source: sasmodels/doc/guide/plugin.rst @ df87acf

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since df87acf was 2015f02, checked in by smk78, 6 years ago

Added definition of def random() to plugin.rst

  • Property mode set to 100644
File size: 46.3 KB
RevLine 
[990d8df]1.. _Writing_a_Plugin:
2
3Writing a Plugin Model
4======================
5
6Overview
7^^^^^^^^
8
9In addition to the models provided with the sasmodels package, you are free to
10create your own models.
11
12Models can be of three types:
13
14- A pure python model : Example -
15  `broadpeak.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/broad_peak.py>`_
16
17- A python model with embedded C : Example -
18  `sphere.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/sphere.py>`_
19
20- A python wrapper with separate C code : Example -
21  `cylinder.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/cylinder.py>`_,
22  `cylinder.c <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/cylinder.c>`_
23
24When using SasView, plugin models should be saved to the SasView
25*plugin_models* folder *C:\\Users\\{username}\\.sasview\\plugin_models*
26(on Windows) or */Users/{username}/.sasview\\plugin_models* (on Mac).
27The next time SasView is started it will compile the plugin and add
28it to the list of *Plugin Models* in a FitPage.  Scripts can load
29the models from anywhere.
30
31The built-in modules are available in the *models* subdirectory
32of the sasmodels package.  For SasView on Windows, these will
33be found in *C:\\Program Files (x86)\\SasView\\sasmodels-data\\models*.
34On Mac OSX, these will be within the application bundle as
35*/Applications/SasView 4.0.app/Contents/Resources/sasmodels-data/models*.
36
37Other models are available for download from the
38`Model Marketplace <http://marketplace.sasview.org/>`_. You can contribute your
39own models to the Marketplace as well.
40
41Create New Model Files
42^^^^^^^^^^^^^^^^^^^^^^
43
44Copy the appropriate files to your plugin models directory (we recommend
45using the examples above as templates) as mymodel.py (and mymodel.c, etc)
46as required, where "mymodel" is the name for the model you are creating.
47
48*Please follow these naming rules:*
49
50- No capitalization and thus no CamelCase
51- If necessary use underscore to separate words (i.e. barbell not BarBell or
52  broad_peak not BroadPeak)
53- Do not include "model" in the name (i.e. barbell not BarBellModel)
54
55
56Edit New Model Files
57^^^^^^^^^^^^^^^^^^^^
58
59Model Contents
60..............
61
62The model interface definition is in the .py file.  This file contains:
63
64- a **model name**:
65   - this is the **name** string in the *.py* file
66   - titles should be:
67
68    - all in *lower* case
69    - without spaces (use underscores to separate words instead)
70    - without any capitalization or CamelCase
71    - without incorporating the word "model"
72    - examples: *barbell* **not** *BarBell*; *broad_peak* **not** *BroadPeak*;
73      *barbell* **not** *BarBellModel*
74
75- a **model title**:
76   - this is the **title** string in the *.py* file
77   - this is a one or two line description of the model, which will appear
78     at the start of the model documentation and as a tooltip in the SasView GUI
79
[3048ec6]80- a **short description**:
[990d8df]81   - this is the **description** string in the *.py* file
82   - this is a medium length description which appears when you click
83     *Description* on the model FitPage
84
85- a **parameter table**:
86   - this will be auto-generated from the *parameters* in the *.py* file
87
88- a **long description**:
89   - this is ReStructuredText enclosed between the r""" and """ delimiters
90     at the top of the *.py* file
91   - what you write here is abstracted into the SasView help documentation
92   - this is what other users will refer to when they want to know what
93     your model does; so please be helpful!
94
95- a **definition** of the model:
96   - as part of the **long description**
97
98- a **formula** defining the function the model calculates:
99   - as part of the **long description**
100
101- an **explanation of the parameters**:
102   - as part of the **long description**
103   - explaining how the symbols in the formula map to the model parameters
104
105- a **plot** of the function, with a **figure caption**:
106   - this is automatically generated from your default parameters
107
108- at least one **reference**:
109   - as part of the **long description**
110   - specifying where the reader can obtain more information about the model
111
112- the **name of the author**
113   - as part of the **long description**
114   - the *.py* file should also contain a comment identifying *who*
115     converted/created the model file
116
117Models that do not conform to these requirements will *never* be incorporated
118into the built-in library.
119
120
121Model Documentation
122...................
123
124The *.py* file starts with an r (for raw) and three sets of quotes
125to start the doc string and ends with a second set of three quotes.
126For example::
127
128    r"""
129    Definition
130    ----------
131
132    The 1D scattering intensity of the sphere is calculated in the following
133    way (Guinier, 1955)
134
135    .. math::
136
137        I(q) = \frac{\text{scale}}{V} \cdot \left[
138            3V(\Delta\rho) \cdot \frac{\sin(qr) - qr\cos(qr))}{(qr)^3}
139            \right]^2 + \text{background}
140
141    where *scale* is a volume fraction, $V$ is the volume of the scatterer,
142    $r$ is the radius of the sphere and *background* is the background level.
143    *sld* and *sld_solvent* are the scattering length densities (SLDs) of the
144    scatterer and the solvent respectively, whose difference is $\Delta\rho$.
145
146    You can included figures in your documentation, as in the following
147    figure for the cylinder model.
148
149    .. figure:: img/cylinder_angle_definition.jpg
150
151        Definition of the angles for oriented cylinders.
152
153    References
154    ----------
155
156    A Guinier, G Fournet, *Small-Angle Scattering of X-Rays*,
157    John Wiley and Sons, New York, (1955)
158    """
159
160This is where the FULL documentation for the model goes (to be picked up by
161the automatic documentation system).  Although it feels odd, you
162should start the documentation immediately with the **definition**---the model
163name, a brief description and the parameter table are automatically inserted
164above the definition, and the a plot of the model is automatically inserted
165before the **reference**.
166
167Figures can be included using the *figure* command, with the name
168of the *.png* file containing the figure and a caption to appear below the
169figure.  Figure numbers will be added automatically.
170
171See this `Sphinx cheat sheet <http://matplotlib.org/sampledoc/cheatsheet.html>`_
172for a quick guide to the documentation layout commands, or the
173`Sphinx Documentation <http://www.sphinx-doc.org/en/stable/>`_ for
174complete details.
