source: sasmodels/sasmodels/models/core_shell_parallelepiped.py @ 5bc373b

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 5bc373b was 5bc373b, checked in by butler, 6 years ago

First edits to core shell parallelipiped docs

Part f ticket 896 effort to ensure the documentation matches the code
now that the code has been fixed and validated.

  • Property mode set to 100644
File size: 9.2 KB
RevLine 
[44bd2be]1r"""
[5810f00]2Definition
3----------
4
[44bd2be]5Calculates the form factor for a rectangular solid with a core-shell structure.
[8f04da4]6The thickness and the scattering length density of the shell or
[393facf]7"rim" can be different on each (pair) of faces.
[cb0dc22]8
[500128b]9The form factor is normalized by the particle volume $V$ such that
[44bd2be]10
[500128b]11.. math::
12
13    I(q) = \text{scale}\frac{\langle f^2 \rangle}{V} + \text{background}
[44bd2be]14
[500128b]15where $\langle \ldots \rangle$ is an average over all possible orientations
16of the rectangular solid.
[44bd2be]17
18The function calculated is the form factor of the rectangular solid below.
[500128b]19The core of the solid is defined by the dimensions $A$, $B$, $C$ such that
20$A < B < C$.
[44bd2be]21
[5bc373b]22.. figure:: img/parallelepiped_geometry.jpg
23
24   Core of the core shell Parallelepiped with the corresponding definition
25   of sides.
26
[44bd2be]27
[500128b]28There are rectangular "slabs" of thickness $t_A$ that add to the $A$ dimension
29(on the $BC$ faces). There are similar slabs on the $AC$ $(=t_B)$ and $AB$
30$(=t_C)$ faces. The projection in the $AB$ plane is then
[44bd2be]31
[5bc373b]32.. figure:: img/core_shell_parallelepiped_projection.jpg
33
34   AB cut through the core-shell parllelipiped showing the cross secion of
35   four of the six shell slabs
[44bd2be]36
37The volume of the solid is
38
39.. math::
40
41    V = ABC + 2t_ABC + 2t_BAC + 2t_CAB
42
[393facf]43**meaning that there are "gaps" at the corners of the solid.**
[44bd2be]44
[5810f00]45The intensity calculated follows the :ref:`parallelepiped` model, with the
46core-shell intensity being calculated as the square of the sum of the
[393facf]47amplitudes of the core and the slabs on the edges.
48
[4493288]49the scattering amplitude is computed for a particular orientation of the
50core-shell parallelepiped with respect to the scattering vector and then
51averaged over all possible orientations, where $\alpha$ is the angle between
52the $z$ axis and the $C$ axis of the parallelepiped, $\beta$ is
53the angle between projection of the particle in the $xy$ detector plane
54and the $y$ axis.
[44bd2be]55
[5810f00]56.. math::
[4493288]57
[5bc373b]58    F(q)
[4493288]59    &= (\rho_\text{core}-\rho_\text{solvent})
60       S(Q_A, A) S(Q_B, B) S(Q_C, C) \\
61    &+ (\rho_\text{A}-\rho_\text{solvent})
[5bc373b]62        \left[S(Q_A, A+2t_A) - S(Q_A, A)\right] S(Q_B, B) S(Q_C, C) \\
[4493288]63    &+ (\rho_\text{B}-\rho_\text{solvent})
64        S(Q_A, A) \left[S(Q_B, B+2t_B) - S(Q_B, B)\right] S(Q_C, C) \\
65    &+ (\rho_\text{C}-\rho_\text{solvent})
66        S(Q_A, A) S(Q_B, B) \left[S(Q_C, C+2t_C) - S(Q_C, C)\right]
[393facf]67
68with
[5810f00]69
[393facf]70.. math::
[5810f00]71
[4493288]72    S(Q, L) = L \frac{\sin \tfrac{1}{2} Q L}{\tfrac{1}{2} Q L}
73
74and
75
76.. math::
[5810f00]77
[5bc373b]78    Q_A &= q \sin\alpha \sin\beta \\
79    Q_B &= q \sin\alpha \cos\beta \\
80    Q_C &= q \cos\alpha
[4493288]81
82
83where $\rho_\text{core}$, $\rho_\text{A}$, $\rho_\text{B}$ and $\rho_\text{C}$
84are the scattering length of the parallelepiped core, and the rectangular
85slabs of thickness $t_A$, $t_B$ and $t_C$, respectively. $\rho_\text{solvent}$
86is the scattering length of the solvent.
