source:
sasmodels/doc/guide/scripting.rst
Last change on this file was 23df833, checked in by Paul Kienzle <pkienzle@…>, 6 years ago | |
---|---|
|
|
File size: 8.6 KB |
Scripting Interface
Need some basic details here of how to load models and data via script, evaluate them at given parameter values and run bumps fits.
The key functions are :func:`sasmodels.core.load_model` for loading the model definition and compiling the kernel and :func:`sasmodels.data.load_data` for calling sasview to load the data.
Preparing data
Usually you will load data via the sasview loader, with the :func:`sasmodels.data.load_data` function. For example:
from sasmodels.data import load_data data = load_data("sasmodels/example/093191_201.dat")
You may want to apply a data mask, such a beam stop, and trim high $q$:
from sasmodels.data import set_beam_stop set_beam_stop(data, qmin, qmax)
The :func:`sasmodels.data.set_beam_stop` method simply sets the mask attribute for the data.
The data defines the resolution function and the q values to evaluate, so even if you simulating experiments prior to making measurements, you still need a data object for reference. Use :func:`sasmodels.data.empty_data1D` or :func:`sasmodels.data.empty_data2D` to create a container with a given $q$ and $Delta q/q$. For example:
import numpy as np from sasmodels.data import empty_data1D # 120 points logarithmically spaced from 0.005 to 0.2, with dq/q = 5% q = np.logspace(np.log10(5e-3), np.log10(2e-1), 120) data = empty_data1D(q, resolution=0.05)
To use a more realistic model of resolution, or to load data from a file format not understood by SasView, you can use :class:`sasmodels.data.Data1D` or :class:`sasmodels.data.Data2D` directly. The 1D data uses x, y, dx and dy for $x = q$ and $y = I(q)$, and 2D data uses x, y, z, dx, dy, dz for $x, y = qx, qy$ and $z = I(qx, qy)$. [Note: internally, the Data2D object uses SasView conventions, qx_data, qy_data, data, dqx_data, dqy_data, and err_data.]
For USANS data, use 1D data, but set dxl and dxw attributes to indicate slit resolution:
data.dxl = 0.117
See :func:`sasmodels.resolution.slit_resolution` for details.
SESANS data is more complicated; if your SESANS format is not supported by SasView you need to define a number of attributes beyond x, y. For example:
SElength = np.linspace(0, 2400, 61) # [A] data = np.ones_like(SElength) err_data = np.ones_like(SElength)*0.03 class Source: wavelength = 6 # [A] wavelength_unit = "A" class Sample: zacceptance = 0.1 # [A^-1] thickness = 0.2 # [cm] class SESANSData1D: #q_zmax = 0.23 # [A^-1] lam = 0.2 # [nm] x = SElength y = data dy = err_data sample = Sample() data = SESANSData1D() x, y = ... # create or load sesans data = smd.Data
The data module defines various data plotters as well.
Using sasmodels directly
Once you have a computational kernel and a data object, you can evaluate the model for various parameters using :class:`sasmodels.direct_model.DirectModel`. The resulting object f will be callable as f(par=value, ...), returning the $I(q)$ for the $q$ values in the data. For example:
import numpy as np from sasmodels.data import empty_data1D from sasmodels.core import load_model from sasmodels.direct_model import DirectModel # 120 points logarithmically spaced from 0.005 to 0.2, with dq/q = 5% q = np.logspace(np.log10(5e-3), np.log10(2e-1), 120) data = empty_data1D(q, resolution=0.05) kernel = load_model("ellipsoid) f = DirectModel(data, kernel) Iq = f(radius_polar=100)
Polydispersity information is set with special parameter names:
- par_pd for polydispersity width, $Delta p/p$,
- par_pd_n for the number of points in the distribution,
- par_pd_type for the distribution type (as a string), and
- par_pd_nsigmas for the limits of the distribution.