175
176The model should include a **formula** written using LaTeX markup.
177The example above uses the *math* command to make a displayed equation.  You
178can also use *\$formula\$* for an inline formula. This is handy for defining
179the relationship between the model parameters and formula variables, such
180as the phrase "\$r\$ is the radius" used above.  The live demo MathJax
181page `<http://www.mathjax.org/>`_ is handy for checking that the equations
182will look like you intend.
183
184Math layout uses the `amsmath <http://www.ams.org/publications/authors/tex/amslatex>`_
185package for aligning equations (see amsldoc.pdf on that page for complete
186documentation). You will automatically be in an aligned environment, with
187blank lines separating the lines of the equation.  Place an ampersand before
188the operator on which to align.  For example::
189
190    .. math::
191
192      x + y &= 1 \\
193      y &= x - 1
194
195produces
196
197.. math::
198
199      x + y &= 1 \\
200      y &= x - 1
201
202If you need more control, use::
203
204    .. math::
205        :nowrap:
206
207
208Model Definition
209................
210
211Following the documentation string, there are a series of definitions::
212
213    name = "sphere"  # optional: defaults to the filename without .py
214
215    title = "Spheres with uniform scattering length density"
216
217    description = """\
218    P(q)=(scale/V)*[3V(sld-sld_solvent)*(sin(qr)-qr cos(qr))
219                    /(qr)^3]^2 + background
220        r: radius of sphere
221        V: The volume of the scatter
222        sld: the SLD of the sphere
223        sld_solvent: the SLD of the solvent
224    """
225
226    category = "shape:sphere"
227
228    single = True   # optional: defaults to True
229
230    opencl = False  # optional: defaults to False
231
232    structure_factor = False  # optional: defaults to False
233
234**name = "mymodel"** defines the name of the model that is shown to the user.
[3048ec6]235If it is not provided it will use the name of the model file. The name must
236be a valid variable name, starting with a letter and contains only letters,
237numbers or underscore.  Spaces, dashes, and other symbols are not permitted.
[990d8df]238
239**title = "short description"** is short description of the model which
240is included after the model name in the automatically generated documentation.
241The title can also be used for a tooltip.
242
243**description = """doc string"""** is a longer description of the model. It
244shows up when you press the "Description" button of the SasView FitPage.
245It should give a brief description of the equation and the parameters
246without the need to read the entire model documentation. The triple quotes
247allow you to write the description over multiple lines. Keep the lines
248short since the GUI will wrap each one separately if they are too long.
249**Make sure the parameter names in the description match the model definition!**
250
251**category = "shape:sphere"** defines where the model will appear in the
252model documentation.  In this example, the model will appear alphabetically
253in the list of spheroid models in the *Shape* category.
254
255**single = True** indicates that the model can be run using single
256precision floating point values.  Set it to False if the numerical
257calculation for the model is unstable, which is the case for about 20 of
258the built in models.  It is worthwhile modifying the calculation to support
259single precision, allowing models to run up to 10 times faster.  The
260section `Test_Your_New_Model`_  describes how to compare model values for
261single vs. double precision so you can decide if you need to set
262single to False.
263
264**opencl = False** indicates that the model should not be run using OpenCL.
265This may be because the model definition includes code that cannot be
266compiled for the GPU (for example, goto statements).  It can also be used
267for large models which can't run on most GPUs.  This flag has not been
268used on any of the built in models; models which were failing were
269streamlined so this flag was not necessary.
270
271**structure_factor = True** indicates that the model can be used as a
272structure factor to account for interactions between particles.  See
273`Form_Factors`_ for more details.
274
275Model Parameters
276................
277
278Next comes the parameter table.  For example::
279
280    # pylint: disable=bad-whitespace, line-too-long
281    #   ["name",        "units", default, [min, max], "type",    "description"],
282    parameters = [
283        ["sld",         "1e-6/Ang^2",  1, [-inf, inf], "sld",    "Layer scattering length density"],
284        ["sld_solvent", "1e-6/Ang^2",  6, [-inf, inf], "sld",    "Solvent scattering length density"],
285        ["radius",      "Ang",        50, [0, inf],    "volume", "Sphere radius"],
286    ]
287    # pylint: enable=bad-whitespace, line-too-long
288
289**parameters = [["name", "units", default, [min,max], "type", "tooltip"],...]**
290defines the parameters that form the model.
291
292**Note: The order of the parameters in the definition will be the order of the
293parameters in the user interface and the order of the parameters in Iq(),
[108e70e]294Iqac(), Iqabc() and form_volume(). And** *scale* **and** *background*
295**parameters are implicit to all models, so they do not need to be included
296in the parameter table.**
[990d8df]297
298- **"name"** is the name of the parameter shown on the FitPage.
299
[3048ec6]300  - the name must be a valid variable name, starting with a letter and
301    containing only letters, numbers and underscore.
302
[990d8df]303  - parameter names should follow the mathematical convention; e.g.,
304    *radius_core* not *core_radius*, or *sld_solvent* not *solvent_sld*.
305
306  - model parameter names should be consistent between different models,
307    so *sld_solvent*, for example, should have exactly the same name
308    in every model.
309
310  - to see all the parameter names currently in use, type the following in the
311    python shell/editor under the Tools menu::
312
313       import sasmodels.list_pars
314       sasmodels.list_pars.list_pars()
315
316    *re-use* as many as possible!!!
317
318  - use "name[n]" for multiplicity parameters, where *n* is the name of
319    the parameter defining the number of shells/layers/segments, etc.
320
321- **"units"** are displayed along with the parameter name
322
323  - every parameter should have units; use "None" if there are no units.
324
325  - **sld's should be given in units of 1e-6/Ang^2, and not simply
326    1/Ang^2 to be consistent with the builtin models.  Adjust your formulas
327    appropriately.**
328
329  - fancy units markup is available for some units, including::
330
331        Ang, 1/Ang, 1/Ang^2, 1e-6/Ang^2, degrees, 1/cm, Ang/cm, g/cm^3, mg/m^2
332
333  - the list of units is defined in the variable *RST_UNITS* within
334    `sasmodels/generate.py <https://github.com/SasView/sasmodels/tree/master/sasmodels/generate.py>`_
335
336    - new units can be added using the macros defined in *doc/rst_prolog*
337      in the sasmodels source.
