[d60b433] | 1 | // Hayter-Penfold (rescaled) MSA structure factor for screened Coulomb interactions |
---|
| 2 | // |
---|
| 3 | // C99 needs declarations of routines here |
---|
| 4 | double Iq(double QQ, |
---|
[d529d93] | 5 | double radius_effective, double zz, double VolFrac, double Temp, double csalt, double dialec); |
---|
[d60b433] | 6 | int |
---|
| 7 | sqcoef(int ir, double gMSAWave[]); |
---|
| 8 | |
---|
| 9 | int |
---|
| 10 | sqfun(int ix, int ir, double gMSAWave[]); |
---|
| 11 | |
---|
| 12 | double |
---|
| 13 | sqhcal(double qq, double gMSAWave[]); |
---|
[ab87a12] | 14 | |
---|
[d60b433] | 15 | double Iq(double QQ, |
---|
[d529d93] | 16 | double radius_effective, double zz, double VolFrac, double Temp, double csalt, double dialec) |
---|
[d60b433] | 17 | { |
---|
| 18 | double gMSAWave[17]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}; |
---|
| 19 | double Elcharge=1.602189e-19; // electron charge in Coulombs (C) |
---|
| 20 | double kB=1.380662e-23; // Boltzman constant in J/K |
---|
| 21 | double FrSpPerm=8.85418782E-12; //Permittivity of free space in C^2/(N m^2) |
---|
| 22 | double SofQ, Qdiam, Vp, ss; |
---|
| 23 | double SIdiam, diam, Kappa, cs, IonSt; |
---|
| 24 | double Perm, Beta; |
---|
| 25 | double pi, charge; |
---|
| 26 | int ierr; |
---|
| 27 | |
---|
| 28 | pi = M_PI; |
---|
| 29 | |
---|
[d529d93] | 30 | diam=2*radius_effective; //in A |
---|
[d60b433] | 31 | |
---|
| 32 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
| 33 | //////////////////////////// convert to USEFUL inputs in SI units // |
---|
| 34 | //////////////////////////// NOTE: easiest to do EVERYTHING in SI units // |
---|
| 35 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
| 36 | Beta=1.0/(kB*Temp); // in Joules^-1 |
---|
| 37 | Perm=dialec*FrSpPerm; //in C^2/(N m^2) |
---|
| 38 | charge=zz*Elcharge; //in Coulomb (C) |
---|
[48f0194] | 39 | SIdiam = diam*1.0E-10; //in m |
---|
[d60b433] | 40 | Vp=4.0*pi/3.0*(SIdiam/2.0)*(SIdiam/2.0)*(SIdiam/2.0); //in m^3 |
---|
[48f0194] | 41 | cs=csalt*6.022E23*1.0E3; //# salt molecules/m^3 |
---|
[d60b433] | 42 | |
---|
| 43 | // Compute the derived values of : |
---|
| 44 | // Ionic strength IonSt (in C^2/m^3) |
---|
| 45 | // Kappa (Debye-Huckel screening length in m) |
---|
| 46 | // and gamma Exp(-k) |
---|
[348557a] | 47 | |
---|
| 48 | // the zz*VolFrac/Vp is for the counterions from the micelle, assumed monovalent, the 2.0*cs if for added salt, assumed 1:1 electolyte |
---|
[d60b433] | 49 | IonSt=0.5 * Elcharge*Elcharge*(zz*VolFrac/Vp+2.0*cs); |
---|
| 50 | Kappa=sqrt(2*Beta*IonSt/Perm); //Kappa calc from Ionic strength |
---|
