1 | #line 1 "kernel_template.c" |
---|
2 | // GENERATED CODE --- DO NOT EDIT --- |
---|
3 | // Code is produced by sasmodels.gen from sasmodels/models/MODEL.c |
---|
4 | |
---|
5 | #ifdef __OPENCL_VERSION__ |
---|
6 | # define USE_OPENCL |
---|
7 | #endif |
---|
8 | |
---|
9 | #define USE_KAHAN_SUMMATION 0 |
---|
10 | |
---|
11 | // If opencl is not available, then we are compiling a C function |
---|
12 | // Note: if using a C++ compiler, then define kernel as extern "C" |
---|
13 | #ifndef USE_OPENCL |
---|
14 | // Use SAS_DOUBLE to force the use of double even for float kernels |
---|
15 | # define SAS_DOUBLE dou ## ble |
---|
16 | # ifdef __cplusplus |
---|
17 | #include <cstdio> |
---|
18 | #include <cmath> |
---|
19 | using namespace std; |
---|
20 | #if defined(_MSC_VER) |
---|
21 | #include <limits> |
---|
22 | #include <float.h> |
---|
23 | #define kernel extern "C" __declspec( dllexport ) |
---|
24 | inline double trunc(double x) { return x>=0?floor(x):-floor(-x); } |
---|
25 | inline double fmin(double x, double y) { return x>y ? y : x; } |
---|
26 | inline double fmax(double x, double y) { return x<y ? y : x; } |
---|
27 | #define isnan(x) _isnan(x) |
---|
28 | #define isinf(x) (!_finite(x)) |
---|
29 | #define isfinite(x) _finite(x) |
---|
30 | #define NAN (std::numeric_limits<double>::quiet_NaN()) // non-signalling NaN |
---|
31 | #define INFINITY (std::numeric_limits<double>::infinity()) |
---|
32 | #define NEED_EXPM1 |
---|
33 | #define NEED_TGAMMA |
---|
34 | #define NEED_ERF |
---|
35 | #else |
---|
36 | #define kernel extern "C" |
---|
37 | #endif |
---|
38 | inline void SINCOS(double angle, double &svar, double &cvar) { svar=sin(angle); cvar=cos(angle); } |
---|
39 | # else |
---|
40 | #include <stdio.h> |
---|
41 | #if defined(__TINYC__) |
---|
42 | #include <math.h> |
---|
43 | // TODO: test isnan |
---|
44 | inline double _isnan(double x) { return x != x; } // hope this doesn't optimize away! |
---|
45 | #undef isnan |
---|
46 | #define isnan(x) _isnan(x) |
---|
47 | // Defeat the double->float conversion since we don't have tgmath |
---|
48 | inline SAS_DOUBLE trunc(SAS_DOUBLE x) { return x>=0?floor(x):-floor(-x); } |
---|
49 | inline SAS_DOUBLE fmin(SAS_DOUBLE x, SAS_DOUBLE y) { return x>y ? y : x; } |
---|
50 | inline SAS_DOUBLE fmax(SAS_DOUBLE x, SAS_DOUBLE y) { return x<y ? y : x; } |
---|
51 | #define NEED_EXPM1 |
---|
52 | #define NEED_TGAMMA |
---|
53 | #define NEED_ERF |
---|
54 | #else |
---|
55 | #include <tgmath.h> // C99 type-generic math, so sin(float) => sinf |
---|
56 | #endif |
---|
57 | // MSVC doesn't support C99, so no need for dllexport on C99 branch |
---|
58 | #define kernel |
---|
59 | #define SINCOS(angle,svar,cvar) do {const double _t_=angle; svar=sin(_t_);cvar=cos(_t_);} while (0) |
---|
60 | # endif |
---|
61 | # define global |
---|
62 | # define local |
---|
63 | # define constant const |
---|
64 | // OpenCL powr(a,b) = C99 pow(a,b), b >= 0 |
---|
65 | // OpenCL pown(a,b) = C99 pow(a,b), b integer |
