1 | // Hayter-Penfold (rescaled) MSA structure factor for screened Coulomb interactions |
---|
2 | // |
---|
3 | // C99 needs declarations of routines here |
---|
4 | double Iq(double QQ, |
---|
5 | double effect_radius, double zz, double VolFrac, double Temp, double csalt, double dialec); |
---|
6 | int |
---|
7 | sqcoef(int ir, double gMSAWave[]); |
---|
8 | |
---|
9 | int |
---|
10 | sqfun(int ix, int ir, double gMSAWave[]); |
---|
11 | |
---|
12 | double |
---|
13 | sqhcal(double qq, double gMSAWave[]); |
---|
14 | |
---|
15 | double Iq(double QQ, |
---|
16 | double effect_radius, double zz, double VolFrac, double Temp, double csalt, double dialec) |
---|
17 | { |
---|
18 | double gMSAWave[17]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}; |
---|
19 | double Elcharge=1.602189e-19; // electron charge in Coulombs (C) |
---|
20 | double kB=1.380662e-23; // Boltzman constant in J/K |
---|
21 | double FrSpPerm=8.85418782E-12; //Permittivity of free space in C^2/(N m^2) |
---|
22 | double SofQ, Qdiam, Vp, ss; |
---|
23 | double SIdiam, diam, Kappa, cs, IonSt; |
---|
24 | double Perm, Beta; |
---|
25 | double pi, charge; |
---|
26 | int ierr; |
---|
27 | |
---|
28 | pi = M_PI; |
---|
29 | |
---|
30 | diam=2*effect_radius; //in A |
---|
31 | |
---|
32 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
33 | //////////////////////////// convert to USEFUL inputs in SI units // |
---|
34 | //////////////////////////// NOTE: easiest to do EVERYTHING in SI units // |
---|
35 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
36 | Beta=1.0/(kB*Temp); // in Joules^-1 |
---|
37 | Perm=dialec*FrSpPerm; //in C^2/(N m^2) |
---|
38 | charge=zz*Elcharge; //in Coulomb (C) |
---|
39 | SIdiam = diam*1.0E-10; //in m |
---|
40 | Vp=4.0*pi/3.0*(SIdiam/2.0)*(SIdiam/2.0)*(SIdiam/2.0); //in m^3 |
---|
41 | cs=csalt*6.022E23*1.0E3; //# salt molecules/m^3 |
---|
42 | |
---|
43 | // Compute the derived values of : |
---|
44 | // Ionic strength IonSt (in C^2/m^3) |
---|
45 | // Kappa (Debye-Huckel screening length in m) |
---|
46 | // and gamma Exp(-k) |
---|
47 | |
---|
48 | // the zz*VolFrac/Vp is for the counterions from the micelle, assumed monovalent, the 2.0*cs if for added salt, assumed 1:1 electolyte |
---|
49 | IonSt=0.5 * Elcharge*Elcharge*(zz*VolFrac/Vp+2.0*cs); |
---|
50 | Kappa=sqrt(2*Beta*IonSt/Perm); //Kappa calc from Ionic strength |
---|
51 | // Kappa=2/SIdiam // Use to compare with HP paper |
---|
52 | gMSAWave[5]=Beta*charge*charge/(pi*Perm*SIdiam*pow((2.0+Kappa*SIdiam),2)); |