| 51 | // Kappa=2/SIdiam // Use to compare with HP paper |
---|
| 52 | gMSAWave[5]=Beta*charge*charge/(pi*Perm*SIdiam*pow((2.0+Kappa*SIdiam),2)); |
---|
| 53 | |
---|
| 54 | // Finally set up dimensionless parameters |
---|
| 55 | Qdiam=QQ*diam; |
---|
| 56 | gMSAWave[6] = Kappa*SIdiam; |
---|
| 57 | gMSAWave[4] = VolFrac; |
---|
| 58 | |
---|
| 59 | //Function sqhpa(qq) {this is where Hayter-Penfold program began} |
---|
| 60 | |
---|
| 61 | // FIRST CALCULATE COUPLING |
---|
| 62 | |
---|
| 63 | ss=pow(gMSAWave[4],(1.0/3.0)); |
---|
| 64 | gMSAWave[9] = 2.0*ss*gMSAWave[5]*exp(gMSAWave[6]-gMSAWave[6]/ss); |
---|
| 65 | |
---|
| 66 | // CALCULATE COEFFICIENTS, CHECK ALL IS WELL |
---|
| 67 | // AND IF SO CALCULATE S(Q*SIG) |
---|
| 68 | |
---|
| 69 | ierr=0; |
---|
| 70 | ierr=sqcoef(ierr, gMSAWave); |
---|
| 71 | if (ierr>=0) { |
---|
| 72 | SofQ=sqhcal(Qdiam, gMSAWave); |
---|
| 73 | }else{ |
---|
| 74 | //SofQ=NaN; |
---|
| 75 | SofQ=-1.0; |
---|
| 76 | // print "Error Level = ",ierr |
---|
| 77 | // print "Please report HPMSA problem with above error code" |
---|
| 78 | } |
---|
| 79 | |
---|
| 80 | return(SofQ); |
---|
| 81 | } |
---|
| 82 | |
---|
| 83 | |
---|
| 84 | |
---|
| 85 | ///////////////////////////////////////////////////////////// |
---|
| 86 | ///////////////////////////////////////////////////////////// |
---|
| 87 | // |
---|
| 88 | // |
---|
| 89 | // CALCULATES RESCALED VOLUME FRACTION AND CORRESPONDING |
---|
| 90 | // COEFFICIENTS FOR "SQHPA" |
---|
| 91 | // |
---|
| 92 | // JOHN B. HAYTER (I.L.L.) 14-SEP-81 |
---|
| 93 | // |
---|
| 94 | // ON EXIT: |
---|
| 95 | // |
---|
| 96 | // SETA IS THE RESCALED VOLUME FRACTION |
---|
| 97 | // SGEK IS THE RESCALED CONTACT POTENTIAL |
---|
| 98 | // SAK IS THE RESCALED SCREENING CONSTANT |
---|
| 99 | // A,B,C,F,U,V ARE THE MSA COEFFICIENTS |
---|
| 100 | // G1= G(1+) IS THE CONTACT VALUE OF G(R/SIG): |
---|
| 101 | // FOR THE GILLAN CONDITION, THE DIFFERENCE FROM |
---|
| 102 | // ZERO INDICATES THE COMPUTATIONAL ACCURACY. |
---|
| 103 | // |
---|
| 104 | // IR > 0: NORMAL EXIT, IR IS THE NUMBER OF ITERATIONS. |
---|
| 105 | // < 0: FAILED TO CONVERGE |
---|
| 106 | // |
---|
| 107 | int |
---|
| 108 | sqcoef(int ir, double gMSAWave[]) |
---|
| 109 | { |
---|
| 110 | int itm=40,ix,ig,ii; |
---|
| 111 | double acc=5.0E-6,del,e1,e2,f1,f2; |
---|
| 112 | |
---|
| 113 | // WAVE gMSAWave = $"root:HayPenMSA:gMSAWave" |
---|
| 114 | f1=0; //these were never properly initialized... |
---|
| 115 | f2=0; |
---|
| 116 | |
---|
| 117 | ig=1; |
---|
| 118 | if (gMSAWave[6]>=(1.0+8.0*gMSAWave[4])) { |
---|
| 119 | ig=0; |
---|
| 120 | gMSAWave[15]=gMSAWave[14]; |