---|
66 | # define powr(a,b) pow(a,b) |
---|
67 | # define pown(a,b) pow(a,b) |
---|
68 | #else |
---|
69 | # if defined(USE_SINCOS) |
---|
70 | # define SINCOS(angle,svar,cvar) svar=sincos(angle,&cvar) |
---|
71 | # else |
---|
72 | # define SINCOS(angle,svar,cvar) do {const double _t_=angle; svar=sin(_t_);cvar=cos(_t_);} while (0) |
---|
73 | # endif |
---|
74 | #endif |
---|
75 | |
---|
76 | #if defined(NEED_EXPM1) |
---|
77 | static SAS_DOUBLE expm1(SAS_DOUBLE x_in) { |
---|
78 | double x = (double)x_in; // go back to float for single precision kernels |
---|
79 | // Adapted from the cephes math library. |
---|
80 | // Copyright 1984 - 1992 by Stephen L. Moshier |
---|
81 | if (x != x || x == 0.0) { |
---|
82 | return x; // NaN and +/- 0 |
---|
83 | } else if (x < -0.5 || x > 0.5) { |
---|
84 | return exp(x) - 1.0; |
---|
85 | } else { |
---|
86 | const double xsq = x*x; |
---|
87 | const double p = ((( |
---|
88 | +1.2617719307481059087798E-4)*xsq |
---|
89 | +3.0299440770744196129956E-2)*xsq |
---|
90 | +9.9999999999999999991025E-1); |
---|
91 | const double q = (((( |
---|
92 | +3.0019850513866445504159E-6)*xsq |
---|
93 | +2.5244834034968410419224E-3)*xsq |
---|
94 | +2.2726554820815502876593E-1)*xsq |
---|
95 | +2.0000000000000000000897E0); |
---|
96 | double r = x * p; |
---|
97 | r = r / (q - r); |
---|
98 | return r+r; |
---|
99 | } |
---|
100 | } |
---|
101 | #endif |
---|
102 | |
---|
103 | // Standard mathematical constants: |
---|
104 | // M_E, M_LOG2E, M_LOG10E, M_LN2, M_LN10, M_PI, M_PI_2=pi/2, M_PI_4=pi/4, |
---|
105 | // M_1_PI=1/pi, M_2_PI=2/pi, M_2_SQRTPI=2/sqrt(pi), SQRT2, SQRT1_2=sqrt(1/2) |
---|
106 | // OpenCL defines M_constant_F for float constants, and nothing if double |
---|
107 | // is not enabled on the card, which is why these constants may be missing |
---|
108 | #ifndef M_PI |
---|
109 | # define M_PI 3.141592653589793 |
---|
110 | #endif |
---|
111 | #ifndef M_PI_2 |
---|
112 | # define M_PI_2 1.570796326794897 |
---|
113 | #endif |
---|
114 | #ifndef M_PI_4 |
---|
115 | # define M_PI_4 0.7853981633974483 |
---|
116 | #endif |
---|
117 | #ifndef M_E |
---|
118 | # define M_E 2.718281828459045091 |
---|
119 | #endif |
---|
120 | |
---|
121 | // Non-standard function library |
---|
122 | // pi/180, used for converting between degrees and radians |
---|
123 | // 4/3 pi for computing sphere volumes |
---|
124 | // square and cube for computing squares and cubes |
---|
125 | #ifndef M_PI_180 |
---|
126 | # define M_PI_180 0.017453292519943295 |
---|
127 | #endif |
---|
128 | #ifndef M_4PI_3 |
---|
129 | # define M_4PI_3 4.18879020478639 |
---|
130 | #endif |
---|
131 | //inline double square(double x) { return pow(x,2.0); } |
---|
132 | //inline double square(double x) { return pown(x,2); } |
---|
133 | inline double square(double x) { return x*x; } |
---|
134 | inline double cube(double x) { return x*x*x; } |
---|
135 | inline double sas_sinx_x(double x) { return x==0 ? 1.0 : sin(x)/x; } |
---|
136 | |
---|
137 | |
---|