---|
53 | |
---|
54 | // Finally set up dimensionless parameters |
---|
55 | Qdiam=QQ*diam; |
---|
56 | gMSAWave[6] = Kappa*SIdiam; |
---|
57 | gMSAWave[4] = VolFrac; |
---|
58 | |
---|
59 | //Function sqhpa(qq) {this is where Hayter-Penfold program began} |
---|
60 | |
---|
61 | // FIRST CALCULATE COUPLING |
---|
62 | |
---|
63 | ss=pow(gMSAWave[4],(1.0/3.0)); |
---|
64 | gMSAWave[9] = 2.0*ss*gMSAWave[5]*exp(gMSAWave[6]-gMSAWave[6]/ss); |
---|
65 | |
---|
66 | // CALCULATE COEFFICIENTS, CHECK ALL IS WELL |
---|
67 | // AND IF SO CALCULATE S(Q*SIG) |
---|
68 | |
---|
69 | ierr=0; |
---|
70 | ierr=sqcoef(ierr, gMSAWave); |
---|
71 | if (ierr>=0) { |
---|
72 | SofQ=sqhcal(Qdiam, gMSAWave); |
---|
73 | }else{ |
---|
74 | //SofQ=NaN; |
---|
75 | SofQ=-1.0; |
---|
76 | // print "Error Level = ",ierr |
---|
77 | // print "Please report HPMSA problem with above error code" |
---|
78 | } |
---|
79 | |
---|
80 | return(SofQ); |
---|
81 | } |
---|
82 | |
---|
83 | |
---|
84 | |
---|
85 | ///////////////////////////////////////////////////////////// |
---|
86 | ///////////////////////////////////////////////////////////// |
---|
87 | // |
---|
88 | // |
---|
89 | // CALCULATES RESCALED VOLUME FRACTION AND CORRESPONDING |
---|
90 | // COEFFICIENTS FOR "SQHPA" |
---|
91 | // |
---|
92 | // JOHN B. HAYTER (I.L.L.) 14-SEP-81 |
---|
93 | // |
---|
94 | // ON EXIT: |
---|
95 | // |
---|
96 | // SETA IS THE RESCALED VOLUME FRACTION |
---|
97 | // SGEK IS THE RESCALED CONTACT POTENTIAL |
---|
98 | // SAK IS THE RESCALED SCREENING CONSTANT |
---|
99 | // A,B,C,F,U,V ARE THE MSA COEFFICIENTS |
---|
100 | // G1= G(1+) IS THE CONTACT VALUE OF G(R/SIG): |
---|
101 | // FOR THE GILLAN CONDITION, THE DIFFERENCE FROM |
---|
102 | // ZERO INDICATES THE COMPUTATIONAL ACCURACY. |
---|
103 | // |
---|
104 | // IR > 0: NORMAL EXIT, IR IS THE NUMBER OF ITERATIONS. |
---|
105 | // < 0: FAILED TO CONVERGE |
---|
106 | // |
---|
107 | int |
---|
108 | sqcoef(int ir, double gMSAWave[]) |
---|
109 | { |
---|
110 | int itm=40,ix,ig,ii; |
---|
111 | double acc=5.0E-6,del,e1,e2,f1,f2; |
---|
112 | |
---|
113 | // WAVE gMSAWave = $"root:HayPenMSA:gMSAWave" |
---|
114 | f1=0; //these were never properly initialized... |
---|
115 | f2=0; |
---|
116 | |
---|
117 | ig=1; |
---|
118 | if (gMSAWave[6]>=(1.0+8.0*gMSAWave[4])) { |
---|
119 | ig=0; |
---|
120 | gMSAWave[15]=gMSAWave[14]; |
---|
121 | gMSAWave[16]=gMSAWave[4]; |
---|
122 | ix=1; |
---|