338    - units should be properly formatted using sub-/super-scripts
339      and using negative exponents instead of the / operator, though
340      the unit name should use the / operator for consistency.
341    - please post a message to the SasView developers mailing list with your changes.
342
343- **default** is the initial value for the parameter.
344
345  - **the parameter default values are used to auto-generate a plot of
346    the model function in the documentation.**
347
348- **[min, max]** are the lower and upper limits on the parameter.
349
350  - lower and upper limits can be any number, or *-inf* or *inf*.
351
352  - the limits will show up as the default limits for the fit making it easy,
353    for example, to force the radius to always be greater than zero.
354
355  - these are hard limits defining the valid range of parameter values;
356    polydisperity distributions will be truncated at the limits.
357
358- **"type"** can be one of: "", "sld", "volume", or "orientation".
359
360  - "sld" parameters can have magnetic moments when fitting magnetic models;
361    depending on the spin polarization of the beam and the $q$ value being
362    examined, the effective sld for that material will be used to compute the
363    scattered intensity.
364
[108e70e]365  - "volume" parameters are passed to Iq(), Iqac(), Iqabc() and form_volume(),
366    and have polydispersity loops generated automatically.
[990d8df]367
[108e70e]368  - "orientation" parameters are not passed, but instead are combined with
369    orientation dispersity to translate *qx* and *qy* to *qa*, *qb* and *qc*.
370    These parameters should appear at the end of the table with the specific
371    names *theta*, *phi* and for asymmetric shapes *psi*, in that order.
[990d8df]372
[9844c3a]373Some models will have integer parameters, such as number of pearls in the
374pearl necklace model, or number of shells in the multi-layer vesicle model.
375The optimizers in BUMPS treat all parameters as floating point numbers which
376can take arbitrary values, even for integer parameters, so your model should
377round the incoming parameter value to the nearest integer inside your model
378you should round to the nearest integer.  In C code, you can do this using::
379
380    static double
381    Iq(double q, ..., double fp_n, ...)
382    {
383        int n = (int)(fp_n + 0.5);
384        ...
385    }
386
387in python::
388
389    def Iq(q, ..., n, ...):
390        n = int(n+0.5)
391        ...
392
[3048ec6]393Derivative based optimizers such as Levenberg-Marquardt will not work
[9844c3a]394for integer parameters since the partial derivative is always zero, but
395the remaining optimizers (DREAM, differential evolution, Nelder-Mead simplex)
396will still function.
397
[990d8df]398Model Computation
399.................
400
401Models can be defined as pure python models, or they can be a mixture of
402python and C models.  C models are run on the GPU if it is available,
403otherwise they are compiled and run on the CPU.
404
405Models are defined by the scattering kernel, which takes a set of parameter
406values defining the shape, orientation and material, and returns the
407expected scattering. Polydispersity and angular dispersion are defined
408by the computational infrastructure.  Any parameters defined as "volume"
409parameters are polydisperse, with polydispersity defined in proportion
410to their value.  "orientation" parameters use angular dispersion defined
411in degrees, and are not relative to the current angle.
412
413Based on a weighting function $G(x)$ and a number of points $n$, the
414computed value is
415
416.. math::
417
418     \hat I(q)
419     = \frac{\int G(x) I(q, x)\,dx}{\int G(x) V(x)\,dx}
420     \approx \frac{\sum_{i=1}^n G(x_i) I(q,x_i)}{\sum_{i=1}^n G(x_i) V(x_i)}
421
[3048ec6]422That is, the individual models do not need to include polydispersity
[990d8df]423calculations, but instead rely on numerical integration to compute the
[108e70e]424appropriately smeared pattern.
[990d8df]425
[2015f02]426Each .py file also contains a function::
427
428        def random():
429        ...
430       
431This function provides a model-specific random parameter set which shows model
432features in the USANS to SANS range.  For example, core-shell sphere sets the
433outer radius of the sphere logarithmically in `[20, 20,000]`, which sets the Q
434value for the transition from flat to falling.  It then uses a beta distribution
435to set the percentage of the shape which is shell, giving a preference for very
436thin or very thick shells (but never 0% or 100%).  Using `-sets=10` in sascomp
437should show a reasonable variety of curves over the default sascomp q range. 
438The parameter set is returned as a dictionary of `{parameter: value, ...}`
439Any model parameters not included in the dictionary will default according to
440the code in the `_randomize_one()` function from sasmodels/compare.py.
441
[990d8df]442Python Models
443.............
444
445For pure python models, define the *Iq* function::
446
447      import numpy as np
448      from numpy import cos, sin, ...
449
450      def Iq(q, par1, par2, ...):
451          return I(q, par1, par2, ...)
452      Iq.vectorized = True
453
454The parameters *par1, par2, ...* are the list of non-orientation parameters
455to the model in the order that they appear in the parameter table.
[3048ec6]456**Note that the auto-generated model file uses** *x* **rather than** *q*.
[990d8df]457
458The *.py* file should import trigonometric and exponential functions from
459numpy rather than from math.  This lets us evaluate the model for the whole
460range of $q$ values at once rather than looping over each $q$ separately in
461python.  With $q$ as a vector, you cannot use if statements, but must instead
462do tricks like
463
464::
465
466     a = x*q*(q>0) + y*q*(q<=0)
467
468or
469
470::
471
472     a = np.empty_like(q)
473     index = q>0
474     a[index] = x*q[index]
475     a[~index] = y*q[~index]
476
477which sets $a$ to $q \cdot x$ if $q$ is positive or $q \cdot y$ if $q$
478is zero or negative. If you have not converted your function to use $q$
479vectors, you can set the following and it will only receive one $q$
480value at a time::
481
482    Iq.vectorized = False
483
484Return np.NaN if the parameters are not valid (e.g., cap_radius < radius in
485barbell).  If I(q; pars) is NaN for any $q$, then those parameters will be
486ignored, and not included in the calculation of the weighted polydispersity.
487
488Models should define *form_volume(par1, par2, ...)* where the parameter
489list includes the *volume* parameters in order.  This is used for a weighted
490volume normalization so that scattering is on an absolute scale.  If
491*form_volume* is not defined, then the default *form_volume = 1.0* will be
492used.
