1 | // GENERATED CODE --- DO NOT EDIT --- |
---|
2 | // Code is produced by sasmodels.gen from sasmodels/models/MODEL.c |
---|
3 | |
---|
4 | #ifdef __OPENCL_VERSION__ |
---|
5 | # define USE_OPENCL |
---|
6 | #endif |
---|
7 | |
---|
8 | // If opencl is not available, then we are compiling a C function |
---|
9 | // Note: if using a C++ compiler, then define kernel as extern "C" |
---|
10 | #ifndef USE_OPENCL |
---|
11 | # ifdef __cplusplus |
---|
12 | #include <cstdio> |
---|
13 | #include <cmath> |
---|
14 | using namespace std; |
---|
15 | #if defined(_MSC_VER) |
---|
16 | # define kernel extern "C" __declspec( dllexport ) |
---|
17 | inline double trunc(double x) { return x>=0?floor(x):-floor(-x); } |
---|
18 | inline double fmin(double x, double y) { return x>y ? y : x; } |
---|
19 | inline double fmax(double x, double y) { return x<y ? y : x; } |
---|
20 | #else |
---|
21 | # define kernel extern "C" |
---|
22 | #endif |
---|
23 | inline void SINCOS(double angle, double &svar, double &cvar) { svar=sin(angle); cvar=cos(angle); } |
---|
24 | # else |
---|
25 | #include <stdio.h> |
---|
26 | #include <tgmath.h> // C99 type-generic math, so sin(float) => sinf |
---|
27 | // MSVC doesn't support C99, so no need for dllexport on C99 branch |
---|
28 | #define kernel |
---|
29 | #define SINCOS(angle,svar,cvar) do {const double _t_=angle; svar=sin(_t_);cvar=cos(_t_);} while (0) |
---|
30 | # endif |
---|
31 | # define global |
---|
32 | # define local |
---|
33 | # define constant const |
---|
34 | // OpenCL powr(a,b) = C99 pow(a,b), b >= 0 |
---|
35 | // OpenCL pown(a,b) = C99 pow(a,b), b integer |
---|
36 | # define powr(a,b) pow(a,b) |
---|
37 | # define pown(a,b) pow(a,b) |
---|
38 | #else |
---|
39 | # ifdef USE_SINCOS |
---|
40 | # define SINCOS(angle,svar,cvar) svar=sincos(angle,&cvar) |
---|
41 | # else |
---|
42 | # define SINCOS(angle,svar,cvar) do {const double _t_=angle; svar=sin(_t_);cvar=cos(_t_);} while (0) |
---|
43 | # endif |
---|
44 | #endif |
---|
45 | |
---|
46 | // Standard mathematical constants: |
---|
47 | // M_E, M_LOG2E, M_LOG10E, M_LN2, M_LN10, M_PI, M_PI_2=pi/2, M_PI_4=pi/4, |
---|
48 | // M_1_PI=1/pi, M_2_PI=2/pi, M_2_SQRTPI=2/sqrt(pi), SQRT2, SQRT1_2=sqrt(1/2) |
---|
49 | // OpenCL defines M_constant_F for float constants, and nothing if double |
---|
50 | // is not enabled on the card, which is why these constants may be missing |
---|
51 | #ifndef M_PI |
---|
52 | # define M_PI 3.141592653589793 |
---|
53 | #endif |
---|
54 | #ifndef M_PI_2 |
---|
55 | # define M_PI_2 1.570796326794897 |
---|
56 | #endif |
---|
57 | #ifndef M_PI_4 |
---|
58 | # define M_PI_4 0.7853981633974483 |
---|
59 | #endif |
---|
60 | |
---|
61 | // Non-standard pi/180, used for converting between degrees and radians |
---|
62 | #ifndef M_PI_180 |
---|
63 | # define M_PI_180 0.017453292519943295 |
---|
64 | #endif |
---|
65 | |
---|
66 | |
---|
67 | %(DEFINES)s |
---|
68 | |
---|
69 | %(SOURCES)s |
---|
70 | |
---|
71 | /* |
---|
72 | ########################################################## |
---|
73 | # # |