123 | ir = sqfun(ix,ir,gMSAWave); |
---|
124 | gMSAWave[14]=gMSAWave[15]; |
---|
125 | gMSAWave[4]=gMSAWave[16]; |
---|
126 | if((ir<0.0) || (gMSAWave[14]>=0.0)) { |
---|
127 | return ir; |
---|
128 | } |
---|
129 | } |
---|
130 | gMSAWave[10]=fmin(gMSAWave[4],0.20); |
---|
131 | if ((ig!=1) || ( gMSAWave[9]>=0.15)) { |
---|
132 | ii=0; |
---|
133 | do { |
---|
134 | ii=ii+1; |
---|
135 | if(ii>itm) { |
---|
136 | ir=-1; |
---|
137 | return ir; |
---|
138 | } |
---|
139 | if (gMSAWave[10]<=0.0) { |
---|
140 | gMSAWave[10]=gMSAWave[4]/ii; |
---|
141 | } |
---|
142 | if(gMSAWave[10]>0.6) { |
---|
143 | gMSAWave[10] = 0.35/ii; |
---|
144 | } |
---|
145 | e1=gMSAWave[10]; |
---|
146 | gMSAWave[15]=f1; |
---|
147 | gMSAWave[16]=e1; |
---|
148 | ix=2; |
---|
149 | ir = sqfun(ix,ir,gMSAWave); |
---|
150 | f1=gMSAWave[15]; |
---|
151 | e1=gMSAWave[16]; |
---|
152 | e2=gMSAWave[10]*1.01; |
---|
153 | gMSAWave[15]=f2; |
---|
154 | gMSAWave[16]=e2; |
---|
155 | ix=2; |
---|
156 | ir = sqfun(ix,ir,gMSAWave); |
---|
157 | f2=gMSAWave[15]; |
---|
158 | e2=gMSAWave[16]; |
---|
159 | e2=e1-(e2-e1)*f1/(f2-f1); |
---|
160 | gMSAWave[10] = e2; |
---|
161 | del = fabs((e2-e1)/e1); |
---|
162 | } while (del>acc); |
---|
163 | gMSAWave[15]=gMSAWave[14]; |
---|
164 | gMSAWave[16]=e2; |
---|
165 | ix=4; |
---|
166 | ir = sqfun(ix,ir,gMSAWave); |
---|
167 | gMSAWave[14]=gMSAWave[15]; |
---|
168 | e2=gMSAWave[16]; |
---|
169 | ir=ii; |
---|
170 | if ((ig!=1) || (gMSAWave[10]>=gMSAWave[4])) { |
---|
171 | return ir; |
---|
172 | } |
---|
173 | } |
---|
174 | gMSAWave[15]=gMSAWave[14]; |
---|
175 | gMSAWave[16]=gMSAWave[4]; |
---|
176 | ix=3; |
---|
177 | ir = sqfun(ix,ir,gMSAWave); |
---|
178 | gMSAWave[14]=gMSAWave[15]; |
---|
179 | gMSAWave[4]=gMSAWave[16]; |
---|
180 | if ((ir>=0) && (gMSAWave[14]<0.0)) { |
---|
181 | ir=-3; |
---|
182 | } |
---|
183 | return ir; |
---|
184 | } |
---|
185 | |
---|
186 | |
---|
187 | int |
---|
188 | sqfun(int ix, int ir, double gMSAWave[]) |
---|
189 | { |
---|
190 | double acc=1.0e-6; |
---|
191 | double reta,eta2,eta21,eta22,eta3,eta32,eta2d,eta2d2,eta3d,eta6d,e12,e24,rgek; |
---|
192 | double rak,ak1,ak2,dak,dak2,dak4,d,d2,dd2,dd4,dd45,ex1,ex2,sk,ck,ckma,skma; |
---|
193 | double al1,al2,al3,al4,al5,al6,be1,be2,be3,vu1,vu2,vu3,vu4,vu5,ph1,ph2,ta1,ta2,ta3,ta4,ta5; |
---|
194 | double a1,a2,a3,b1,b2,b3,v1,v2,v3,p1,p2,p3,pp,pp1,pp2,p1p2,t1,t2,t3,um1,um2,um3,um4,um5,um6; |
---|
195 | double w0,w1,w2,w3,w4,w12,w13,w14,w15,w16,w24,w25,w26,w32,w34,w3425,w35,w3526,w36,w46,w56; |