[44bd2be]87
88FITTING NOTES
[4493288]89~~~~~~~~~~~~~
90
[92dfe0c]91If the scale is set equal to the particle volume fraction, $\phi$, the returned
[4493288]92value is the scattered intensity per unit volume, $I(q) = \phi P(q)$. However,
93**no interparticle interference effects are included in this calculation.**
[44bd2be]94
95There are many parameters in this model. Hold as many fixed as possible with
96known values, or you will certainly end up at a solution that is unphysical.
97
98The returned value is in units of |cm^-1|, on absolute scale.
99
100NB: The 2nd virial coefficient of the core_shell_parallelepiped is calculated
101based on the the averaged effective radius $(=\sqrt{(A+2t_A)(B+2t_B)/\pi})$
[4493288]102and length $(C+2t_C)$ values, after appropriately sorting the three dimensions
103to give an oblate or prolate particle, to give an effective radius,
[5bc373b]104for $S(q)$ when $P(q) * S(q)$ is applied.
[44bd2be]105
[904cd9c]106For 2d data the orientation of the particle is required, described using
[4493288]107angles $\theta$, $\phi$ and $\Psi$ as in the diagrams below, for further
108details of the calculation and angular dispersions see :ref:`orientation`.
[904cd9c]109The angle $\Psi$ is the rotational angle around the *long_c* axis. For example,
[eda8b30]110$\Psi = 0$ when the *short_b* axis is parallel to the *x*-axis of the detector.
[44bd2be]111
[4493288]112For 2d, constraints must be applied during fitting to ensure that the
113inequality $A < B < C$ is not violated, and hence the correct definition
114of angles is preserved. The calculation will not report an error,
[393facf]115but the results may be not correct.
116
[15a90c1]117.. figure:: img/parallelepiped_angle_definition.png
[44bd2be]118
119    Definition of the angles for oriented core-shell parallelepipeds.
[2d81cfe]120    Note that rotation $\theta$, initially in the $xz$ plane, is carried
121    out first, then rotation $\phi$ about the $z$ axis, finally rotation
122    $\Psi$ is now around the axis of the cylinder. The neutron or X-ray
123    beam is along the $z$ axis.
[44bd2be]124
[1916c52]125.. figure:: img/parallelepiped_angle_projection.png
[44bd2be]126
127    Examples of the angles for oriented core-shell parallelepipeds against the
128    detector plane.
129
[aa2edb2]130References
131----------
[44bd2be]132
[5810f00]133.. [#] P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
134    Equations (1), (13-14). (in German)
135.. [#] D Singh (2009). *Small angle scattering studies of self assembly in
[fc0b7aa]136   lipid mixtures*, Johns Hopkins University Thesis (2009) 223-225. `Available
[5810f00]137   from Proquest <http://search.proquest.com/docview/304915826?accountid
138   =26379>`_
139
140Authorship and Verification
141----------------------------
[44bd2be]142
[5810f00]143* **Author:** NIST IGOR/DANSE **Date:** pre 2010
[cb0dc22]144* **Converted to sasmodels by:** Miguel Gonzales **Date:** February 26, 2016
[97be877]145* **Last Modified by:** Paul Kienzle **Date:** October 17, 2017
146* Cross-checked against hollow rectangular prism and rectangular prism for
147  equal thickness overlapping sides, and by Monte Carlo sampling of points
148  within the shape for non-uniform, non-overlapping sides.
[44bd2be]149"""
150
151import numpy as np
[14207bb]152from numpy import pi, inf, sqrt, cos, sin
[44bd2be]153
154name = "core_shell_parallelepiped"
155title = "Rectangular solid with a core-shell structure."
