source:
sasmodels/doc/guide/scripting.rst
@
be3cce9
Last change on this file since be3cce9 was 2e66ef5, checked in by Paul Kienzle <pkienzle@…>, 8 years ago | |
---|---|
|
|
File size: 4.3 KB |
Scripting Interface
Need some basic details here of how to load models and data via script, evaluate them at given parameter values and run bumps fits.
The key functions are :func:`sasmodels.core.load_model` for loading the model definition and compiling the kernel and :func:`sasmodels.data.load_data` for calling sasview to load the data. Need the data because that defines the resolution function and the q values to evaluate. If there is no data, then use :func:`sasmodels.data.empty_data1D` or :func:`sasmodels.data.empty_data2D` to create some data with a given $q$.
Using sasmodels through bumps
With the data and the model, you can wrap it in a bumps model with class:sasmodels.bumps_model.Model and create an class:sasmodels.bump_model.Experiment that you can fit with the bumps interface. Here is an example from the example directory such as example/model.py:
import sys from bumps.names import * from sasmodels.core import load_model from sasmodels.bumps_model import Model, Experiment from sasmodels.data import load_data, set_beam_stop, set_top """ IMPORT THE DATA USED """ radial_data = load_data('DEC07267.DAT') set_beam_stop(radial_data, 0.00669, outer=0.025) set_top(radial_data, -.0185) kernel = load_model("ellipsoid") model = Model(kernel, scale=0.08, radius_polar=15, radius_equatorial=800, sld=.291, sld_solvent=7.105, background=0, theta=90, phi=0, theta_pd=15, theta_pd_n=40, theta_pd_nsigma=3, radius_polar_pd=0.222296, radius_polar_pd_n=1, radius_polar_pd_nsigma=0, radius_equatorial_pd=.000128, radius_equatorial_pd_n=1, radius_equatorial_pd_nsigma=0, phi_pd=0, phi_pd_n=20, phi_pd_nsigma=3, ) # SET THE FITTING PARAMETERS model.radius_polar.range(15, 1000) model.radius_equatorial.range(15, 1000) model.theta_pd.range(0, 360) model.background.range(0,1000) model.scale.range(0, 10) #cutoff = 0 # no cutoff on polydisperisity loops #cutoff = 1e-5 # default cutoff cutoff = 1e-3 # low precision cutoff M = Experiment(data=radial_data, model=model, cutoff=cutoff) problem = FitProblem(M)
Assume that bumps has been installed and the bumps command is available. Maybe need to set the path to sasmodels/sasview using PYTHONPATH=path/to/sasmodels:path/to/sasview/src. To run the model use the bumps program:
$ bumps example/model.py --preview
Using sasmodels directly
Bumps has a notion of parameter boxes in which you can set and retrieve values. Instead of using bumps, you can create a directly callable function with :class:`sasmodels.direct_model.DirectModel`. The resulting object f will be callable as f(par=value, ...), returning the $I(q)$ for the $q$ values in the data. Polydisperse parameters use the same naming conventions as in the bumps model, with e.g., radius_pd being the polydispersity associated with radius.
Getting a simple function that you can call on a set of q values and return a result is not so simple. Since the time critical use case (fitting) involves calling the function over and over with identical $q$ values, we chose to optimize the call by only transfering the $q$ values to the GPU once at the start of the fit. We do this by creating a :class:`sasmodels.kernel.Kernel` object from the :class:`sasmodels.kernel.KernelModel` returned from :func:`sasmodels.core.load_model` using the :meth:`sasmodels.kernel.KernelModel.make_kernel` method. What it actual does depends on whether it is running as a DLL, as OpenCL or as a pure python kernel. Once the kernel is in hand, we can then marshal a set of parameters into a :class:`sasmodels.details.CallDetails` object and ship it to the kernel using the :func:`sansmodels.direct_model.call_kernel` function. An example should help, example/cylinder_eval.py:
from numpy import logspace from matplotlib import pyplot as plt from sasmodels.core import load_model from sasmodels.direct_model import call_kernel model = load_model('cylinder') q = logspace(-3, -1, 200) kernel = model.make_kernel([q]) Iq = call_kernel(kernel, dict(radius=200.)) plt.loglog(q, Iq) plt.show()