---|
| 121 | gMSAWave[16]=gMSAWave[4]; |
---|
| 122 | ix=1; |
---|
| 123 | ir = sqfun(ix,ir,gMSAWave); |
---|
| 124 | gMSAWave[14]=gMSAWave[15]; |
---|
| 125 | gMSAWave[4]=gMSAWave[16]; |
---|
| 126 | if((ir<0.0) || (gMSAWave[14]>=0.0)) { |
---|
| 127 | return ir; |
---|
| 128 | } |
---|
| 129 | } |
---|
| 130 | gMSAWave[10]=fmin(gMSAWave[4],0.20); |
---|
| 131 | if ((ig!=1) || ( gMSAWave[9]>=0.15)) { |
---|
| 132 | ii=0; |
---|
| 133 | do { |
---|
| 134 | ii=ii+1; |
---|
| 135 | if(ii>itm) { |
---|
| 136 | ir=-1; |
---|
| 137 | return ir; |
---|
| 138 | } |
---|
| 139 | if (gMSAWave[10]<=0.0) { |
---|
| 140 | gMSAWave[10]=gMSAWave[4]/ii; |
---|
| 141 | } |
---|
| 142 | if(gMSAWave[10]>0.6) { |
---|
| 143 | gMSAWave[10] = 0.35/ii; |
---|
| 144 | } |
---|
| 145 | e1=gMSAWave[10]; |
---|
| 146 | gMSAWave[15]=f1; |
---|
| 147 | gMSAWave[16]=e1; |
---|
| 148 | ix=2; |
---|
| 149 | ir = sqfun(ix,ir,gMSAWave); |
---|
| 150 | f1=gMSAWave[15]; |
---|
| 151 | e1=gMSAWave[16]; |
---|
| 152 | e2=gMSAWave[10]*1.01; |
---|
| 153 | gMSAWave[15]=f2; |
---|
| 154 | gMSAWave[16]=e2; |
---|
| 155 | ix=2; |
---|
| 156 | ir = sqfun(ix,ir,gMSAWave); |
---|
| 157 | f2=gMSAWave[15]; |
---|
| 158 | e2=gMSAWave[16]; |
---|
| 159 | e2=e1-(e2-e1)*f1/(f2-f1); |
---|
| 160 | gMSAWave[10] = e2; |
---|
| 161 | del = fabs((e2-e1)/e1); |
---|
| 162 | } while (del>acc); |
---|
| 163 | gMSAWave[15]=gMSAWave[14]; |
---|
| 164 | gMSAWave[16]=e2; |
---|
| 165 | ix=4; |
---|
| 166 | ir = sqfun(ix,ir,gMSAWave); |
---|
| 167 | gMSAWave[14]=gMSAWave[15]; |
---|
| 168 | e2=gMSAWave[16]; |
---|
| 169 | ir=ii; |
---|
| 170 | if ((ig!=1) || (gMSAWave[10]>=gMSAWave[4])) { |
---|
| 171 | return ir; |
---|
| 172 | } |
---|
| 173 | } |
---|
| 174 | gMSAWave[15]=gMSAWave[14]; |
---|
| 175 | gMSAWave[16]=gMSAWave[4]; |
---|
| 176 | ix=3; |
---|
| 177 | ir = sqfun(ix,ir,gMSAWave); |
---|
| 178 | gMSAWave[14]=gMSAWave[15]; |
---|
| 179 | gMSAWave[4]=gMSAWave[16]; |
---|
| 180 | if ((ir>=0) && (gMSAWave[14]<0.0)) { |
---|
| 181 | ir=-3; |
---|
| 182 | } |
---|
| 183 | return ir; |
---|
| 184 | } |
---|
| 185 | |
---|
| 186 | |
---|
| 187 | int |
---|
| 188 | sqfun(int ix, int ir, double gMSAWave[]) |
---|
| 189 | { |
---|
| 190 | double acc=1.0e-6; |
---|
| 191 | double reta,eta2,eta21,eta22,eta3,eta32,eta2d,eta2d2,eta3d,eta6d,e12,e24,rgek; |
---|
| 192 | double rak,ak1,ak2,dak,dak2,dak4,d,d2,dd2,dd4,dd45,ex1,ex2,sk,ck,ckma,skma; |
---|
| 193 | double al1,al2,al3,al4,al5,al6,be1,be2,be3,vu1,vu2,vu3,vu4,vu5,ph1,ph2,ta1,ta2,ta3,ta4,ta5; |
---|
| 194 | double a1,a2,a3,b1,b2,b3,v1,v2,v3,p1,p2,p3,pp,pp1,pp2,p1p2,t1,t2,t3,um1,um2,um3,um4,um5,um6; |
---|