493
494Embedded C Models
495.................
496
497Like pure python models, inline C models need to define an *Iq* function::
498
499    Iq = """
500        return I(q, par1, par2, ...);
501    """
502
503This expands into the equivalent C code::
504
505    #include <math.h>
506    double Iq(double q, double par1, double par2, ...);
507    double Iq(double q, double par1, double par2, ...)
508    {
509        return I(q, par1, par2, ...);
510    }
511
512*form_volume* defines the volume of the shape. As in python models, it
513includes only the volume parameters.
514
515**source=['fn.c', ...]** includes the listed C source files in the
[108e70e]516program before *Iq* and *form_volume* are defined. This allows you to
[ef85a09]517extend the library of C functions available to your model.
518
519*c_code* includes arbitrary C code into your kernel, which can be
520handy for defining helper functions for *Iq* and *form_volume*. Note that
[108e70e]521you can put the full function definition for *Iq* and *form_volume*
[ef85a09]522(include function declaration) into *c_code* as well, or put them into an
523external C file and add that file to the list of sources.
[990d8df]524
525Models are defined using double precision declarations for the
526parameters and return values.  When a model is run using single
527precision or long double precision, each variable is converted
528to the target type, depending on the precision requested.
529
530**Floating point constants must include the decimal point.**  This allows us
531to convert values such as 1.0 (double precision) to 1.0f (single precision)
532so that expressions that use these values are not promoted to double precision
533expressions.  Some graphics card drivers are confused when functions
534that expect floating point values are passed integers, such as 4*atan(1); it
535is safest to not use integers in floating point expressions.  Even better,
536use the builtin constant M_PI rather than 4*atan(1); it is faster and smaller!
537
538The C model operates on a single $q$ value at a time.  The code will be
539run in parallel across different $q$ values, either on the graphics card
540or the processor.
541
542Rather than returning NAN from Iq, you must define the *INVALID(v)*.  The
543*v* parameter lets you access all the parameters in the model using
544*v.par1*, *v.par2*, etc. For example::
545
546    #define INVALID(v) (v.bell_radius < v.radius)
547
[ef85a09]548The INVALID define can go into *Iq*, or *c_code*, or an external C file
549listed in *source*.
550
[108e70e]551Oriented Shapes
552...............
553
554If the scattering is dependent on the orientation of the shape, then you
555will need to include *orientation* parameters *theta*, *phi* and *psi*
[7e6bc45e]556at the end of the parameter table.  As described in the section
557:ref:`orientation`, the individual $(q_x, q_y)$ points on the detector will
558be rotated into $(q_a, q_b, q_c)$ points relative to the sample in its
559canonical orientation with $a$-$b$-$c$ aligned with $x$-$y$-$z$ in the
560laboratory frame and beam travelling along $-z$.
561
562The oriented C model is called using *Iqabc(qa, qb, qc, par1, par2, ...)* where
[108e70e]563*par1*, etc. are the parameters to the model.  If the shape is rotationally
564symmetric about *c* then *psi* is not needed, and the model is called
565as *Iqac(qab, qc, par1, par2, ...)*.  In either case, the orientation
566parameters are not included in the function call.
567
568For 1D oriented shapes, an integral over all angles is usually needed for
[b85227d]569the *Iq* function. Given symmetry and the substitution $u = \cos(\alpha)$,
[108e70e]570$du = -\sin(\alpha)\,d\alpha$ this becomes
571
572.. math::
573
[b85227d]574    I(q) &= \frac{1}{4\pi} \int_{-\pi/2}^{pi/2} \int_{-pi}^{pi}
575            F(q_a, q_b, q_c)^2 \sin(\alpha)\,d\beta\,d\alpha \\
576        &= \frac{8}{4\pi} \int_{0}^{pi/2} \int_{0}^{\pi/2}
577            F^2 \sin(\alpha)\,d\beta\,d\alpha \\
578        &= \frac{8}{4\pi} \int_1^0 \int_{0}^{\pi/2} - F^2 \,d\beta\,du \\
579        &= \frac{8}{4\pi} \int_0^1 \int_{0}^{\pi/2} F^2 \,d\beta\,du
580
581for
582
583.. math::
584
585    q_a &= q \sin(\alpha)\sin(\beta) = q \sqrt{1-u^2} \sin(\beta) \\
586    q_b &= q \sin(\alpha)\cos(\beta) = q \sqrt{1-u^2} \cos(\beta) \\
587    q_c &= q \cos(\alpha) = q u
[108e70e]588
589Using the $z, w$ values for Gauss-Legendre integration in "lib/gauss76.c", the
590numerical integration is then::
591
592    double outer_sum = 0.0;
593    for (int i = 0; i < GAUSS_N; i++) {
594        const double cos_alpha = 0.5*GAUSS_Z[i] + 0.5;
595        const double sin_alpha = sqrt(1.0 - cos_alpha*cos_alpha);
596        const double qc = cos_alpha * q;
597        double inner_sum = 0.0;
598        for (int j = 0; j < GAUSS_N; j++) {
599            const double beta = M_PI_4 * GAUSS_Z[j] + M_PI_4;
600            double sin_beta, cos_beta;
601            SINCOS(beta, sin_beta, cos_beta);
602            const double qa = sin_alpha * sin_beta * q;
[b85227d]603            const double qb = sin_alpha * cos_beta * q;
604            const double form = Fq(qa, qb, qc, ...);
605            inner_sum += GAUSS_W[j] * form * form;
[108e70e]606        }
607        outer_sum += GAUSS_W[i] * inner_sum;
608    }
609    outer_sum *= 0.25; // = 8/(4 pi) * outer_sum * (pi/2) / 4
610
611The *z* values for the Gauss-Legendre integration extends from -1 to 1, so
612the double sum of *w[i]w[j]* explains the factor of 4.  Correcting for the
613average *dz[i]dz[j]* gives $(1-0) \cdot (\pi/2-0) = \pi/2$.  The $8/(4 \pi)$
614factor comes from the integral over the quadrant.  With less symmetry (eg.,
615in the bcc and fcc paracrystal models), then an integral over the entire
616sphere may be necessary.