138 | %(DEFINES)s |
---|
139 | |
---|
140 | %(SOURCES)s |
---|
141 | |
---|
142 | /* |
---|
143 | ########################################################## |
---|
144 | # # |
---|
145 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # |
---|
146 | # !! !! # |
---|
147 | # !! KEEP THIS CODE CONSISTENT WITH KERNELPY.PY !! # |
---|
148 | # !! !! # |
---|
149 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # |
---|
150 | # # |
---|
151 | ########################################################## |
---|
152 | */ |
---|
153 | |
---|
154 | #ifdef IQ_KERNEL_NAME |
---|
155 | kernel void IQ_KERNEL_NAME( |
---|
156 | global const double *q, |
---|
157 | global double *result, |
---|
158 | const int Nq, |
---|
159 | #ifdef IQ_OPEN_LOOPS |
---|
160 | #ifdef USE_OPENCL |
---|
161 | global double *loops_g, |
---|
162 | #endif |
---|
163 | local double *loops, |
---|
164 | const double cutoff, |
---|
165 | IQ_DISPERSION_LENGTH_DECLARATIONS, |
---|
166 | #endif |
---|
167 | IQ_FIXED_PARAMETER_DECLARATIONS |
---|
168 | ) |
---|
169 | { |
---|
170 | #ifdef USE_OPENCL |
---|
171 | #ifdef IQ_OPEN_LOOPS |
---|
172 | // copy loops info to local memory |
---|
173 | event_t e = async_work_group_copy(loops, loops_g, (IQ_DISPERSION_LENGTH_SUM)*2, 0); |
---|
174 | wait_group_events(1, &e); |
---|
175 | #endif |
---|
176 | |
---|
177 | int i = get_global_id(0); |
---|
178 | if (i < Nq) |
---|
179 | #else |
---|
180 | #pragma omp parallel for |
---|
181 | for (int i=0; i < Nq; i++) |
---|
182 | #endif |
---|
183 | { |
---|
184 | const double qi = q[i]; |
---|
185 | #ifdef IQ_OPEN_LOOPS |
---|
186 | double ret=0.0, norm=0.0; |
---|
187 | IQ_OPEN_LOOPS |
---|
188 | //for (int radius_i=0; radius_i < Nradius; radius_i++) { |
---|
189 | // const double radius = loops[2*(radius_i)]; |
---|
190 | // const double radius_w = loops[2*(radius_i)+1]; |
---|
191 | |
---|
192 | const double weight = IQ_WEIGHT_PRODUCT; |
---|
193 | if (weight > cutoff) { |
---|
194 | const double scattering = Iq(qi, IQ_PARAMETERS); |
---|
195 | // allow kernels to exclude invalid regions by returning NaN |
---|
196 | if (!isnan(scattering)) { |
---|
197 | ret += weight*scattering; |
---|
198 | #ifdef VOLUME_PARAMETERS |
---|
199 | norm += weight * form_volume(VOLUME_PARAMETERS); |
---|
200 | #else |
---|
201 | norm += weight; |
---|
202 | #endif |
---|
203 | } |
---|
204 | //else { printf("exclude qx,qy,I:%%g,%%g,%%g\n",qi,scattering); } |
---|
205 | } |
---|
206 | IQ_CLOSE_LOOPS |
---|
207 | // norm can only be zero if volume is zero, so no scattering |
---|
208 | result[i] = (norm > 0. ? scale*ret/norm + background : background); |
---|
209 | #else |
---|
210 | result[i] = scale*Iq(qi, IQ_PARAMETERS) + background; |
---|
211 | #endif |
---|
212 | } |
---|
213 | } |
---|
214 | #endif |
---|
215 | |
---|
216 | |
---|
217 | #ifdef IQXY_KERNEL_NAME |
---|
218 | kernel void IQXY_KERNEL_NAME( |
---|
219 | global const double *qx, |
---|
220 | global const double *qy, |
---|
221 | global double *result, |
---|