---|
196 | double fa,fap,ca,e24g,pwk,qpw,pg,del,fun,fund,g24; |
---|
197 | int ii,ibig,itm=40; |
---|
198 | // WAVE gMSAWave = $"root:HayPenMSA:gMSAWave" |
---|
199 | a2=0; |
---|
200 | a3=0; |
---|
201 | b2=0; |
---|
202 | b3=0; |
---|
203 | v2=0; |
---|
204 | v3=0; |
---|
205 | p2=0; |
---|
206 | p3=0; |
---|
207 | |
---|
208 | // CALCULATE CONSTANTS; NOTATION IS HAYTER PENFOLD (1981) |
---|
209 | |
---|
210 | reta = gMSAWave[16]; |
---|
211 | eta2 = reta*reta; |
---|
212 | eta3 = eta2*reta; |
---|
213 | e12 = 12.0*reta; |
---|
214 | e24 = e12+e12; |
---|
215 | gMSAWave[13] = pow( (gMSAWave[4]/gMSAWave[16]),(1.0/3.0)); |
---|
216 | gMSAWave[12]=gMSAWave[6]/gMSAWave[13]; |
---|
217 | ibig=0; |
---|
218 | if (( gMSAWave[12]>15.0) && (ix==1)) { |
---|
219 | ibig=1; |
---|
220 | } |
---|
221 | |
---|
222 | gMSAWave[11] = gMSAWave[5]*gMSAWave[13]*exp(gMSAWave[6]- gMSAWave[12]); |
---|
223 | rgek = gMSAWave[11]; |
---|
224 | rak = gMSAWave[12]; |
---|
225 | ak2 = rak*rak; |
---|
226 | ak1 = 1.0+rak; |
---|
227 | dak2 = 1.0/ak2; |
---|
228 | dak4 = dak2*dak2; |
---|
229 | d = 1.0-reta; |
---|
230 | d2 = d*d; |
---|
231 | dak = d/rak; |
---|
232 | dd2 = 1.0/d2; |
---|
233 | dd4 = dd2*dd2; |
---|
234 | dd45 = dd4*2.0e-1; |
---|
235 | eta3d=3.0*reta; |
---|
236 | eta6d = eta3d+eta3d; |
---|
237 | eta32 = eta3+ eta3; |
---|
238 | eta2d = reta+2.0; |
---|
239 | eta2d2 = eta2d*eta2d; |
---|
240 | eta21 = 2.0*reta+1.0; |
---|
241 | eta22 = eta21*eta21; |
---|
242 | |
---|
243 | // ALPHA(I) |
---|
244 | |
---|
245 | al1 = -eta21*dak; |
---|
246 | al2 = (14.0*eta2-4.0*reta-1.0)*dak2; |
---|
247 | al3 = 36.0*eta2*dak4; |
---|
248 | |
---|
249 | // BETA(I) |
---|
250 | |
---|
251 | be1 = -(eta2+7.0*reta+1.0)*dak; |
---|
252 | be2 = 9.0*reta*(eta2+4.0*reta-2.0)*dak2; |
---|
253 | be3 = 12.0*reta*(2.0*eta2+8.0*reta-1.0)*dak4; |
---|
254 | |
---|
255 | // NU(I) |
---|
256 | |
---|
257 | vu1 = -(eta3+3.0*eta2+45.0*reta+5.0)*dak; |
---|
258 | vu2 = (eta32+3.0*eta2+42.0*reta-2.0e1)*dak2; |
---|
259 | vu3 = (eta32+3.0e1*reta-5.0)*dak4; |
---|
260 | vu4 = vu1+e24*rak*vu3; |
---|
261 | vu5 = eta6d*(vu2+4.0*vu3); |
---|
262 | |
---|
263 | // PHI(I) |
---|
264 | |
---|
265 | ph1 = eta6d/rak; |
---|
266 | ph2 = d-e12*dak2; |
---|
267 | |
---|
268 | // TAU(I) |
---|
269 | |
---|
270 | ta1 = (reta+5.0)/(5.0*rak); |
---|
271 | ta2 = eta2d*dak2; |
---|
272 | ta3 = -e12*rgek*(ta1+ta2); |
---|
273 | ta4 = eta3d*ak2*(ta1*ta1-ta2*ta2); |
---|