617
618For simpler models which are rotationally symmetric a single integral
619suffices:
620
621.. math::
622
[b85227d]623    I(q) &= \frac{1}{\pi}\int_{-\pi/2}^{\pi/2}
624            F(q_{ab}, q_c)^2 \sin(\alpha)\,d\alpha/\pi \\
625        &= \frac{2}{\pi} \int_0^1 F^2\,du
626
627for
628
629.. math::
630
631    q_{ab} &= q \sin(\alpha) = q \sqrt{1 - u^2} \\
632    q_c &= q \cos(\alpha) = q u
633
[108e70e]634
635with integration loop::
636
637    double sum = 0.0;
638    for (int i = 0; i < GAUSS_N; i++) {
639        const double cos_alpha = 0.5*GAUSS_Z[i] + 0.5;
640        const double sin_alpha = sqrt(1.0 - cos_alpha*cos_alpha);
641        const double qab = sin_alpha * q;
[b85227d]642        const double qc = cos_alpha * q;
643        const double form = Fq(qab, qc, ...);
644        sum += GAUSS_W[j] * form * form;
[108e70e]645    }
646    sum *= 0.5; // = 2/pi * sum * (pi/2) / 2
647
648Magnetism
649.........
650
651Magnetism is supported automatically for all shapes by modifying the
652effective SLD of particle according to the Halpern-Johnson vector
[c654160]653describing the interaction between neutron spin and magnetic field.  All
[108e70e]654parameters marked as type *sld* in the parameter table are treated as
655possibly magnetic particles with magnitude *M0* and direction
656*mtheta* and *mphi*.  Polarization parameters are also provided
657automatically for magnetic models to set the spin state of the measurement.
658
659For more complicated systems where magnetism is not uniform throughout
660the individual particles, you will need to write your own models.
661You should not mark the nuclear sld as type *sld*, but instead leave
662them unmarked and provide your own magnetism and polarization parameters.
663For 2D measurements you will need $(q_x, q_y)$ values for the measurement
664to compute the proper magnetism and orientation, which you can implement
665using *Iqxy(qx, qy, par1, par2, ...)*.
666
[990d8df]667Special Functions
668.................
669
670The C code follows the C99 standard, with the usual math functions,
671as defined in
672`OpenCL <https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/mathFunctions.html>`_.
673This includes the following:
674
675    M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E:
676        $\pi$, $\pi/2$, $\pi/4$, $1/\sqrt{2}$ and Euler's constant $e$
[d0dc9a3]677    exp, log, pow(x,y), expm1, log1p, sqrt, cbrt:
678        Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\ln 1 + x$,
679        $\sqrt{x}$, $\sqrt[3]{x}$. The functions expm1(x) and log1p(x)
680        are accurate across all $x$, including $x$ very close to zero.
[990d8df]681    sin, cos, tan, asin, acos, atan:
682        Trigonometry functions and inverses, operating on radians.
683    sinh, cosh, tanh, asinh, acosh, atanh:
684        Hyperbolic trigonometry functions.
685    atan2(y,x):
686        Angle from the $x$\ -axis to the point $(x,y)$, which is equal to
687        $\tan^{-1}(y/x)$ corrected for quadrant.  That is, if $x$ and $y$ are
688        both negative, then atan2(y,x) returns a value in quadrant III where
689        atan(y/x) would return a value in quadrant I. Similarly for
690        quadrants II and IV when $x$ and $y$ have opposite sign.
[d0dc9a3]691    fabs(x), fmin(x,y), fmax(x,y), trunc, rint:
[990d8df]692        Floating point functions.  rint(x) returns the nearest integer.
693    NAN:
694        NaN, Not a Number, $0/0$.  Use isnan(x) to test for NaN.  Note that
695        you cannot use :code:`x == NAN` to test for NaN values since that
[d0dc9a3]696        will always return false.  NAN does not equal NAN!  The alternative,
697        :code:`x != x` may fail if the compiler optimizes the test away.
[990d8df]698    INFINITY:
699        $\infty, 1/0$.  Use isinf(x) to test for infinity, or isfinite(x)
700        to test for finite and not NaN.
701    erf, erfc, tgamma, lgamma:  **do not use**
702        Special functions that should be part of the standard, but are missing
703        or inaccurate on some platforms. Use sas_erf, sas_erfc and sas_gamma
704        instead (see below). Note: lgamma(x) has not yet been tested.
705
706Some non-standard constants and functions are also provided:
707
708    M_PI_180, M_4PI_3:
709        $\frac{\pi}{180}$, $\frac{4\pi}{3}$
710    SINCOS(x, s, c):
711        Macro which sets s=sin(x) and c=cos(x). The variables *c* and *s*
712        must be declared first.
713    square(x):
714        $x^2$
715    cube(x):
716        $x^3$
717    sas_sinx_x(x):
718        $\sin(x)/x$, with limit $\sin(0)/0 = 1$.
719    powr(x, y):
720        $x^y$ for $x \ge 0$; this is faster than general $x^y$ on some GPUs.
721    pown(x, n):
722        $x^n$ for $n$ integer; this is faster than general $x^n$ on some GPUs.
723    FLOAT_SIZE:
724        The number of bytes in a floating point value.  Even though all
725        variables are declared double, they may be converted to single
726        precision float before running. If your algorithm depends on
727        precision (which is not uncommon for numerical algorithms), use
728        the following::
729
730            #if FLOAT_SIZE>4
731            ... code for double precision ...
732            #else
733            ... code for single precision ...
734            #endif
735    SAS_DOUBLE:
736        A replacement for :code:`double` so that the declared variable will
737        stay double precision; this should generally not be used since some
738        graphics cards do not support double precision.  There is no provision
739        for forcing a constant to stay double precision.
740
741The following special functions and scattering calculations are defined in
742`sasmodels/models/lib <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib>`_.
743These functions have been tuned to be fast and numerically stable down
744to $q=0$ even in single precision.  In some cases they work around bugs
745which appear on some platforms but not others, so use them where needed.
746Add the files listed in :code:`source = ["lib/file.c", ...]` to your *model.py*
747file in the order given, otherwise these functions will not be available.
748
749    polevl(x, c, n):
750        Polynomial evaluation $p(x) = \sum_{i=0}^n c_i x^i$ using Horner's
751        method so it is faster and more accurate.