---|
74 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # |
---|
75 | # !! !! # |
---|
76 | # !! KEEP THIS CODE CONSISTENT WITH KERNELPY.PY !! # |
---|
77 | # !! !! # |
---|
78 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # |
---|
79 | # # |
---|
80 | ########################################################## |
---|
81 | */ |
---|
82 | |
---|
83 | #ifdef IQ_KERNEL_NAME |
---|
84 | kernel void IQ_KERNEL_NAME( |
---|
85 | global const double *q, |
---|
86 | global double *result, |
---|
87 | const int Nq, |
---|
88 | #ifdef IQ_OPEN_LOOPS |
---|
89 | #ifdef USE_OPENCL |
---|
90 | global double *loops_g, |
---|
91 | #endif |
---|
92 | local double *loops, |
---|
93 | const double cutoff, |
---|
94 | IQ_DISPERSION_LENGTH_DECLARATIONS, |
---|
95 | #endif |
---|
96 | IQ_FIXED_PARAMETER_DECLARATIONS |
---|
97 | ) |
---|
98 | { |
---|
99 | #ifdef USE_OPENCL |
---|
100 | #ifdef IQ_OPEN_LOOPS |
---|
101 | // copy loops info to local memory |
---|
102 | event_t e = async_work_group_copy(loops, loops_g, (IQ_DISPERSION_LENGTH_SUM)*2, 0); |
---|
103 | wait_group_events(1, &e); |
---|
104 | #endif |
---|
105 | |
---|
106 | int i = get_global_id(0); |
---|
107 | if (i < Nq) |
---|
108 | #else |
---|
109 | #pragma omp parallel for |
---|
110 | for (int i=0; i < Nq; i++) |
---|
111 | #endif |
---|
112 | { |
---|
113 | const double qi = q[i]; |
---|
114 | #ifdef IQ_OPEN_LOOPS |
---|
115 | double ret=0.0, norm=0.0; |
---|
116 | #ifdef VOLUME_PARAMETERS |
---|
117 | double vol=0.0, norm_vol=0.0; |
---|
118 | #endif |
---|
119 | IQ_OPEN_LOOPS |
---|
120 | //for (int radius_i=0; radius_i < Nradius; radius_i++) { |
---|
121 | // const double radius = loops[2*(radius_i)]; |
---|
122 | // const double radius_w = loops[2*(radius_i)+1]; |
---|
123 | |
---|
124 | const double weight = IQ_WEIGHT_PRODUCT; |
---|
125 | if (weight > cutoff) { |
---|
126 | const double scattering = Iq(qi, IQ_PARAMETERS); |
---|
127 | if (scattering >= 0.0) { // scattering cannot be negative |
---|
128 | ret += weight*scattering; |
---|
129 | norm += weight; |
---|
130 | #ifdef VOLUME_PARAMETERS |
---|
131 | const double vol_weight = VOLUME_WEIGHT_PRODUCT; |
---|
132 | vol += vol_weight*form_volume(VOLUME_PARAMETERS); |
---|
133 | norm_vol += vol_weight; |
---|
134 | #endif |
---|
135 | } |
---|
136 | //else { printf("exclude qx,qy,I:%%g,%%g,%%g\n",qi,scattering); } |
---|
137 | } |
---|
138 | IQ_CLOSE_LOOPS |
---|
139 | #ifdef VOLUME_PARAMETERS |
---|
140 | if (vol*norm_vol != 0.0) { |
---|
141 | ret *= norm_vol/vol; |
---|
142 | } |
---|
143 | #endif |
---|
144 | result[i] = scale*ret/norm+background; |
---|
145 | #else |
---|
146 | result[i] = scale*Iq(qi, IQ_PARAMETERS) + background; |
---|
147 | #endif |
---|
148 | } |
---|
149 | } |
---|
150 | #endif |
---|
151 | |
---|
152 | |
---|
153 | #ifdef IQXY_KERNEL_NAME |
---|
154 | kernel void IQXY_KERNEL_NAME( |
---|
155 | global const double *qx, |
---|
156 | global const double *qy, |
---|
157 | global double *result, |
---|
158 | const int Nq, |
---|
159 | #ifdef IQXY_OPEN_LOOPS |
---|
160 | #ifdef USE_OPENCL |
