1 | from __future__ import print_function |
---|
2 | import numpy as np |
---|
3 | from numpy import exp, sin, degrees, radians, pi, sqrt |
---|
4 | |
---|
5 | from sasmodels.weights import Dispersion as BaseDispersion |
---|
6 | |
---|
7 | class Dispersion(BaseDispersion): |
---|
8 | r""" |
---|
9 | Maier-Saupe dispersion on orientation. |
---|
10 | |
---|
11 | .. math: |
---|
12 | |
---|
13 | w(\theta) = e^{P_2{\cos^2 \theta}} |
---|
14 | |
---|
15 | This provides a close match to the gaussian distribution for |
---|
16 | low angles, but the tails are limited to $\pm 90^\circ$. For $P_2 \ll 1$ |
---|
17 | the distribution is approximately uniform. The usual polar coordinate |
---|
18 | projection applies, with $\theta$ weights scaled by $\cos \theta$ |
---|
19 | and $\phi$ weights unscaled. |
---|
20 | |
---|
21 | This is equivalent to a cyclic gaussian distribution |
---|
22 | $w(\theta) = e^{-sin^2(\theta)/(2\P_2^2)}. |
---|
23 | """ |
---|
24 | type = "maier_saupe" |
---|
25 | default = dict(npts=35, width=1, nsigmas=None) |
---|
26 | |
---|
27 | # Note: center is always zero for orientation distributions |
---|
28 | def _weights(self, center, sigma, lb, ub): |
---|
29 | # use the width parameter as the value for Maier-Saupe P_2 |
---|
30 | # and find the equivalent width sigma |
---|
31 | P2 = sigma |
---|
32 | sigma = 1./sqrt(2.*P2) |
---|
33 | |
---|
34 | # Limit width to +/- 90 degrees |
---|
35 | width = min(self.nsigmas*sigma, pi/2) |
---|
36 | x = np.linspace(-width, width, self.npts) |
---|
37 | |
---|
38 | # Truncate the distribution in case the parameter value is limited |
---|
39 | x[(x >= radians(lb)) & (x <= radians(ub))] |
---|
40 | |
---|
41 | # Return orientation in degrees with Maier-Saupe weights |
---|
42 | # Note: weights are normalized to sum to 1, so we can scale |
---|
43 | # by an arbitrary scale factor c = exp(m) to get: |
---|
44 | # w = exp(m*cos(x)**2)/c = exp(-m*sin(x)**2) |
---|
45 | return degrees(x), exp(-P2*sin(x)**2) |
---|