Ignore:
Timestamp:
Nov 6, 2017 2:25:04 AM (6 years ago)
Author:
dirk
Branches:
master, core_shell_microgels, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
49eb251
Parents:
8de1477
Message:

update documentation for core_shell_parallelepiped, hollow_rectangular_prism and rectangular_prism

File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/core_shell_parallelepiped.py

    rfc0b7aa r393facf  
    55Calculates the form factor for a rectangular solid with a core-shell structure. 
    66The thickness and the scattering length density of the shell or 
    7 "rim" can be different on each (pair) of faces. However at this time 
    8 the 1D calculation does **NOT** actually calculate a c face rim despite the presence of 
    9 the parameter. Some other aspects of the 1D calculation may be wrong. 
    10  
    11 .. note:: 
    12    This model was originally ported from NIST IGOR macros. However, it is not 
    13    yet fully understood by the SasView developers and is currently under review. 
     7"rim" can be different on each (pair) of faces. 
     8 
    149 
    1510The form factor is normalized by the particle volume $V$ such that 
     
    4136    V = ABC + 2t_ABC + 2t_BAC + 2t_CAB 
    4237 
    43 **meaning that there are "gaps" at the corners of the solid.**  Again note that 
    44 $t_C = 0$ currently. 
     38**meaning that there are "gaps" at the corners of the solid.** 
    4539 
    4640The intensity calculated follows the :ref:`parallelepiped` model, with the 
    4741core-shell intensity being calculated as the square of the sum of the 
    48 amplitudes of the core and shell, in the same manner as a core-shell model. 
    49  
    50 .. math:: 
    51  
    52     F_{a}(Q,\alpha,\beta)= 
    53     \left[\frac{\sin(\tfrac{1}{2}Q(L_A+2t_A)\sin\alpha \sin\beta)}{\tfrac{1}{2}Q(L_A+2t_A)\sin\alpha\sin\beta} 
    54     - \frac{\sin(\tfrac{1}{2}QL_A\sin\alpha \sin\beta)}{\tfrac{1}{2}QL_A\sin\alpha \sin\beta} \right] 
    55     \left[\frac{\sin(\tfrac{1}{2}QL_B\sin\alpha \sin\beta)}{\tfrac{1}{2}QL_B\sin\alpha \sin\beta} \right] 
    56     \left[\frac{\sin(\tfrac{1}{2}QL_C\sin\alpha \sin\beta)}{\tfrac{1}{2}QL_C\sin\alpha \sin\beta} \right] 
    57  
    58 .. note:: 
    59  
    60     Why does t_B not appear in the above equation? 
    61     For the calculation of the form factor to be valid, the sides of the solid 
    62     MUST (perhaps not any more?) be chosen such that** $A < B < C$. 
    63     If this inequality is not satisfied, the model will not report an error, 
    64     but the calculation will not be correct and thus the result wrong. 
     42amplitudes of the core and the slabs on the edges. 
     43 
     44the scattering amplitude is computed for a particular orientation of the core-shell 
     45parallelepiped with respect to the scattering vector and then averaged over all 
     46possible orientations, where $\alpha$ is the angle between the $z$ axis and the longest axis $C$ 
     47of the parallelepiped, $\beta$ is the angle between projection of the particle in the $xy$ detector plane and the $y$ axis. 
     48 
     49.. math:: 
     50    \begin{align*} 
     51    F(Q)&=A B C (\rho_\text{core}-\rho_\text{solvent})  S(A \sin\alpha \sin\beta)S(B \sin\alpha \cos\beta)S(C \cos\alpha) \\ 
     52    &+ 2t_A B C (\rho_\text{A}-\rho_\text{solvent})  \left[S((A+t_A) \sin\alpha \sin\beta)-S(A \sin\alpha \sin\beta)\right] S(B \sin\alpha \cos\beta) S(C \cos\alpha)\\ 
     53    &+ 2 A t_B C (\rho_\text{B}-\rho_\text{solvent})  S(A \sin\alpha \sin\beta) \left[S((B+t_B) \sin\alpha \cos\beta)-S(B \sin\alpha \cos\beta)\right] S(C \cos\alpha)\\ 
     54    &+ 2 A B t_C (\rho_\text{C}-\rho_\text{solvent}) S(A \sin\alpha \sin\beta) S(B \sin\alpha \cos\beta) \left[S((C+t_C) \cos\alpha)-S(C \cos\alpha)\right] 
     55    \end{align*} 
     56 
     57with 
     58 
     59.. math:: 
     60 
     61    S(x) = \frac{\sin \tfrac{1}{2}Q x}{\tfrac{1}{2}Q x} 
     62 
     63where $\rho_\text{core}$, $\rho_\text{A}$, $\rho_\text{B}$ and $\rho_\text{C}$ are 
     64the scattering length of the parallelepiped core, and the rectangular slabs of 
     65thickness $t_A$, $t_B$ and $t_C$, respectively. 
     66$\rho_\text{solvent}$ is the scattering length of the solvent. 
    6567 
    6668FITTING NOTES 
     
    7375known values, or you will certainly end up at a solution that is unphysical. 
    7476 
    75 Constraints must be applied during fitting to ensure that the inequality 
    76 $A < B < C$ is not violated. The calculation will not report an error, 
    77 but the results will not be correct. 
    78  
    7977The returned value is in units of |cm^-1|, on absolute scale. 
    8078 
     
    9189$\Psi = 0$ when the *short_b* axis is parallel to the *x*-axis of the detector. 
    9290 
     91For 2d, constraints must be applied during fitting to ensure that the inequality 
     92$A < B < C$ is not violated, and hence the correct definition of angles is preserved. The calculation will not report an error, 
     93but the results may be not correct. 
     94 
    9395.. figure:: img/parallelepiped_angle_definition.png 
    9496 
    9597    Definition of the angles for oriented core-shell parallelepipeds. 
    9698    Note that rotation $\theta$, initially in the $xz$ plane, is carried out first, then 
    97     rotation $\phi$ about the $z$ axis, finally rotation $\Psi$ is now around the axis of the cylinder. 
     99    rotation $\phi$ about the $z$ axis, finally rotation $\Psi$ is now around the axis of the parallelepiped. 
    98100    The neutron or X-ray beam is along the $z$ axis. 
    99101 
Note: See TracChangeset for help on using the changeset viewer.