1 | import numpy as np |
---|
2 | from numpy import exp, sin, degrees, radians, pi, sqrt |
---|
3 | |
---|
4 | from sasmodels.weights import Dispersion as BaseDispersion |
---|
5 | |
---|
6 | class Dispersion(BaseDispersion): |
---|
7 | r""" |
---|
8 | Maier-Saupe dispersion on orientation (equal weights). |
---|
9 | |
---|
10 | .. math: |
---|
11 | |
---|
12 | w(\theta) = e^{P_2{\cos^2 \theta}} |
---|
13 | |
---|
14 | This provides a close match to the gaussian distribution for |
---|
15 | low angles, but the tails are limited to $\pm 90^\circ$. For $P_2 \ll 1$ |
---|
16 | the distribution is approximately uniform. The usual polar coordinate |
---|
17 | projection applies, with $\theta$ weights scaled by $\cos \theta$ |
---|
18 | and $\phi$ weights unscaled. |
---|
19 | |
---|
20 | This is equivalent to a cyclic gaussian distribution |
---|
21 | $w(\theta) = e^{-sin^2(\theta)/(2\sigma^2)}. |
---|
22 | |
---|
23 | The $\theta$ points are spaced such that each interval has an |
---|
24 | equal contribution to the distribution. |
---|
25 | |
---|
26 | This works surprisingly poorly. Try:: |
---|
27 | |
---|
28 | $ sascomp cylinder -2d theta=45 phi=20 phi_pd_type=maier_saupe_eq \ |
---|
29 | phi_pd_n=100,1000 radius=50 length=2*radius -midq phi_pd=5 |
---|
30 | |
---|
31 | Leaving it here for others to improve. |
---|
32 | """ |
---|
33 | type = "maier_saupe_eq" |
---|
34 | default = dict(npts=35, width=1, nsigmas=None) |
---|
35 | |
---|
36 | # Note: center is always zero for orientation distributions |
---|
37 | def _weights(self, center, sigma, lb, ub): |
---|
38 | # use the width parameter as the value for Maier-Saupe P_2 |
---|
39 | P2 = sigma |
---|
40 | sigma = 1./sqrt(2.*P2) |
---|
41 | |
---|
42 | # Create a lookup table for finding n points equally spaced |
---|
43 | # in the cumulative density function. |
---|
44 | # Limit width to +/-90 degrees. |
---|
45 | width = min(self.nsigmas*sigma, pi/2) |
---|
46 | xp = np.linspace(-width, width, max(self.npts*10, 100)) |
---|
47 | |
---|
48 | # Compute CDF. Since we normalized the sum of the weights to 1, |
---|
49 | # we can scale by an arbitrary scale factor c = exp(m) to get: |
---|
50 | # w = exp(m*cos(x)**2)/c = exp(-m*sin(x)**2) |
---|
51 | yp = np.cumsum(exp(-P2*sin(xp)**2)) |
---|
52 | yp /= yp[-1] |
---|
53 | |
---|
54 | # Find the mid-points of the equal-weighted intervals in the CDF |
---|
55 | y = np.linspace(0, 1, self.npts+2)[1:-1] |
---|
56 | x = np.interp(y, yp, xp) |
---|
57 | wx = np.ones(self.npts) |
---|
58 | |
---|
59 | # Truncate the distribution in case the parameter value is limited |
---|
60 | index = (x >= lb) & (x <= ub) |
---|
61 | x, wx = x[index], wx[index] |
---|
62 | |
---|
63 | return degrees(x), wx |
---|