source: sasmodels/doc/guide/plugin.rst @ 899e050

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 899e050 was 9d8a027, checked in by Paul Kienzle <pkienzle@…>, 6 years ago

add docs for 'model_info=…' to plugin guide

  • Property mode set to 100644
File size: 47.7 KB
RevLine 
[990d8df]1.. _Writing_a_Plugin:
2
3Writing a Plugin Model
4======================
5
6Overview
7^^^^^^^^
8
9In addition to the models provided with the sasmodels package, you are free to
10create your own models.
11
12Models can be of three types:
13
14- A pure python model : Example -
15  `broadpeak.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/broad_peak.py>`_
16
17- A python model with embedded C : Example -
18  `sphere.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/sphere.py>`_
19
20- A python wrapper with separate C code : Example -
21  `cylinder.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/cylinder.py>`_,
22  `cylinder.c <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/cylinder.c>`_
23
24When using SasView, plugin models should be saved to the SasView
25*plugin_models* folder *C:\\Users\\{username}\\.sasview\\plugin_models*
26(on Windows) or */Users/{username}/.sasview\\plugin_models* (on Mac).
27The next time SasView is started it will compile the plugin and add
28it to the list of *Plugin Models* in a FitPage.  Scripts can load
29the models from anywhere.
30
31The built-in modules are available in the *models* subdirectory
32of the sasmodels package.  For SasView on Windows, these will
33be found in *C:\\Program Files (x86)\\SasView\\sasmodels-data\\models*.
34On Mac OSX, these will be within the application bundle as
35*/Applications/SasView 4.0.app/Contents/Resources/sasmodels-data/models*.
36
37Other models are available for download from the
38`Model Marketplace <http://marketplace.sasview.org/>`_. You can contribute your
39own models to the Marketplace as well.
40
41Create New Model Files
42^^^^^^^^^^^^^^^^^^^^^^
43
44Copy the appropriate files to your plugin models directory (we recommend
45using the examples above as templates) as mymodel.py (and mymodel.c, etc)
46as required, where "mymodel" is the name for the model you are creating.
47
48*Please follow these naming rules:*
49
50- No capitalization and thus no CamelCase
51- If necessary use underscore to separate words (i.e. barbell not BarBell or
52  broad_peak not BroadPeak)
53- Do not include "model" in the name (i.e. barbell not BarBellModel)
54
55
56Edit New Model Files
57^^^^^^^^^^^^^^^^^^^^
58
59Model Contents
60..............
61
62The model interface definition is in the .py file.  This file contains:
63
64- a **model name**:
65   - this is the **name** string in the *.py* file
66   - titles should be:
67
68    - all in *lower* case
69    - without spaces (use underscores to separate words instead)
70    - without any capitalization or CamelCase
71    - without incorporating the word "model"
72    - examples: *barbell* **not** *BarBell*; *broad_peak* **not** *BroadPeak*;
73      *barbell* **not** *BarBellModel*
74
75- a **model title**:
76   - this is the **title** string in the *.py* file
77   - this is a one or two line description of the model, which will appear
78     at the start of the model documentation and as a tooltip in the SasView GUI
79
[3048ec6]80- a **short description**:
[990d8df]81   - this is the **description** string in the *.py* file
82   - this is a medium length description which appears when you click
83     *Description* on the model FitPage
84
85- a **parameter table**:
86   - this will be auto-generated from the *parameters* in the *.py* file
87
88- a **long description**:
89   - this is ReStructuredText enclosed between the r""" and """ delimiters
90     at the top of the *.py* file
91   - what you write here is abstracted into the SasView help documentation
92   - this is what other users will refer to when they want to know what
93     your model does; so please be helpful!