---|
161 | global double *loops_g, |
---|
162 | #endif |
---|
163 | local double *loops, |
---|
164 | const double cutoff, |
---|
165 | IQXY_DISPERSION_LENGTH_DECLARATIONS, |
---|
166 | #endif |
---|
167 | IQXY_FIXED_PARAMETER_DECLARATIONS |
---|
168 | ) |
---|
169 | { |
---|
170 | #ifdef USE_OPENCL |
---|
171 | #ifdef IQXY_OPEN_LOOPS |
---|
172 | // copy loops info to local memory |
---|
173 | event_t e = async_work_group_copy(loops, loops_g, (IQXY_DISPERSION_LENGTH_SUM)*2, 0); |
---|
174 | wait_group_events(1, &e); |
---|
175 | #endif |
---|
176 | |
---|
177 | int i = get_global_id(0); |
---|
178 | if (i < Nq) |
---|
179 | #else |
---|
180 | #pragma omp parallel for |
---|
181 | for (int i=0; i < Nq; i++) |
---|
182 | #endif |
---|
183 | { |
---|
184 | const double qxi = qx[i]; |
---|
185 | const double qyi = qy[i]; |
---|
186 | #ifdef IQXY_OPEN_LOOPS |
---|
187 | double ret=0.0, norm=0.0; |
---|
188 | #ifdef VOLUME_PARAMETERS |
---|
189 | double vol=0.0, norm_vol=0.0; |
---|
190 | #endif |
---|
191 | IQXY_OPEN_LOOPS |
---|
192 | //for (int radius_i=0; radius_i < Nradius; radius_i++) { |
---|
193 | // const double radius = loops[2*(radius_i)]; |
---|
194 | // const double radius_w = loops[2*(radius_i)+1]; |
---|
195 | |
---|
196 | const double weight = IQXY_WEIGHT_PRODUCT; |
---|
197 | if (weight > cutoff) { |
---|
198 | |
---|
199 | const double scattering = Iqxy(qxi, qyi, IQXY_PARAMETERS); |
---|
200 | if (scattering >= 0.0) { // scattering cannot be negative |
---|
201 | // TODO: use correct angle for spherical correction |
---|
202 | // Definition of theta and phi are probably reversed relative to the |
---|
203 | // equation which gave rise to this correction, leading to an |
---|
204 | // attenuation of the pattern as theta moves through pi/2. Either |
---|
205 | // reverse the meanings of phi and theta in the forms, or use phi |
---|
206 | // rather than theta in this correction. Current code uses cos(theta) |
---|
207 | // so that values match those of sasview. |
---|
208 | #ifdef IQXY_HAS_THETA |
---|
209 | const double spherical_correction |
---|
210 | = (Ntheta>1 ? fabs(cos(M_PI_180*theta))*M_PI_2:1.0); |
---|
211 | ret += spherical_correction * weight * scattering; |
---|
212 | #else |
---|
213 | ret += weight * scattering; |
---|
214 | #endif |
---|
215 | norm += weight; |
---|
216 | #ifdef VOLUME_PARAMETERS |
---|
217 | const double vol_weight = VOLUME_WEIGHT_PRODUCT; |
---|
218 | vol += vol_weight*form_volume(VOLUME_PARAMETERS); |
---|
219 | #endif |
---|
220 | norm_vol += vol_weight; |
---|
221 | } |
---|
222 | //else { printf("exclude qx,qy,I:%%g,%%g,%%g\n",qi,scattering); } |
---|
223 | } |
---|
224 | IQXY_CLOSE_LOOPS |
---|
225 | #ifdef VOLUME_PARAMETERS |
---|
226 | if (vol*norm_vol != 0.0) { |
---|
227 | ret *= norm_vol/vol; |
---|
228 | } |
---|
229 | #endif |
---|
230 | result[i] = scale*ret/norm+background; |
---|
231 | #else |
---|
232 | result[i] = scale*Iqxy(qxi, qyi, IQXY_PARAMETERS) + background; |
---|
233 | #endif |
---|
234 | } |
---|
235 | } |
---|
236 | #endif |
---|