Using sasmodels through the bumps optimizer
Like DirectModel, you can wrap data and a kernel in a bumps model with class:sasmodels.bumps_model.Model and create an class:sasmodels.bumps_model.Experiment that you can fit with the bumps interface. Here is an example from the example directory such as example/model.py:
import sys from bumps.names import * from sasmodels.core import load_model from sasmodels.bumps_model import Model, Experiment from sasmodels.data import load_data, set_beam_stop, set_top """ IMPORT THE DATA USED """ radial_data = load_data('DEC07267.DAT') set_beam_stop(radial_data, 0.00669, outer=0.025) set_top(radial_data, -.0185) kernel = load_model("ellipsoid") model = Model(kernel, scale=0.08, radius_polar=15, radius_equatorial=800, sld=.291, sld_solvent=7.105, background=0, theta=90, phi=0, theta_pd=15, theta_pd_n=40, theta_pd_nsigma=3, radius_polar_pd=0.222296, radius_polar_pd_n=1, radius_polar_pd_nsigma=0, radius_equatorial_pd=.000128, radius_equatorial_pd_n=1, radius_equatorial_pd_nsigma=0, phi_pd=0, phi_pd_n=20, phi_pd_nsigma=3, ) # SET THE FITTING PARAMETERS model.radius_polar.range(15, 1000) model.radius_equatorial.range(15, 1000) model.theta_pd.range(0, 360) model.background.range(0,1000) model.scale.range(0, 10) #cutoff = 0 # no cutoff on polydisperisity loops #cutoff = 1e-5 # default cutoff cutoff = 1e-3 # low precision cutoff M = Experiment(data=radial_data, model=model, cutoff=cutoff) problem = FitProblem(M)
Assume that bumps has been installed and the bumps command is available. Maybe need to set the path to sasmodels/sasview using PYTHONPATH=path/to/sasmodels:path/to/sasview/src. To run the model use the bumps program:
$ bumps example/model.py --preview
Note that bumps and sasmodels are included as part of the SasView distribution. On windows, bumps can be called from the cmd prompt as follows:
SasViewCom bumps.cli example/model.py --preview
Calling the computation kernel
Getting a simple function that you can call on a set of q values and return a result is not so simple. Since the time critical use case (fitting) involves calling the function over and over with identical $q$ values, we chose to optimize the call by only transfering the $q$ values to the GPU once at the start of the fit. We do this by creating a :class:`sasmodels.kernel.Kernel` object from the :class:`sasmodels.kernel.KernelModel` returned from :func:`sasmodels.core.load_model` using the :meth:`sasmodels.kernel.KernelModel.make_kernel` method. What it actual does depends on whether it is running as a DLL, as OpenCL or as a pure python kernel. Once the kernel is in hand, we can then marshal a set of parameters into a :class:`sasmodels.details.CallDetails` object and ship it to the kernel using the :func:`sansmodels.direct_model.call_kernel` function. To accesses the underlying $<F(q)>$ and $<F^2(q)>$, use :func:`sasmodels.direct_model.call_Fq` instead.
The following example should help, example/cylinder_eval.py:
from numpy import logspace, sqrt from matplotlib import pyplot as plt from sasmodels.core import load_model from sasmodels.direct_model import call_kernel, call_Fq model = load_model('cylinder') q = logspace(-3, -1, 200) kernel = model.make_kernel([q]) pars = {'radius': 200, 'radius_pd': 0.1, 'scale': 2} Iq = call_kernel(kernel, pars) F, Fsq, Reff, V, Vratio = call_Fq(kernel, pars) plt.loglog(q, Iq, label='2 I(q)') plt.loglog(q, F**2/V, label='<F(q)>^2/V') plt.loglog(q, Fsq/V, label='<F^2(q)>/V') plt.xlabel('q (1/A)') plt.ylabel('I(q) (1/cm)') plt.title('Cylinder with radius 200.') plt.legend() plt.show()
This compares $I(q)$ with $<F(q)>$ and $<F^2(q)>$ for a cylinder with radius=200 +/- 20 and scale=2. Note that call_Fq does not include scale and background, nor does it normalize by the average volume. The definition of $F = rho V hat F$ scaled by the contrast and volume, compared to the canonical cylinder $hat F$, with $hat F(0) = 1$. Integrating over polydispersity and orientation, the returned values are $sum_{r,win N(r_o, r_o/10)} sum_theta w F(q,r_o,theta)sintheta$ and $sum_{r,win N(r_o, r_o/10)} sum_theta w F^2(q,r_o,theta)sintheta$.
On windows, this example can be called from the cmd prompt using sasview as as the python interpreter:
SasViewCom example/cylinder_eval.py