156description = """
[8f04da4]157     P(q)=
[44bd2be]158"""
159category = "shape:parallelepiped"
160
161#             ["name", "units", default, [lower, upper], "type","description"],
[42356c8]162parameters = [["sld_core", "1e-6/Ang^2", 1, [-inf, inf], "sld",
[44bd2be]163               "Parallelepiped core scattering length density"],
[42356c8]164              ["sld_a", "1e-6/Ang^2", 2, [-inf, inf], "sld",
[44bd2be]165               "Parallelepiped A rim scattering length density"],
[42356c8]166              ["sld_b", "1e-6/Ang^2", 4, [-inf, inf], "sld",
[44bd2be]167               "Parallelepiped B rim scattering length density"],
[42356c8]168              ["sld_c", "1e-6/Ang^2", 2, [-inf, inf], "sld",
[44bd2be]169               "Parallelepiped C rim scattering length density"],
[42356c8]170              ["sld_solvent", "1e-6/Ang^2", 6, [-inf, inf], "sld",
[44bd2be]171               "Solvent scattering length density"],
[2222134]172              ["length_a", "Ang", 35, [0, inf], "volume",
[44bd2be]173               "Shorter side of the parallelepiped"],
[2222134]174              ["length_b", "Ang", 75, [0, inf], "volume",
[44bd2be]175               "Second side of the parallelepiped"],
[2222134]176              ["length_c", "Ang", 400, [0, inf], "volume",
[44bd2be]177               "Larger side of the parallelepiped"],
[2222134]178              ["thick_rim_a", "Ang", 10, [0, inf], "volume",
[44bd2be]179               "Thickness of A rim"],
[2222134]180              ["thick_rim_b", "Ang", 10, [0, inf], "volume",
[44bd2be]181               "Thickness of B rim"],
[2222134]182              ["thick_rim_c", "Ang", 10, [0, inf], "volume",
[44bd2be]183               "Thickness of C rim"],
[9b79f29]184              ["theta", "degrees", 0, [-360, 360], "orientation",
185               "c axis to beam angle"],
186              ["phi", "degrees", 0, [-360, 360], "orientation",
187               "rotation about beam"],
188              ["psi", "degrees", 0, [-360, 360], "orientation",
189               "rotation about c axis"],
[44bd2be]190             ]
191
[43b7eea]192source = ["lib/gauss76.c", "core_shell_parallelepiped.c"]
[44bd2be]193
194
[2222134]195def ER(length_a, length_b, length_c, thick_rim_a, thick_rim_b, thick_rim_c):
[44bd2be]196    """
197        Return equivalent radius (ER)
198    """
[10ee838]199    from .parallelepiped import ER as ER_p
[44bd2be]200
[10ee838]201    a = length_a + 2*thick_rim_a
202    b = length_b + 2*thick_rim_b
203    c = length_c + 2*thick_rim_c
204    return ER_p(a, b, c)
[44bd2be]205
206# VR defaults to 1.0
207
[8f04da4]208def random():
209    outer = 10**np.random.uniform(1, 4.7, size=3)
210    thick = np.random.beta(0.5, 0.5, size=3)*(outer-2) + 1
211    length = outer - thick
212    pars = dict(
213        length_a=length[0],
214        length_b=length[1],
215        length_c=length[2],
216        thick_rim_a=thick[0],
217        thick_rim_b=thick[1],
218        thick_rim_c=thick[2],
219    )
220    return pars
221
[44bd2be]222# parameters for demo
223demo = dict(scale=1, background=0.0,
[14838a3]224            sld_core=1, sld_a=2, sld_b=4, sld_c=2, sld_solvent=6,
[2222134]225            length_a=35, length_b=75, length_c=400,
226            thick_rim_a=10, thick_rim_b=10, thick_rim_c=10,
[44bd2be]227            theta=0, phi=0, psi=0,
[2222134]228            length_a_pd=0.1, length_a_pd_n=1,
229            length_b_pd=0.1, length_b_pd_n=1,
230            length_c_pd=0.1, length_c_pd_n=1,
231            thick_rim_a_pd=0.1, thick_rim_a_pd_n=1,
232            thick_rim_b_pd=0.1, thick_rim_b_pd_n=1,
233            thick_rim_c_pd=0.1, thick_rim_c_pd_n=1,
[44bd2be]234            theta_pd=10, theta_pd_n=1,
235            phi_pd=10, phi_pd_n=1,
[14838a3]236            psi_pd=10, psi_pd_n=1)
[44bd2be]237
[4493288]238# rkh 7/4/17 add random unit test for 2d, note make all params different,
239# 2d values not tested against other codes or models
[fa70e04]240if 0:  # pak: model rewrite; need to update tests
241    qx, qy = 0.2 * cos(pi/6.), 0.2 * sin(pi/6.)
242    tests = [[{}, 0.2, 0.533149288477],
[2d81cfe]243             [{}, [0.2], [0.533149288477]],
244             [{'theta':10.0, 'phi':20.0}, (qx, qy), 0.0853299803222],
245             [{'theta':10.0, 'phi':20.0}, [(qx, qy)], [0.0853299803222]],
[fa70e04]246            ]
247    del qx, qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.