| 195 | double w0,w1,w2,w3,w4,w12,w13,w14,w15,w16,w24,w25,w26,w32,w34,w3425,w35,w3526,w36,w46,w56; |
---|
| 196 | double fa,fap,ca,e24g,pwk,qpw,pg,del,fun,fund,g24; |
---|
| 197 | int ii,ibig,itm=40; |
---|
| 198 | // WAVE gMSAWave = $"root:HayPenMSA:gMSAWave" |
---|
| 199 | a2=0; |
---|
| 200 | a3=0; |
---|
| 201 | b2=0; |
---|
| 202 | b3=0; |
---|
| 203 | v2=0; |
---|
| 204 | v3=0; |
---|
| 205 | p2=0; |
---|
| 206 | p3=0; |
---|
| 207 | |
---|
| 208 | // CALCULATE CONSTANTS; NOTATION IS HAYTER PENFOLD (1981) |
---|
| 209 | |
---|
| 210 | reta = gMSAWave[16]; |
---|
| 211 | eta2 = reta*reta; |
---|
| 212 | eta3 = eta2*reta; |
---|
| 213 | e12 = 12.0*reta; |
---|
| 214 | e24 = e12+e12; |
---|
| 215 | gMSAWave[13] = pow( (gMSAWave[4]/gMSAWave[16]),(1.0/3.0)); |
---|
| 216 | gMSAWave[12]=gMSAWave[6]/gMSAWave[13]; |
---|
| 217 | ibig=0; |
---|
| 218 | if (( gMSAWave[12]>15.0) && (ix==1)) { |
---|
| 219 | ibig=1; |
---|
| 220 | } |
---|
| 221 | |
---|
| 222 | gMSAWave[11] = gMSAWave[5]*gMSAWave[13]*exp(gMSAWave[6]- gMSAWave[12]); |
---|
| 223 | rgek = gMSAWave[11]; |
---|
| 224 | rak = gMSAWave[12]; |
---|
| 225 | ak2 = rak*rak; |
---|
| 226 | ak1 = 1.0+rak; |
---|
| 227 | dak2 = 1.0/ak2; |
---|
| 228 | dak4 = dak2*dak2; |
---|
| 229 | d = 1.0-reta; |
---|
| 230 | d2 = d*d; |
---|
| 231 | dak = d/rak; |
---|
| 232 | dd2 = 1.0/d2; |
---|
| 233 | dd4 = dd2*dd2; |
---|
| 234 | dd45 = dd4*2.0e-1; |
---|
| 235 | eta3d=3.0*reta; |
---|
| 236 | eta6d = eta3d+eta3d; |
---|
| 237 | eta32 = eta3+ eta3; |
---|
| 238 | eta2d = reta+2.0; |
---|
| 239 | eta2d2 = eta2d*eta2d; |
---|
| 240 | eta21 = 2.0*reta+1.0; |
---|
| 241 | eta22 = eta21*eta21; |
---|
| 242 | |
---|
| 243 | // ALPHA(I) |
---|
| 244 | |
---|
| 245 | al1 = -eta21*dak; |
---|
| 246 | al2 = (14.0*eta2-4.0*reta-1.0)*dak2; |
---|
| 247 | al3 = 36.0*eta2*dak4; |
---|
| 248 | |
---|
| 249 | // BETA(I) |
---|
| 250 | |
---|
| 251 | be1 = -(eta2+7.0*reta+1.0)*dak; |
---|
| 252 | be2 = 9.0*reta*(eta2+4.0*reta-2.0)*dak2; |
---|
| 253 | be3 = 12.0*reta*(2.0*eta2+8.0*reta-1.0)*dak4; |
---|
| 254 | |
---|
| 255 | // NU(I) |
---|
| 256 | |
---|
| 257 | vu1 = -(eta3+3.0*eta2+45.0*reta+5.0)*dak; |
---|
| 258 | vu2 = (eta32+3.0*eta2+42.0*reta-2.0e1)*dak2; |
---|
| 259 | vu3 = (eta32+3.0e1*reta-5.0)*dak4; |
---|
| 260 | vu4 = vu1+e24*rak*vu3; |
---|
| 261 | vu5 = eta6d*(vu2+4.0*vu3); |
---|
| 262 | |
---|
| 263 | // PHI(I) |
---|
| 264 | |
---|
| 265 | ph1 = eta6d/rak; |
---|
| 266 | ph2 = d-e12*dak2; |
---|
| 267 | |
---|
| 268 | // TAU(I) |
---|
| 269 | |
---|
| 270 | ta1 = (reta+5.0)/(5.0*rak); |
---|
| 271 | ta2 = eta2d*dak2; |
---|
| 272 | ta3 = -e12*rgek*(ta1+ta2); |
---|