94
95- a **definition** of the model:
96   - as part of the **long description**
97
98- a **formula** defining the function the model calculates:
99   - as part of the **long description**
100
101- an **explanation of the parameters**:
102   - as part of the **long description**
103   - explaining how the symbols in the formula map to the model parameters
104
105- a **plot** of the function, with a **figure caption**:
106   - this is automatically generated from your default parameters
107
108- at least one **reference**:
109   - as part of the **long description**
110   - specifying where the reader can obtain more information about the model
111
112- the **name of the author**
113   - as part of the **long description**
114   - the *.py* file should also contain a comment identifying *who*
115     converted/created the model file
116
117Models that do not conform to these requirements will *never* be incorporated
118into the built-in library.
119
120
121Model Documentation
122...................
123
124The *.py* file starts with an r (for raw) and three sets of quotes
125to start the doc string and ends with a second set of three quotes.
126For example::
127
128    r"""
129    Definition
130    ----------
131
132    The 1D scattering intensity of the sphere is calculated in the following
133    way (Guinier, 1955)
134
135    .. math::
136
137        I(q) = \frac{\text{scale}}{V} \cdot \left[
138            3V(\Delta\rho) \cdot \frac{\sin(qr) - qr\cos(qr))}{(qr)^3}
139            \right]^2 + \text{background}
140
141    where *scale* is a volume fraction, $V$ is the volume of the scatterer,
142    $r$ is the radius of the sphere and *background* is the background level.
143    *sld* and *sld_solvent* are the scattering length densities (SLDs) of the
144    scatterer and the solvent respectively, whose difference is $\Delta\rho$.
145
146    You can included figures in your documentation, as in the following
147    figure for the cylinder model.
148
149    .. figure:: img/cylinder_angle_definition.jpg
150
151        Definition of the angles for oriented cylinders.
152
153    References
154    ----------
155
156    A Guinier, G Fournet, *Small-Angle Scattering of X-Rays*,
157    John Wiley and Sons, New York, (1955)
158    """
159
160This is where the FULL documentation for the model goes (to be picked up by
161the automatic documentation system).  Although it feels odd, you
162should start the documentation immediately with the **definition**---the model
163name, a brief description and the parameter table are automatically inserted
164above the definition, and the a plot of the model is automatically inserted
165before the **reference**.
166
167Figures can be included using the *figure* command, with the name
168of the *.png* file containing the figure and a caption to appear below the
169figure.  Figure numbers will be added automatically.
170
171See this `Sphinx cheat sheet <http://matplotlib.org/sampledoc/cheatsheet.html>`_
172for a quick guide to the documentation layout commands, or the
173`Sphinx Documentation <http://www.sphinx-doc.org/en/stable/>`_ for
174complete details.
175
176The model should include a **formula** written using LaTeX markup.
177The example above uses the *math* command to make a displayed equation.  You
178can also use *\$formula\$* for an inline formula. This is handy for defining
179the relationship between the model parameters and formula variables, such
180as the phrase "\$r\$ is the radius" used above.  The live demo MathJax
181page `<http://www.mathjax.org/>`_ is handy for checking that the equations
182will look like you intend.
183
184Math layout uses the `amsmath <http://www.ams.org/publications/authors/tex/amslatex>`_
185package for aligning equations (see amsldoc.pdf on that page for complete
186documentation). You will automatically be in an aligned environment, with
187blank lines separating the lines of the equation.  Place an ampersand before
188the operator on which to align.  For example::
189
190    .. math::
191
192      x + y &= 1 \\
193      y &= x - 1
194
195produces
196
197.. math::
198
199      x + y &= 1 \\
200      y &= x - 1
201
202If you need more control, use::
203
204    .. math::
205        :nowrap:
206
207
208Model Definition
209................