274 | ta5 = eta3d*(reta+8.0)*1.0e-1-2.0*eta22*dak2; |
---|
275 | |
---|
276 | // double PRECISION SINH(K), COSH(K) |
---|
277 | |
---|
278 | ex1 = exp(rak); |
---|
279 | ex2 = 0.0; |
---|
280 | if ( gMSAWave[12]<20.0) { |
---|
281 | ex2=exp(-rak); |
---|
282 | } |
---|
283 | sk=0.5*(ex1-ex2); |
---|
284 | ck = 0.5*(ex1+ex2); |
---|
285 | ckma = ck-1.0-rak*sk; |
---|
286 | skma = sk-rak*ck; |
---|
287 | |
---|
288 | // a(I) |
---|
289 | |
---|
290 | a1 = (e24*rgek*(al1+al2+ak1*al3)-eta22)*dd4; |
---|
291 | if (ibig==0) { |
---|
292 | a2 = e24*(al3*skma+al2*sk-al1*ck)*dd4; |
---|
293 | a3 = e24*(eta22*dak2-0.5*d2+al3*ckma-al1*sk+al2*ck)*dd4; |
---|
294 | } |
---|
295 | |
---|
296 | // b(I) |
---|
297 | |
---|
298 | b1 = (1.5*reta*eta2d2-e12*rgek*(be1+be2+ak1*be3))*dd4; |
---|
299 | if (ibig==0) { |
---|
300 | b2 = e12*(-be3*skma-be2*sk+be1*ck)*dd4; |
---|
301 | b3 = e12*(0.5*d2*eta2d-eta3d*eta2d2*dak2-be3*ckma+be1*sk-be2*ck)*dd4; |
---|
302 | } |
---|
303 | |
---|
304 | // V(I) |
---|
305 | |
---|
306 | v1 = (eta21*(eta2-2.0*reta+1.0e1)*2.5e-1-rgek*(vu4+vu5))*dd45; |
---|
307 | if (ibig==0) { |
---|
308 | v2 = (vu4*ck-vu5*sk)*dd45; |
---|
309 | v3 = ((eta3-6.0*eta2+5.0)*d-eta6d*(2.0*eta3-3.0*eta2+18.0*reta+1.0e1)*dak2+e24*vu3+vu4*sk-vu5*ck)*dd45; |
---|
310 | } |
---|
311 | |
---|
312 | |
---|
313 | // P(I) |
---|
314 | |
---|
315 | pp1 = ph1*ph1; |
---|
316 | pp2 = ph2*ph2; |
---|
317 | pp = pp1+pp2; |
---|
318 | p1p2 = ph1*ph2*2.0; |
---|
319 | p1 = (rgek*(pp1+pp2-p1p2)-0.5*eta2d)*dd2; |
---|
320 | if (ibig==0) { |
---|
321 | p2 = (pp*sk+p1p2*ck)*dd2; |
---|
322 | p3 = (pp*ck+p1p2*sk+pp1-pp2)*dd2; |
---|
323 | } |
---|
324 | |
---|
325 | // T(I) |
---|
326 | |
---|
327 | t1 = ta3+ta4*a1+ta5*b1; |
---|
328 | if (ibig!=0) { |
---|
329 | |
---|
330 | // VERY LARGE SCREENING: ASYMPTOTIC SOLUTION |
---|
331 | |
---|
332 | v3 = ((eta3-6.0*eta2+5.0)*d-eta6d*(2.0*eta3-3.0*eta2+18.0*reta+1.0e1)*dak2+e24*vu3)*dd45; |
---|
333 | t3 = ta4*a3+ta5*b3+e12*ta2 - 4.0e-1*reta*(reta+1.0e1)-1.0; |
---|
334 | p3 = (pp1-pp2)*dd2; |
---|
335 | b3 = e12*(0.5*d2*eta2d-eta3d*eta2d2*dak2+be3)*dd4; |
---|
336 | a3 = e24*(eta22*dak2-0.5*d2-al3)*dd4; |
---|
337 | um6 = t3*a3-e12*v3*v3; |
---|
338 | um5 = t1*a3+a1*t3-e24*v1*v3; |
---|
339 | um4 = t1*a1-e12*v1*v1; |
---|
340 | al6 = e12*p3*p3; |
---|
341 | al5 = e24*p1*p3-b3-b3-ak2; |
---|
342 | al4 = e12*p1*p1-b1-b1; |
---|
343 | w56 = um5*al6-al5*um6; |
---|
344 | w46 = um4*al6-al4*um6; |
---|
345 | fa = -w46/w56; |
---|