| 273 | ta4 = eta3d*ak2*(ta1*ta1-ta2*ta2); |
---|
| 274 | ta5 = eta3d*(reta+8.0)*1.0e-1-2.0*eta22*dak2; |
---|
| 275 | |
---|
| 276 | // double PRECISION SINH(K), COSH(K) |
---|
| 277 | |
---|
| 278 | ex1 = exp(rak); |
---|
| 279 | ex2 = 0.0; |
---|
| 280 | if ( gMSAWave[12]<20.0) { |
---|
| 281 | ex2=exp(-rak); |
---|
| 282 | } |
---|
| 283 | sk=0.5*(ex1-ex2); |
---|
| 284 | ck = 0.5*(ex1+ex2); |
---|
| 285 | ckma = ck-1.0-rak*sk; |
---|
| 286 | skma = sk-rak*ck; |
---|
| 287 | |
---|
| 288 | // a(I) |
---|
| 289 | |
---|
| 290 | a1 = (e24*rgek*(al1+al2+ak1*al3)-eta22)*dd4; |
---|
| 291 | if (ibig==0) { |
---|
| 292 | a2 = e24*(al3*skma+al2*sk-al1*ck)*dd4; |
---|
| 293 | a3 = e24*(eta22*dak2-0.5*d2+al3*ckma-al1*sk+al2*ck)*dd4; |
---|
| 294 | } |
---|
| 295 | |
---|
| 296 | // b(I) |
---|
| 297 | |
---|
| 298 | b1 = (1.5*reta*eta2d2-e12*rgek*(be1+be2+ak1*be3))*dd4; |
---|
| 299 | if (ibig==0) { |
---|
| 300 | b2 = e12*(-be3*skma-be2*sk+be1*ck)*dd4; |
---|
| 301 | b3 = e12*(0.5*d2*eta2d-eta3d*eta2d2*dak2-be3*ckma+be1*sk-be2*ck)*dd4; |
---|
| 302 | } |
---|
| 303 | |
---|
| 304 | // V(I) |
---|
| 305 | |
---|
| 306 | v1 = (eta21*(eta2-2.0*reta+1.0e1)*2.5e-1-rgek*(vu4+vu5))*dd45; |
---|
| 307 | if (ibig==0) { |
---|
| 308 | v2 = (vu4*ck-vu5*sk)*dd45; |
---|
| 309 | v3 = ((eta3-6.0*eta2+5.0)*d-eta6d*(2.0*eta3-3.0*eta2+18.0*reta+1.0e1)*dak2+e24*vu3+vu4*sk-vu5*ck)*dd45; |
---|
| 310 | } |
---|
| 311 | |
---|
| 312 | |
---|
| 313 | // P(I) |
---|
| 314 | |
---|
| 315 | pp1 = ph1*ph1; |
---|
| 316 | pp2 = ph2*ph2; |
---|
| 317 | pp = pp1+pp2; |
---|
| 318 | p1p2 = ph1*ph2*2.0; |
---|
| 319 | p1 = (rgek*(pp1+pp2-p1p2)-0.5*eta2d)*dd2; |
---|
| 320 | if (ibig==0) { |
---|
| 321 | p2 = (pp*sk+p1p2*ck)*dd2; |
---|
| 322 | p3 = (pp*ck+p1p2*sk+pp1-pp2)*dd2; |
---|
| 323 | } |
---|
| 324 | |
---|
| 325 | // T(I) |
---|
| 326 | |
---|
| 327 | t1 = ta3+ta4*a1+ta5*b1; |
---|
| 328 | if (ibig!=0) { |
---|
| 329 | |
---|
| 330 | // VERY LARGE SCREENING: ASYMPTOTIC SOLUTION |
---|
| 331 | |
---|
| 332 | v3 = ((eta3-6.0*eta2+5.0)*d-eta6d*(2.0*eta3-3.0*eta2+18.0*reta+1.0e1)*dak2+e24*vu3)*dd45; |
---|
| 333 | t3 = ta4*a3+ta5*b3+e12*ta2 - 4.0e-1*reta*(reta+1.0e1)-1.0; |
---|
| 334 | p3 = (pp1-pp2)*dd2; |
---|
| 335 | b3 = e12*(0.5*d2*eta2d-eta3d*eta2d2*dak2+be3)*dd4; |
---|
| 336 | a3 = e24*(eta22*dak2-0.5*d2-al3)*dd4; |
---|
| 337 | um6 = t3*a3-e12*v3*v3; |
---|
| 338 | um5 = t1*a3+a1*t3-e24*v1*v3; |
---|
| 339 | um4 = t1*a1-e12*v1*v1; |
---|
| 340 | al6 = e12*p3*p3; |
---|
| 341 | al5 = e24*p1*p3-b3-b3-ak2; |
---|
| 342 | al4 = e12*p1*p1-b1-b1; |
---|
| 343 | w56 = um5*al6-al5*um6; |
---|
| 344 | w46 = um4*al6-al4*um6; |
---|
| 345 | fa = -w46/w56; |