752
753        $c = \{c_n, c_{n-1}, \ldots, c_0 \}$ is the table of coefficients,
754        sorted from highest to lowest.
755
756        :code:`source = ["lib/polevl.c", ...]` (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/polevl.c>`_)
757
758    p1evl(x, c, n):
759        Evaluation of normalized polynomial $p(x) = x^n + \sum_{i=0}^{n-1} c_i x^i$
760        using Horner's method so it is faster and more accurate.
761
762        $c = \{c_{n-1}, c_{n-2} \ldots, c_0 \}$ is the table of coefficients,
763        sorted from highest to lowest.
764
765        :code:`source = ["lib/polevl.c", ...]`
[870a2f4]766        (`polevl.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/polevl.c>`_)
[990d8df]767
768    sas_gamma(x):
[30b60d2]769        Gamma function sas_gamma\ $(x) = \Gamma(x)$.
[990d8df]770
771        The standard math function, tgamma(x) is unstable for $x < 1$
772        on some platforms.
773
[870a2f4]774        :code:`source = ["lib/sas_gamma.c", ...]`
775        (`sas_gamma.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gamma.c>`_)
[990d8df]776
777    sas_erf(x), sas_erfc(x):
778        Error function
[30b60d2]779        sas_erf\ $(x) = \frac{2}{\sqrt\pi}\int_0^x e^{-t^2}\,dt$
[990d8df]780        and complementary error function
[30b60d2]781        sas_erfc\ $(x) = \frac{2}{\sqrt\pi}\int_x^{\infty} e^{-t^2}\,dt$.
[990d8df]782
783        The standard math functions erf(x) and erfc(x) are slower and broken
784        on some platforms.
785
786        :code:`source = ["lib/polevl.c", "lib/sas_erf.c", ...]`
[870a2f4]787        (`sas_erf.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_erf.c>`_)
[990d8df]788
789    sas_J0(x):
[30b60d2]790        Bessel function of the first kind sas_J0\ $(x)=J_0(x)$ where
[990d8df]791        $J_0(x) = \frac{1}{\pi}\int_0^\pi \cos(x\sin(\tau))\,d\tau$.
792
793        The standard math function j0(x) is not available on all platforms.
794
795        :code:`source = ["lib/polevl.c", "lib/sas_J0.c", ...]`
[870a2f4]796        (`sas_J0.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J0.c>`_)
[990d8df]797
798    sas_J1(x):
[30b60d2]799        Bessel function of the first kind  sas_J1\ $(x)=J_1(x)$ where
[990d8df]800        $J_1(x) = \frac{1}{\pi}\int_0^\pi \cos(\tau - x\sin(\tau))\,d\tau$.
801
802        The standard math function j1(x) is not available on all platforms.
803
804        :code:`source = ["lib/polevl.c", "lib/sas_J1.c", ...]`
[870a2f4]805        (`sas_J1.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J1.c>`_)
[990d8df]806
807    sas_JN(n, x):
[30b60d2]808        Bessel function of the first kind and integer order $n$,
809        sas_JN\ $(n, x) =J_n(x)$ where
[990d8df]810        $J_n(x) = \frac{1}{\pi}\int_0^\pi \cos(n\tau - x\sin(\tau))\,d\tau$.
[30b60d2]811        If $n$ = 0 or 1, it uses sas_J0($x$) or sas_J1($x$), respectively.
[990d8df]812
813        The standard math function jn(n, x) is not available on all platforms.
814
815        :code:`source = ["lib/polevl.c", "lib/sas_J0.c", "lib/sas_J1.c", "lib/sas_JN.c", ...]`
[870a2f4]816        (`sas_JN.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_JN.c>`_)
[990d8df]817
818    sas_Si(x):
[30b60d2]819        Sine integral Si\ $(x) = \int_0^x \tfrac{\sin t}{t}\,dt$.
[990d8df]820
821        This function uses Taylor series for small and large arguments:
822
823        For large arguments,
824
825        .. math::
826
827             \text{Si}(x) \sim \frac{\pi}{2}
828             - \frac{\cos(x)}{x}\left(1 - \frac{2!}{x^2} + \frac{4!}{x^4} - \frac{6!}{x^6} \right)
829             - \frac{\sin(x)}{x}\left(\frac{1}{x} - \frac{3!}{x^3} + \frac{5!}{x^5} - \frac{7!}{x^7}\right)
830
831        For small arguments,
832
833        .. math::
834
835           \text{Si}(x) \sim x
836           - \frac{x^3}{3\times 3!} + \frac{x^5}{5 \times 5!} - \frac{x^7}{7 \times 7!}
837           + \frac{x^9}{9\times 9!} - \frac{x^{11}}{11\times 11!}
838
839        :code:`source = ["lib/Si.c", ...]`
[f796469]840        (`Si.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_Si.c>`_)
[990d8df]841
842    sas_3j1x_x(x):
843        Spherical Bessel form
[30b60d2]844        sph_j1c\ $(x) = 3 j_1(x)/x = 3 (\sin(x) - x \cos(x))/x^3$,
[990d8df]845        with a limiting value of 1 at $x=0$, where $j_1(x)$ is the spherical
846        Bessel function of the first kind and first order.
847
848        This function uses a Taylor series for small $x$ for numerical accuracy.
849
850        :code:`source = ["lib/sas_3j1x_x.c", ...]`
[870a2f4]851        (`sas_3j1x_x.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_3j1x_x.c>`_)
[990d8df]852
853
854    sas_2J1x_x(x):
[30b60d2]855        Bessel form sas_J1c\ $(x) = 2 J_1(x)/x$, with a limiting value
[990d8df]856        of 1 at $x=0$, where $J_1(x)$ is the Bessel function of first kind
857        and first order.
858
859        :code:`source = ["lib/polevl.c", "lib/sas_J1.c", ...]`
[870a2f4]860        (`sas_J1.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J1.c>`_)
[990d8df]861
862
863    Gauss76Z[i], Gauss76Wt[i]:
864        Points $z_i$ and weights $w_i$ for 76-point Gaussian quadrature, respectively,
865        computing $\int_{-1}^1 f(z)\,dz \approx \sum_{i=1}^{76} w_i\,f(z_i)$.
866
867        Similar arrays are available in :code:`gauss20.c` for 20-point
868        quadrature and in :code:`gauss150.c` for 150-point quadrature.