346 | ca = -fa; |
---|
347 | gMSAWave[3] = fa; |
---|
348 | gMSAWave[2] = ca; |
---|
349 | gMSAWave[1] = b1+b3*fa; |
---|
350 | gMSAWave[0] = a1+a3*fa; |
---|
351 | gMSAWave[8] = v1+v3*fa; |
---|
352 | gMSAWave[14] = -(p1+p3*fa); |
---|
353 | gMSAWave[15] = gMSAWave[14]; |
---|
354 | if (fabs(gMSAWave[15])<1.0e-3) { |
---|
355 | gMSAWave[15] = 0.0; |
---|
356 | } |
---|
357 | gMSAWave[10] = gMSAWave[16]; |
---|
358 | |
---|
359 | } else { |
---|
360 | |
---|
361 | t2 = ta4*a2+ta5*b2+e12*(ta1*ck-ta2*sk); |
---|
362 | t3 = ta4*a3+ta5*b3+e12*(ta1*sk-ta2*(ck-1.0))-4.0e-1*reta*(reta+1.0e1)-1.0; |
---|
363 | |
---|
364 | // MU(i) |
---|
365 | |
---|
366 | um1 = t2*a2-e12*v2*v2; |
---|
367 | um2 = t1*a2+t2*a1-e24*v1*v2; |
---|
368 | um3 = t2*a3+t3*a2-e24*v2*v3; |
---|
369 | um4 = t1*a1-e12*v1*v1; |
---|
370 | um5 = t1*a3+t3*a1-e24*v1*v3; |
---|
371 | um6 = t3*a3-e12*v3*v3; |
---|
372 | |
---|
373 | // GILLAN CONDITION ? |
---|
374 | // |
---|
375 | // YES - G(X=1+) = 0 |
---|
376 | // |
---|
377 | // COEFFICIENTS AND FUNCTION VALUE |
---|
378 | // |
---|
379 | if ((ix==1) || (ix==3)) { |
---|
380 | |
---|
381 | // NO - CALCULATE REMAINING COEFFICIENTS. |
---|
382 | |
---|
383 | // LAMBDA(I) |
---|
384 | |
---|
385 | al1 = e12*p2*p2; |
---|
386 | al2 = e24*p1*p2-b2-b2; |
---|
387 | al3 = e24*p2*p3; |
---|
388 | al4 = e12*p1*p1-b1-b1; |
---|
389 | al5 = e24*p1*p3-b3-b3-ak2; |
---|
390 | al6 = e12*p3*p3; |
---|
391 | |
---|
392 | // OMEGA(I) |
---|
393 | |
---|
394 | w16 = um1*al6-al1*um6; |
---|
395 | w15 = um1*al5-al1*um5; |
---|
396 | w14 = um1*al4-al1*um4; |
---|
397 | w13 = um1*al3-al1*um3; |
---|
398 | w12 = um1*al2-al1*um2; |
---|
399 | |
---|
400 | w26 = um2*al6-al2*um6; |
---|
401 | w25 = um2*al5-al2*um5; |
---|
402 | w24 = um2*al4-al2*um4; |
---|
403 | |
---|
404 | w36 = um3*al6-al3*um6; |
---|
405 | w35 = um3*al5-al3*um5; |
---|
406 | w34 = um3*al4-al3*um4; |
---|
407 | w32 = um3*al2-al3*um2; |
---|
408 | // |
---|
409 | w46 = um4*al6-al4*um6; |
---|
410 | w56 = um5*al6-al5*um6; |
---|
411 | w3526 = w35+w26; |
---|
412 | w3425 = w34+w25; |
---|
413 | |
---|
414 | // QUARTIC COEFFICIENTS |
---|
415 | |
---|
416 | w4 = w16*w16-w13*w36; |
---|
417 | w3 = 2.0*w16*w15-w13*w3526-w12*w36; |
---|
418 | w2 = w15*w15+2.0*w16*w14-w13*w3425-w12*w3526; |
---|
419 | w1 = 2.0*w15*w14-w13*w24-w12*w3425; |
---|
420 | w0 = w14*w14-w12*w24; |
---|
421 | |
---|
422 | // ESTIMATE THE STARTING VALUE OF f |
---|
423 | |
---|
424 | if (ix==1) { |
---|
425 | // LARGE K |