---|
| 346 | ca = -fa; |
---|
| 347 | gMSAWave[3] = fa; |
---|
| 348 | gMSAWave[2] = ca; |
---|
| 349 | gMSAWave[1] = b1+b3*fa; |
---|
| 350 | gMSAWave[0] = a1+a3*fa; |
---|
| 351 | gMSAWave[8] = v1+v3*fa; |
---|
| 352 | gMSAWave[14] = -(p1+p3*fa); |
---|
| 353 | gMSAWave[15] = gMSAWave[14]; |
---|
| 354 | if (fabs(gMSAWave[15])<1.0e-3) { |
---|
| 355 | gMSAWave[15] = 0.0; |
---|
| 356 | } |
---|
| 357 | gMSAWave[10] = gMSAWave[16]; |
---|
| 358 | |
---|
| 359 | } else { |
---|
| 360 | |
---|
| 361 | t2 = ta4*a2+ta5*b2+e12*(ta1*ck-ta2*sk); |
---|
| 362 | t3 = ta4*a3+ta5*b3+e12*(ta1*sk-ta2*(ck-1.0))-4.0e-1*reta*(reta+1.0e1)-1.0; |
---|
| 363 | |
---|
| 364 | // MU(i) |
---|
| 365 | |
---|
| 366 | um1 = t2*a2-e12*v2*v2; |
---|
| 367 | um2 = t1*a2+t2*a1-e24*v1*v2; |
---|
| 368 | um3 = t2*a3+t3*a2-e24*v2*v3; |
---|
| 369 | um4 = t1*a1-e12*v1*v1; |
---|
| 370 | um5 = t1*a3+t3*a1-e24*v1*v3; |
---|
| 371 | um6 = t3*a3-e12*v3*v3; |
---|
| 372 | |
---|
| 373 | // GILLAN CONDITION ? |
---|
| 374 | // |
---|
| 375 | // YES - G(X=1+) = 0 |
---|
| 376 | // |
---|
| 377 | // COEFFICIENTS AND FUNCTION VALUE |
---|
| 378 | // |
---|
| 379 | if ((ix==1) || (ix==3)) { |
---|
| 380 | |
---|
| 381 | // NO - CALCULATE REMAINING COEFFICIENTS. |
---|
| 382 | |
---|
| 383 | // LAMBDA(I) |
---|
| 384 | |
---|
| 385 | al1 = e12*p2*p2; |
---|
| 386 | al2 = e24*p1*p2-b2-b2; |
---|
| 387 | al3 = e24*p2*p3; |
---|
| 388 | al4 = e12*p1*p1-b1-b1; |
---|
| 389 | al5 = e24*p1*p3-b3-b3-ak2; |
---|
| 390 | al6 = e12*p3*p3; |
---|
| 391 | |
---|
| 392 | // OMEGA(I) |
---|
| 393 | |
---|
| 394 | w16 = um1*al6-al1*um6; |
---|
| 395 | w15 = um1*al5-al1*um5; |
---|
| 396 | w14 = um1*al4-al1*um4; |
---|
| 397 | w13 = um1*al3-al1*um3; |
---|
| 398 | w12 = um1*al2-al1*um2; |
---|
| 399 | |
---|
| 400 | w26 = um2*al6-al2*um6; |
---|
| 401 | w25 = um2*al5-al2*um5; |
---|
| 402 | w24 = um2*al4-al2*um4; |
---|
| 403 | |
---|
| 404 | w36 = um3*al6-al3*um6; |
---|
| 405 | w35 = um3*al5-al3*um5; |
---|
| 406 | w34 = um3*al4-al3*um4; |
---|
| 407 | w32 = um3*al2-al3*um2; |
---|
| 408 | // |
---|
| 409 | w46 = um4*al6-al4*um6; |
---|
| 410 | w56 = um5*al6-al5*um6; |
---|
| 411 | w3526 = w35+w26; |
---|
| 412 | w3425 = w34+w25; |
---|
| 413 | |
---|
| 414 | // QUARTIC COEFFICIENTS |
---|
| 415 | |
---|
| 416 | w4 = w16*w16-w13*w36; |
---|
| 417 | w3 = 2.0*w16*w15-w13*w3526-w12*w36; |
---|
| 418 | w2 = w15*w15+2.0*w16*w14-w13*w3425-w12*w3526; |
---|
| 419 | w1 = 2.0*w15*w14-w13*w24-w12*w3425; |
---|
| 420 | w0 = w14*w14-w12*w24; |
---|
| 421 | |
---|
| 422 | // ESTIMATE THE STARTING VALUE OF f |
---|
| 423 | |
---|
| 424 | if (ix==1) { |
---|