[d0dc9a3]869        The macros :code:`GAUSS_N`, :code:`GAUSS_Z` and :code:`GAUSS_W` are
870        defined so that you can change the order of the integration by
871        selecting an different source without touching the C code.
[990d8df]872
873        :code:`source = ["lib/gauss76.c", ...]`
[870a2f4]874        (`gauss76.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/gauss76.c>`_)
[990d8df]875
876
877
878Problems with C models
879......................
880
881The graphics processor (GPU) in your computer is a specialized computer tuned
882for certain kinds of problems.  This leads to strange restrictions that you
883need to be aware of.  Your code may work fine on some platforms or for some
884models, but then return bad values on other platforms.  Some examples of
885particular problems:
886
887  **(1) Code is too complex, or uses too much memory.** GPU devices only
888  have a limited amount of memory available for each processor. If you run
889  programs which take too much memory, then rather than running multiple
890  values in parallel as it usually does, the GPU may only run a single
891  version of the code at a time, making it slower than running on the CPU.
892  It may fail to run on some platforms, or worse, cause the screen to go
893  blank or the system to reboot.
894
895  **(2) Code takes too long.** Because GPU devices are used for the computer
896  display, the OpenCL drivers are very careful about the amount of time they
897  will allow any code to run. For example, on OS X, the model will stop
898  running after 5 seconds regardless of whether the computation is complete.
899  You may end up with only some of your 2D array defined, with the rest
900  containing random data. Or it may cause the screen to go blank or the
901  system to reboot.
902
903  **(3) Memory is not aligned**. The GPU hardware is specialized to operate
904  on multiple values simultaneously. To keep the GPU simple the values in
905  memory must be aligned with the different GPU compute engines. Not
906  following these rules can lead to unexpected values being loaded into
907  memory, and wrong answers computed. The conclusion from a very long and
908  strange debugging session was that any arrays that you declare in your
909  model should be a multiple of four. For example::
910
911      double Iq(q, p1, p2, ...)
912      {
913          double vector[8];  // Only going to use seven slots, but declare 8
914          ...
915      }
916
917The first step when your model is behaving strangely is to set
918**single=False**. This automatically restricts the model to only run on the
919CPU, or on high-end GPU cards. There can still be problems even on high-end
920cards, so you can force the model off the GPU by setting **opencl=False**.
921This runs the model as a normal C program without any GPU restrictions so
922you know that strange results are probably from your code rather than the
923environment. Once the code is debugged, you can compare your output to the
924output on the GPU.
925
926Although it can be difficult to get your model to work on the GPU, the reward
927can be a model that runs 1000x faster on a good card.  Even your laptop may
928show a 50x improvement or more over the equivalent pure python model.
929
930
931.. _Form_Factors:
932
933Form Factors
934............
935
936Away from the dilute limit you can estimate scattering including
937particle-particle interactions using $I(q) = P(q)*S(q)$ where $P(q)$
938is the form factor and $S(q)$ is the structure factor.  The simplest
939structure factor is the *hardsphere* interaction, which
940uses the effective radius of the form factor as an input to the structure
941factor model.  The effective radius is the average radius of the
942form averaged over all the polydispersity values.
943
944::
945
946    def ER(radius, thickness):
947        """Effective radius of a core-shell sphere."""
948        return radius + thickness
949
950Now consider the *core_shell_sphere*, which has a simple effective radius
951equal to the radius of the core plus the thickness of the shell, as
952shown above. Given polydispersity over *(r1, r2, ..., rm)* in radius and
953*(t1, t2, ..., tn)* in thickness, *ER* is called with a mesh
954grid covering all possible combinations of radius and thickness.
955That is, *radius* is *(r1, r2, ..., rm, r1, r2, ..., rm, ...)*
956and *thickness* is *(t1, t1, ... t1, t2, t2, ..., t2, ...)*.
957The *ER* function returns one effective radius for each combination.
958The effective radius calculator weights each of these according to
959the polydispersity distributions and calls the structure factor
960with the average *ER*.
961
962::
963
964    def VR(radius, thickness):
965        """Sphere and shell volumes for a core-shell sphere."""
966        whole = 4.0/3.0 * pi * (radius + thickness)**3
967        core = 4.0/3.0 * pi * radius**3
968        return whole, whole - core
969
970Core-shell type models have an additional volume ratio which scales
971the structure factor.  The *VR* function returns the volume of
972the whole sphere and the volume of the shell. Like *ER*, there is
973one return value for each point in the mesh grid.
974
975*NOTE: we may be removing or modifying this feature soon. As of the
976time of writing, core-shell sphere returns (1., 1.) for VR, giving a volume
977ratio of 1.0.*
978
979Unit Tests
980..........
981
982THESE ARE VERY IMPORTANT. Include at least one test for each model and
983PLEASE make sure that the answer value is correct (i.e. not a random number).
984
985::
986
987    tests = [
988        [{}, 0.2, 0.726362],
989        [{"scale": 1., "background": 0., "sld": 6., "sld_solvent": 1.,
990          "radius": 120., "radius_pd": 0.2, "radius_pd_n":45},
991         0.2, 0.228843],
992        [{"radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, "ER", 120.],
993        [{"radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, "VR", 1.],
994    ]
995
996
997**tests=[[{parameters}, q, result], ...]** is a list of lists.
998Each list is one test and contains, in order:
999
1000- a dictionary of parameter values. This can be *{}* using the default
1001  parameters, or filled with some parameters that will be different from the
1002  default, such as *{"radius":10.0, "sld":4}*. Unlisted parameters will
1003  be given the default values.
1004- the input $q$ value or tuple of $(q_x, q_y)$ values.
1005- the output $I(q)$ or $I(q_x,q_y)$ expected of the model for the parameters
1006  and input value given.
1007- input and output values can themselves be lists if you have several
1008  $q$ values to test for the same model parameters.
1009- for testing *ER* and *VR*, give the inputs as "ER" and "VR" respectively;
1010  the output for *VR* should be the sphere/shell ratio, not the individual
1011  sphere and shell values.
1012
1013.. _Test_Your_New_Model:
1014
1015Test Your New Model
1016^^^^^^^^^^^^^^^^^^^
1017
1018Minimal Testing
1019...............