---|
426 | fap = (w14-w34-w46)/(w12-w15+w35-w26+w56-w32); |
---|
427 | } else { |
---|
428 | // ASSUME NOT TOO FAR FROM GILLAN CONDITION. |
---|
429 | // IF BOTH RGEK AND RAK ARE SMALL, USE P-W ESTIMATE. |
---|
430 | gMSAWave[14]=0.5*eta2d*dd2*exp(-rgek); |
---|
431 | if (( gMSAWave[11]<=2.0) && ( gMSAWave[11]>=0.0) && ( gMSAWave[12]<=1.0)) { |
---|
432 | e24g = e24*rgek*exp(rak); |
---|
433 | pwk = sqrt(e24g); |
---|
434 | qpw = (1.0-sqrt(1.0+2.0*d2*d*pwk/eta22))*eta21/d; |
---|
435 | gMSAWave[14] = -qpw*qpw/e24+0.5*eta2d*dd2; |
---|
436 | } |
---|
437 | pg = p1+gMSAWave[14]; |
---|
438 | ca = ak2*pg+2.0*(b3*pg-b1*p3)+e12*gMSAWave[14]*gMSAWave[14]*p3; |
---|
439 | ca = -ca/(ak2*p2+2.0*(b3*p2-b2*p3)); |
---|
440 | fap = -(pg+p2*ca)/p3; |
---|
441 | } |
---|
442 | |
---|
443 | // AND REFINE IT ACCORDING TO NEWTON |
---|
444 | ii=0; |
---|
445 | do { |
---|
446 | ii = ii+1; |
---|
447 | if (ii>itm) { |
---|
448 | // FAILED TO CONVERGE IN ITM ITERATIONS |
---|
449 | ir=-2; |
---|
450 | return (ir); |
---|
451 | } |
---|
452 | fa = fap; |
---|
453 | fun = w0+(w1+(w2+(w3+w4*fa)*fa)*fa)*fa; |
---|
454 | fund = w1+(2.0*w2+(3.0*w3+4.0*w4*fa)*fa)*fa; |
---|
455 | fap = fa-fun/fund; |
---|
456 | del=fabs((fap-fa)/fa); |
---|
457 | } while (del>acc); |
---|
458 | |
---|
459 | ir = ir+ii; |
---|
460 | fa = fap; |
---|
461 | ca = -(w16*fa*fa+w15*fa+w14)/(w13*fa+w12); |
---|
462 | gMSAWave[14] = -(p1+p2*ca+p3*fa); |
---|
463 | gMSAWave[15] = gMSAWave[14]; |
---|
464 | if (fabs(gMSAWave[15])<1.0e-3) { |
---|
465 | gMSAWave[15] = 0.0; |
---|
466 | } |
---|
467 | gMSAWave[10] = gMSAWave[16]; |
---|
468 | } else { |
---|
469 | ca = ak2*p1+2.0*(b3*p1-b1*p3); |
---|
470 | ca = -ca/(ak2*p2+2.0*(b3*p2-b2*p3)); |
---|
471 | fa = -(p1+p2*ca)/p3; |
---|
472 | if (ix==2) { |
---|
473 | gMSAWave[15] = um1*ca*ca+(um2+um3*fa)*ca+um4+um5*fa+um6*fa*fa; |
---|
474 | } |
---|
475 | if (ix==4) { |
---|
476 | gMSAWave[15] = -(p1+p2*ca+p3*fa); |
---|
477 | } |
---|
478 | } |
---|
479 | gMSAWave[3] = fa; |
---|
480 | gMSAWave[2] = ca; |
---|
481 | gMSAWave[1] = b1+b2*ca+b3*fa; |
---|
482 | gMSAWave[0] = a1+a2*ca+a3*fa; |
---|
483 | gMSAWave[8] = (v1+v2*ca+v3*fa)/gMSAWave[0]; |
---|
484 | } |
---|
485 | g24 = e24*rgek*ex1; |
---|
486 | gMSAWave[7] = (rak*ak2*ca-g24)/(ak2*g24); |
---|
487 | return (ir); |
---|
488 | } |
---|
489 | |
---|
490 | double |
---|
491 | sqhcal(double qq, double gMSAWave[]) |
---|
492 | { |
---|
493 | double SofQ,etaz,akz,gekz,e24,x1,x2,ck,sk,ak2,qk,q2k,qk2,qk3,qqk,sink,cosk,asink,qcosk,aqk,inter; |