| 425 | // LARGE K |
---|
| 426 | fap = (w14-w34-w46)/(w12-w15+w35-w26+w56-w32); |
---|
| 427 | } else { |
---|
| 428 | // ASSUME NOT TOO FAR FROM GILLAN CONDITION. |
---|
| 429 | // IF BOTH RGEK AND RAK ARE SMALL, USE P-W ESTIMATE. |
---|
| 430 | gMSAWave[14]=0.5*eta2d*dd2*exp(-rgek); |
---|
| 431 | if (( gMSAWave[11]<=2.0) && ( gMSAWave[11]>=0.0) && ( gMSAWave[12]<=1.0)) { |
---|
| 432 | e24g = e24*rgek*exp(rak); |
---|
| 433 | pwk = sqrt(e24g); |
---|
| 434 | qpw = (1.0-sqrt(1.0+2.0*d2*d*pwk/eta22))*eta21/d; |
---|
| 435 | gMSAWave[14] = -qpw*qpw/e24+0.5*eta2d*dd2; |
---|
| 436 | } |
---|
| 437 | pg = p1+gMSAWave[14]; |
---|
| 438 | ca = ak2*pg+2.0*(b3*pg-b1*p3)+e12*gMSAWave[14]*gMSAWave[14]*p3; |
---|
| 439 | ca = -ca/(ak2*p2+2.0*(b3*p2-b2*p3)); |
---|
| 440 | fap = -(pg+p2*ca)/p3; |
---|
| 441 | } |
---|
| 442 | |
---|
| 443 | // AND REFINE IT ACCORDING TO NEWTON |
---|
| 444 | ii=0; |
---|
| 445 | do { |
---|
| 446 | ii = ii+1; |
---|
| 447 | if (ii>itm) { |
---|
| 448 | // FAILED TO CONVERGE IN ITM ITERATIONS |
---|
| 449 | ir=-2; |
---|
| 450 | return (ir); |
---|
| 451 | } |
---|
| 452 | fa = fap; |
---|
| 453 | fun = w0+(w1+(w2+(w3+w4*fa)*fa)*fa)*fa; |
---|
| 454 | fund = w1+(2.0*w2+(3.0*w3+4.0*w4*fa)*fa)*fa; |
---|
| 455 | fap = fa-fun/fund; |
---|
| 456 | del=fabs((fap-fa)/fa); |
---|
| 457 | } while (del>acc); |
---|
| 458 | |
---|
| 459 | ir = ir+ii; |
---|
| 460 | fa = fap; |
---|
| 461 | ca = -(w16*fa*fa+w15*fa+w14)/(w13*fa+w12); |
---|
| 462 | gMSAWave[14] = -(p1+p2*ca+p3*fa); |
---|
| 463 | gMSAWave[15] = gMSAWave[14]; |
---|
| 464 | if (fabs(gMSAWave[15])<1.0e-3) { |
---|
| 465 | gMSAWave[15] = 0.0; |
---|
| 466 | } |
---|
| 467 | gMSAWave[10] = gMSAWave[16]; |
---|
| 468 | } else { |
---|
| 469 | ca = ak2*p1+2.0*(b3*p1-b1*p3); |
---|
| 470 | ca = -ca/(ak2*p2+2.0*(b3*p2-b2*p3)); |
---|
| 471 | fa = -(p1+p2*ca)/p3; |
---|
| 472 | if (ix==2) { |
---|
| 473 | gMSAWave[15] = um1*ca*ca+(um2+um3*fa)*ca+um4+um5*fa+um6*fa*fa; |
---|
| 474 | } |
---|
| 475 | if (ix==4) { |
---|
| 476 | gMSAWave[15] = -(p1+p2*ca+p3*fa); |
---|
| 477 | } |
---|
| 478 | } |
---|
| 479 | gMSAWave[3] = fa; |
---|
| 480 | gMSAWave[2] = ca; |
---|
| 481 | gMSAWave[1] = b1+b2*ca+b3*fa; |
---|
| 482 | gMSAWave[0] = a1+a2*ca+a3*fa; |
---|
| 483 | gMSAWave[8] = (v1+v2*ca+v3*fa)/gMSAWave[0]; |
---|
| 484 | } |
---|
| 485 | g24 = e24*rgek*ex1; |
---|
| 486 | gMSAWave[7] = (rak*ak2*ca-g24)/(ak2*g24); |
---|
| 487 | return (ir); |
---|
| 488 | } |
---|
| 489 | |
---|
| 490 | double |
---|
| 491 | sqhcal(double qq, double gMSAWave[]) |
---|
| 492 | { |
---|
| 493 | double SofQ,etaz,akz,gekz,e24,x1,x2,ck,sk,ak2,qk,q2k,qk2,qk3,qqk,sink,cosk,asink,qcosk,aqk,inter; |