1020
1021From SasView either open the Python shell (*Tools* > *Python Shell/Editor*)
1022or the plugin editor (*Fitting* > *Plugin Model Operations* > *Advanced
1023Plugin Editor*), load your model, and then select *Run > Check Model* from
1024the menu bar. An *Info* box will appear with the results of the compilation
1025and a check that the model runs.
1026
1027If you are not using sasmodels from SasView, skip this step.
1028
1029Recommended Testing
1030...................
1031
1032If the model compiles and runs, you can next run the unit tests that
1033you have added using the **test =** values.
1034
1035From SasView, switch to the *Shell* tab and type the following::
1036
1037    from sasmodels.model_test import run_one
1038    run_one("~/.sasview/plugin_models/model.py")
1039
1040This should print::
1041
1042    test_model_python (sasmodels.model_test.ModelTestCase) ... ok
1043
1044To check whether single precision is good enough, type the following::
1045
1046    from sasmodels.compare import main as compare
1047    compare("~/.sasview/plugin_models/model.py")
1048
1049This will pop up a plot showing the difference between single precision
1050and double precision on a range of $q$ values.
1051
1052::
1053
1054  demo = dict(scale=1, background=0,
1055              sld=6, sld_solvent=1,
1056              radius=120,
1057              radius_pd=.2, radius_pd_n=45)
1058
1059**demo={'par': value, ...}** in the model file sets the default values for
1060the comparison. You can include polydispersity parameters such as
1061*radius_pd=0.2, radius_pd_n=45* which would otherwise be zero.
1062
1063These commands can also be run directly in the python interpreter:
1064
1065    $ python -m sasmodels.model_test -v ~/.sasview/plugin_models/model.py
1066    $ python -m sasmodels.compare ~/.sasview/plugin_models/model.py
1067
1068The options to compare are quite extensive; type the following for help::
1069
1070    compare()
1071
1072Options will need to be passed as separate strings.
1073For example to run your model with a random set of parameters::
1074
1075    compare("-random", "-pars", "~/.sasview/plugin_models/model.py")
1076
1077For the random models,
1078
1079- *sld* will be in the range (-0.5,10.5),
1080- angles (*theta, phi, psi*) will be in the range (-180,180),
1081- angular dispersion will be in the range (0,45),
1082- polydispersity will be in the range (0,1)
1083- other values will be in the range (0, 2\ *v*), where *v* is the value
1084  of the parameter in demo.
1085
1086Dispersion parameters *n*\, *sigma* and *type* will be unchanged from
1087demo so that run times are more predictable (polydispersity calculated
1088across multiple parameters can be very slow).
1089
[3048ec6]1090If your model has 2D orientation calculation, then you should also
[990d8df]1091test with::
1092
1093    compare("-2d", "~/.sasview/plugin_models/model.py")
1094
1095Check The Docs
1096^^^^^^^^^^^^^^
1097
1098You can get a rough idea of how the documentation will look using the
1099following::
1100
1101    compare("-help", "~/.sasview/plugin_models/model.py")
1102
1103This does not use the same styling as the rest of the docs, but it will
1104allow you to check that your ReStructuredText and LaTeX formatting.
1105Here are some tools to help with the inevitable syntax errors:
1106
1107- `Sphinx cheat sheet <http://matplotlib.org/sampledoc/cheatsheet.html>`_
1108- `Sphinx Documentation <http://www.sphinx-doc.org/en/stable/>`_
1109- `MathJax <http://www.mathjax.org/>`_
1110- `amsmath <http://www.ams.org/publications/authors/tex/amslatex>`_
1111
1112There is also a neat online WYSIWYG ReStructuredText editor at
1113http://rst.ninjs.org\ .
1114
1115
1116Clean Lint - (Developer Version Only)
1117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1118
1119**NB: For now we are not providing pylint with the installer version
1120of SasView; so unless you have a SasView build environment available,
1121you can ignore this section!**
1122
1123Run the lint check with::
1124
1125    python -m pylint --rcfile=extra/pylint.rc ~/.sasview/plugin_models/model.py
1126
1127We are not aiming for zero lint just yet, only keeping it to a minimum.
1128For now, don't worry too much about *invalid-name*. If you really want a
1129variable name *Rg* for example because $R_g$ is the right name for the model
1130parameter then ignore the lint errors.  Also, ignore *missing-docstring*
[108e70e]1131for standard model functions *Iq*, *Iqac*, etc.
[990d8df]1132
1133We will have delinting sessions at the SasView Code Camps, where we can
1134decide on standards for model files, parameter names, etc.
1135
1136For now, you can tell pylint to ignore things.  For example, to align your
1137parameters in blocks::
1138
1139    # pylint: disable=bad-whitespace,line-too-long
1140    #   ["name",                  "units", default, [lower, upper], "type", "description"],
1141    parameters = [
1142        ["contrast_factor",       "barns",    10.0,  [-inf, inf], "", "Contrast factor of the polymer"],
1143        ["bjerrum_length",        "Ang",       7.1,  [0, inf],    "", "Bjerrum length"],
1144        ["virial_param",          "1/Ang^2",  12.0,  [-inf, inf], "", "Virial parameter"],
1145        ["monomer_length",        "Ang",      10.0,  [0, inf],    "", "Monomer length"],
1146        ["salt_concentration",    "mol/L",     0.0,  [-inf, inf], "", "Concentration of monovalent salt"],
1147        ["ionization_degree",     "",          0.05, [0, inf],    "", "Degree of ionization"],
1148        ["polymer_concentration", "mol/L",     0.7,  [0, inf],    "", "Polymer molar concentration"],
1149        ]
1150    # pylint: enable=bad-whitespace,line-too-long
1151
1152Don't put in too many pylint statements, though, since they make the code ugly.
1153
1154Share Your Model!
1155^^^^^^^^^^^^^^^^^
1156
1157Once compare and the unit test(s) pass properly and everything is done,
1158consider adding your model to the
1159`Model Marketplace <http://marketplace.sasview.org/>`_ so that others may use it!
1160
1161.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
1162
1163*Document History*
1164
1165| 2016-10-25 Steve King
[c654160]1166| 2017-05-07 Paul Kienzle - Moved from sasview to sasmodels docs
Note: See TracBrowser for help on using the repository browser.