psi_pd=10, psi_pd_n=10)
245
246qx, qy = 0.2 * np.cos(2.5), 0.2 * np.sin(2.5)
247tests = [[{}, 0.2, 0.17758004974],
248         [{}, [0.2], [0.17758004974]],
249         [{'theta':10.0, 'phi':10.0}, (qx, qy), 0.00560296014],
250         [{'theta':10.0, 'phi':10.0}, [(qx, qy)], [0.00560296014]],
251        ]
252del qx, qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.