source: sasmodels/doc/guide/scripting.rst @ 95468ca

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 95468ca was 2e66ef5, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

add a short scripting guide; start in on developer docs

  • Property mode set to 100644
File size: 4.3 KB
RevLine 
[2e66ef5]1.. _Scripting_Interface:
2
3*******************
4Scripting Interface
5*******************
6
7Need some basic details here of how to load models and data via script, evaluate
8them at given parameter values and run bumps fits.
9
10The key functions are :func:`sasmodels.core.load_model` for loading the
11model definition and compiling the kernel and
12:func:`sasmodels.data.load_data` for calling sasview to load the data. Need
13the data because that defines the resolution function and the q values to
14evaluate. If there is no data, then use :func:`sasmodels.data.empty_data1D`
15or :func:`sasmodels.data.empty_data2D` to create some data with a given $q$.
16
17Using sasmodels through bumps
18=============================
19
20With the data and the model, you can wrap it in a *bumps* model with
21class:`sasmodels.bumps_model.Model` and create an
22class:`sasmodels.bump_model.Experiment` that you can fit with the *bumps*
23interface. Here is an example from the *example* directory such as
24*example/model.py*::
25
26    import sys
27    from bumps.names import *
28    from sasmodels.core import load_model
29    from sasmodels.bumps_model import Model, Experiment
30    from sasmodels.data import load_data, set_beam_stop, set_top
31
32    """ IMPORT THE DATA USED """
33    radial_data = load_data('DEC07267.DAT')
34    set_beam_stop(radial_data, 0.00669, outer=0.025)
35    set_top(radial_data, -.0185)
36
37    kernel = load_model("ellipsoid")
38
39    model = Model(kernel,
40        scale=0.08,
41        radius_polar=15, radius_equatorial=800,
42        sld=.291, sld_solvent=7.105,
43        background=0,
44        theta=90, phi=0,
45        theta_pd=15, theta_pd_n=40, theta_pd_nsigma=3,
46        radius_polar_pd=0.222296, radius_polar_pd_n=1, radius_polar_pd_nsigma=0,
47        radius_equatorial_pd=.000128, radius_equatorial_pd_n=1, radius_equatorial_pd_nsigma=0,
48        phi_pd=0, phi_pd_n=20, phi_pd_nsigma=3,
49        )
50
51    # SET THE FITTING PARAMETERS
52    model.radius_polar.range(15, 1000)
53    model.radius_equatorial.range(15, 1000)
54    model.theta_pd.range(0, 360)
55    model.background.range(0,1000)
56    model.scale.range(0, 10)
57
58    #cutoff = 0     # no cutoff on polydisperisity loops
59    #cutoff = 1e-5  # default cutoff
60    cutoff = 1e-3  # low precision cutoff
61    M = Experiment(data=radial_data, model=model, cutoff=cutoff)
62    problem = FitProblem(M)
63
64Assume that bumps has been installed and the bumps command is available.
65Maybe need to set the path to sasmodels/sasview
66using *PYTHONPATH=path/to/sasmodels:path/to/sasview/src*.
67To run the model use the *bumps* program::
68
69    $ bumps example/model.py --preview
70
71Using sasmodels directly
72========================
73
74Bumps has a notion of parameter boxes in which you can set and retrieve
75values.  Instead of using bumps, you can create a directly callable function
76with :class:`sasmodels.direct_model.DirectModel`.  The resulting object *f*
77will be callable as *f(par=value, ...)*, returning the $I(q)$ for the $q$
78values in the data.  Polydisperse parameters use the same naming conventions
79as in the bumps model, with e.g., radius_pd being the polydispersity associated
80with radius.
81
82Getting a simple function that you can call on a set of q values and return
83a result is not so simple.  Since the time critical use case (fitting) involves
84calling the function over and over with identical $q$ values, we chose to
85optimize the call by only transfering the $q$ values to the GPU once at the
86start of the fit.  We do this by creating a :class:`sasmodels.kernel.Kernel`
87object from the :class:`sasmodels.kernel.KernelModel` returned from
88:func:`sasmodels.core.load_model` using the
89:meth:`sasmodels.kernel.KernelModel.make_kernel` method.  What it actual
90does depends on whether it is running as a DLL, as OpenCL or as a pure
91python kernel.  Once the kernel is in hand, we can then marshal a set of
92parameters into a :class:`sasmodels.details.CallDetails` object and ship it to
93the kernel using the :func:`sansmodels.direct_model.call_kernel` function.  An
94example should help, *example/cylinder_eval.py*::
95
96    from numpy import logspace
97    from matplotlib import pyplot as plt
98    from sasmodels.core import load_model
99    from sasmodels.direct_model import call_kernel
100
101    model = load_model('cylinder')
102    q = logspace(-3, -1, 200)
103    kernel = model.make_kernel([q])
104    Iq = call_kernel(kernel, dict(radius=200.))
105    plt.loglog(q, Iq)
106    plt.show()
Note: See TracBrowser for help on using the repository browser.