---|
494 | // WAVE gMSAWave = $"root:HayPenMSA:gMSAWave" |
---|
495 | |
---|
496 | etaz = gMSAWave[10]; |
---|
497 | akz = gMSAWave[12]; |
---|
498 | gekz = gMSAWave[11]; |
---|
499 | e24 = 24.0*etaz; |
---|
500 | x1 = exp(akz); |
---|
501 | x2 = 0.0; |
---|
502 | if ( gMSAWave[12]<20.0) { |
---|
503 | x2 = exp(-akz); |
---|
504 | } |
---|
505 | ck = 0.5*(x1+x2); |
---|
506 | sk = 0.5*(x1-x2); |
---|
507 | ak2 = akz*akz; |
---|
508 | |
---|
509 | qk = qq/gMSAWave[13]; |
---|
510 | q2k = qk*qk; |
---|
511 | if (qk<=1.0e-08) { |
---|
512 | SofQ = -1.0/gMSAWave[0]; |
---|
513 | } else { |
---|
514 | // this rescales Q.sigma = 2.Q.Radius, so is hard to predict the value to test the function |
---|
515 | if (qk<=0.01) { |
---|
516 | // try Taylor series expansion at small qk (RKH Feb 2016, with help from Mathematica), |
---|
517 | // transition point may need to depend on precision of cpu used and ALAS on the values of some of the parameters ! |
---|
518 | // note have adsorbed a factor 24 from SofQ= |
---|
519 | // needs thorough test over wide range of parameter space! |
---|
520 | // there seem to be some rounding issues here in single precision, must use double |
---|
521 | aqk = gMSAWave[0]*(8.0+2.0*etaz) + 6*gMSAWave[1] -12.0*gMSAWave[3] |
---|
522 | -24*(gekz*(1.0+akz) -ck*akz*gMSAWave[2] +gMSAWave[3]*(ck-1.0) +(gMSAWave[2]-gMSAWave[3]*akz)*sk )/ak2 |
---|
523 | +q2k*( -(gMSAWave[0]*(48.0+15.0*etaz) +40.0*gMSAWave[1])/60.0 +gMSAWave[3] |
---|
524 | +(4.0/ak2)*(gekz*(9.0+7.0*akz) +ck*(9.0*gMSAWave[3] -7.0*gMSAWave[2]*akz) +sk*(9.0*gMSAWave[2] -7.0*gMSAWave[3]*akz)) ); |
---|
525 | SofQ = 1.0/(1.0-gMSAWave[10]*aqk); |
---|
526 | } else { |
---|
527 | qk2 = 1.0/q2k; |
---|
528 | qk3 = qk2/qk; |
---|
529 | qqk = 1.0/(qk*(q2k+ak2)); |
---|
530 | SINCOS(qk,sink,cosk); |
---|
531 | asink = akz*sink; |
---|
532 | qcosk = qk*cosk; |
---|
533 | aqk = gMSAWave[0]*(sink-qcosk); |
---|
534 | aqk=aqk+gMSAWave[1]*((2.0*qk2-1.0)*qcosk+2.0*sink-2.0/qk); |
---|
535 | inter=24.0*qk3+4.0*(1.0-6.0*qk2)*sink; |
---|
536 | aqk=(aqk+0.5*etaz*gMSAWave[0]*(inter-(1.0-12.0*qk2+24.0*qk2*qk2)*qcosk))*qk3; |
---|
537 | aqk=aqk +gMSAWave[2]*(ck*asink-sk*qcosk)*qqk; |
---|
538 | aqk=aqk +gMSAWave[3]*(sk*asink-qk*(ck*cosk-1.0))*qqk; |
---|
539 | aqk=aqk +gMSAWave[3]*(cosk-1.0)*qk2; |
---|
540 | aqk=aqk -gekz*(asink+qcosk)*qqk; |
---|
541 | SofQ = 1.0/(1.0 -e24*aqk); |
---|
542 | } } |
---|
543 | return (SofQ); |
---|
544 | } |
---|