---|
| 494 | // WAVE gMSAWave = $"root:HayPenMSA:gMSAWave" |
---|
| 495 | |
---|
| 496 | etaz = gMSAWave[10]; |
---|
| 497 | akz = gMSAWave[12]; |
---|
| 498 | gekz = gMSAWave[11]; |
---|
| 499 | e24 = 24.0*etaz; |
---|
| 500 | x1 = exp(akz); |
---|
| 501 | x2 = 0.0; |
---|
| 502 | if ( gMSAWave[12]<20.0) { |
---|
| 503 | x2 = exp(-akz); |
---|
| 504 | } |
---|
| 505 | ck = 0.5*(x1+x2); |
---|
| 506 | sk = 0.5*(x1-x2); |
---|
| 507 | ak2 = akz*akz; |
---|
| 508 | |
---|
[348557a] | 509 | qk = qq/gMSAWave[13]; |
---|
| 510 | q2k = qk*qk; |
---|
| 511 | if (qk<=1.0e-08) { |
---|
[d60b433] | 512 | SofQ = -1.0/gMSAWave[0]; |
---|
| 513 | } else { |
---|
[348557a] | 514 | // this rescales Q.sigma = 2.Q.Radius, so is hard to predict the value to test the function |
---|
| 515 | if (qk<=0.01) { |
---|
| 516 | // try Taylor series expansion at small qk (RKH Feb 2016, with help from Mathematica), |
---|
| 517 | // transition point may need to depend on precision of cpu used and ALAS on the values of some of the parameters ! |
---|
| 518 | // note have adsorbed a factor 24 from SofQ= |
---|
| 519 | // needs thorough test over wide range of parameter space! |
---|
| 520 | // there seem to be some rounding issues here in single precision, must use double |
---|
| 521 | aqk = gMSAWave[0]*(8.0+2.0*etaz) + 6*gMSAWave[1] -12.0*gMSAWave[3] |
---|
| 522 | -24*(gekz*(1.0+akz) -ck*akz*gMSAWave[2] +gMSAWave[3]*(ck-1.0) +(gMSAWave[2]-gMSAWave[3]*akz)*sk )/ak2 |
---|
| 523 | +q2k*( -(gMSAWave[0]*(48.0+15.0*etaz) +40.0*gMSAWave[1])/60.0 +gMSAWave[3] |
---|
| 524 | +(4.0/ak2)*(gekz*(9.0+7.0*akz) +ck*(9.0*gMSAWave[3] -7.0*gMSAWave[2]*akz) +sk*(9.0*gMSAWave[2] -7.0*gMSAWave[3]*akz)) ); |
---|
| 525 | SofQ = 1.0/(1.0-gMSAWave[10]*aqk); |
---|
| 526 | } else { |
---|
[d60b433] | 527 | qk2 = 1.0/q2k; |
---|
| 528 | qk3 = qk2/qk; |
---|
| 529 | qqk = 1.0/(qk*(q2k+ak2)); |
---|
[348557a] | 530 | SINCOS(qk,sink,cosk); |
---|
[d60b433] | 531 | asink = akz*sink; |
---|
| 532 | qcosk = qk*cosk; |
---|
| 533 | aqk = gMSAWave[0]*(sink-qcosk); |
---|
| 534 | aqk=aqk+gMSAWave[1]*((2.0*qk2-1.0)*qcosk+2.0*sink-2.0/qk); |
---|
| 535 | inter=24.0*qk3+4.0*(1.0-6.0*qk2)*sink; |
---|
| 536 | aqk=(aqk+0.5*etaz*gMSAWave[0]*(inter-(1.0-12.0*qk2+24.0*qk2*qk2)*qcosk))*qk3; |
---|
| 537 | aqk=aqk +gMSAWave[2]*(ck*asink-sk*qcosk)*qqk; |
---|
| 538 | aqk=aqk +gMSAWave[3]*(sk*asink-qk*(ck*cosk-1.0))*qqk; |
---|
| 539 | aqk=aqk +gMSAWave[3]*(cosk-1.0)*qk2; |
---|
| 540 | aqk=aqk -gekz*(asink+qcosk)*qqk; |
---|
[348557a] | 541 | SofQ = 1.0/(1.0 -e24*aqk); |
---|
| 542 | } } |
---|
[d60b433] | 543 | return (SofQ); |
---|
| 544 | } |
---|