222 | const int Nq, |
---|
223 | #ifdef IQXY_OPEN_LOOPS |
---|
224 | #ifdef USE_OPENCL |
---|
225 | global double *loops_g, |
---|
226 | #endif |
---|
227 | local double *loops, |
---|
228 | const double cutoff, |
---|
229 | IQXY_DISPERSION_LENGTH_DECLARATIONS, |
---|
230 | #endif |
---|
231 | IQXY_FIXED_PARAMETER_DECLARATIONS |
---|
232 | ) |
---|
233 | { |
---|
234 | #ifdef USE_OPENCL |
---|
235 | #ifdef IQXY_OPEN_LOOPS |
---|
236 | // copy loops info to local memory |
---|
237 | event_t e = async_work_group_copy(loops, loops_g, (IQXY_DISPERSION_LENGTH_SUM)*2, 0); |
---|
238 | wait_group_events(1, &e); |
---|
239 | #endif |
---|
240 | |
---|
241 | int i = get_global_id(0); |
---|
242 | if (i < Nq) |
---|
243 | #else |
---|
244 | #pragma omp parallel for |
---|
245 | for (int i=0; i < Nq; i++) |
---|
246 | #endif |
---|
247 | { |
---|
248 | const double qxi = qx[i]; |
---|
249 | const double qyi = qy[i]; |
---|
250 | #if USE_KAHAN_SUMMATION |
---|
251 | double accumulated_error = 0.0; |
---|
252 | #endif |
---|
253 | #ifdef IQXY_OPEN_LOOPS |
---|
254 | double ret=0.0, norm=0.0; |
---|
255 | IQXY_OPEN_LOOPS |
---|
256 | //for (int radius_i=0; radius_i < Nradius; radius_i++) { |
---|
257 | // const double radius = loops[2*(radius_i)]; |
---|
258 | // const double radius_w = loops[2*(radius_i)+1]; |
---|
259 | double weight = IQXY_WEIGHT_PRODUCT; |
---|
260 | if (weight > cutoff) { |
---|
261 | |
---|
262 | const double scattering = Iqxy(qxi, qyi, IQXY_PARAMETERS); |
---|
263 | if (!isnan(scattering)) { // if scattering is bad, exclude it from sum |
---|
264 | #if defined(IQXY_HAS_THETA) |
---|
265 | // Force a nominal value for the spherical correction even when |
---|
266 | // theta is +0/180 so that there are no divide by zero problems. |
---|
267 | // For sin(theta) fixed at 0 and 180, we effectively multiply top and bottom |
---|
268 | // by 1e-6, so the effect cancels. |
---|
269 | const double spherical_correction = fmax(fabs(cos(M_PI_180*theta)), 1.e-6); |
---|
270 | weight *= spherical_correction; |
---|
271 | #endif |
---|
272 | const double next = weight * scattering; |
---|
273 | #if USE_KAHAN_SUMMATION |
---|
274 | const double y = next - accumulated_error; |
---|
275 | const double t = ret + y; |
---|
276 | accumulated_error = (t - ret) - y; |
---|
277 | ret = t; |
---|
278 | #else |
---|
279 | ret += next; |
---|
280 | #endif |
---|
281 | #ifdef VOLUME_PARAMETERS |
---|
282 | norm += weight*form_volume(VOLUME_PARAMETERS); |
---|
283 | #else |
---|
284 | norm += weight; |
---|
285 | #endif |
---|
286 | } |
---|
287 | //else { printf("exclude qx,qy,I:%%g,%%g,%%g\n",qi,scattering); } |
---|
288 | } |
---|
289 | IQXY_CLOSE_LOOPS |
---|
290 | // norm can only be zero if volume is zero, so no scattering |
---|
291 | result[i] = (norm>0. ? scale*ret/norm + background : background); |
---|
292 | #else |
---|
293 | result[i] = scale*Iqxy(qxi, qyi, IQXY_PARAMETERS) + background; |
---|
294 | #endif |
---|
295 | } |
---|
296 | } |
---|
297 | #endif |
---|