210
211Following the documentation string, there are a series of definitions::
212
213    name = "sphere"  # optional: defaults to the filename without .py
214
215    title = "Spheres with uniform scattering length density"
216
217    description = """\
218    P(q)=(scale/V)*[3V(sld-sld_solvent)*(sin(qr)-qr cos(qr))
219                    /(qr)^3]^2 + background
220        r: radius of sphere
221        V: The volume of the scatter
222        sld: the SLD of the sphere
223        sld_solvent: the SLD of the solvent
224    """
225
226    category = "shape:sphere"
227
228    single = True   # optional: defaults to True
229
230    opencl = False  # optional: defaults to False
231
232    structure_factor = False  # optional: defaults to False
233
234**name = "mymodel"** defines the name of the model that is shown to the user.
[3048ec6]235If it is not provided it will use the name of the model file. The name must
236be a valid variable name, starting with a letter and contains only letters,
237numbers or underscore.  Spaces, dashes, and other symbols are not permitted.
[990d8df]238
239**title = "short description"** is short description of the model which
240is included after the model name in the automatically generated documentation.
241The title can also be used for a tooltip.
242
243**description = """doc string"""** is a longer description of the model. It
244shows up when you press the "Description" button of the SasView FitPage.
245It should give a brief description of the equation and the parameters
246without the need to read the entire model documentation. The triple quotes
247allow you to write the description over multiple lines. Keep the lines
248short since the GUI will wrap each one separately if they are too long.
249**Make sure the parameter names in the description match the model definition!**
250
251**category = "shape:sphere"** defines where the model will appear in the
252model documentation.  In this example, the model will appear alphabetically
253in the list of spheroid models in the *Shape* category.
254
255**single = True** indicates that the model can be run using single
256precision floating point values.  Set it to False if the numerical
257calculation for the model is unstable, which is the case for about 20 of
258the built in models.  It is worthwhile modifying the calculation to support
259single precision, allowing models to run up to 10 times faster.  The
260section `Test_Your_New_Model`_  describes how to compare model values for
261single vs. double precision so you can decide if you need to set
262single to False.
263
264**opencl = False** indicates that the model should not be run using OpenCL.
265This may be because the model definition includes code that cannot be
266compiled for the GPU (for example, goto statements).  It can also be used
267for large models which can't run on most GPUs.  This flag has not been
268used on any of the built in models; models which were failing were
269streamlined so this flag was not necessary.
270
271**structure_factor = True** indicates that the model can be used as a
272structure factor to account for interactions between particles.  See
273`Form_Factors`_ for more details.
274
[9d8a027]275**model_info = ...** lets you define a model directly, for example, by
276loading and modifying existing models.  This is done implicitly by
277:func:`sasmodels.core.load_model_info`, which can create a mixture model
278from a pair of existing models.  For example::
279
280    from sasmodels.core import load_model_info
281    model_info = load_model_info('sphere+cylinder')
282
283See :class:`sasmodels.modelinfo.ModelInfo` for details about the model
284attributes that are defined.
285
[990d8df]286Model Parameters
287................
288
289Next comes the parameter table.  For example::
290
291    # pylint: disable=bad-whitespace, line-too-long
292    #   ["name",        "units", default, [min, max], "type",    "description"],
293    parameters = [
294        ["sld",         "1e-6/Ang^2",  1, [-inf, inf], "sld",    "Layer scattering length density"],
295        ["sld_solvent", "1e-6/Ang^2",  6, [-inf, inf], "sld",    "Solvent scattering length density"],
296        ["radius",      "Ang",        50, [0, inf],    "volume", "Sphere radius"],
297    ]
298    # pylint: enable=bad-whitespace, line-too-long
299
300**parameters = [["name", "units", default, [min,max], "type", "tooltip"],...]**
301defines the parameters that form the model.
302
303**Note: The order of the parameters in the definition will be the order of the
304parameters in the user interface and the order of the parameters in Iq(),
[108e70e]305Iqac(), Iqabc() and form_volume(). And** *scale* **and** *background*
306**parameters are implicit to all models, so they do not need to be included
307in the parameter table.**
[990d8df]308
309- **"name"** is the name of the parameter shown on the FitPage.
310
[3048ec6]311  - the name must be a valid variable name, starting with a letter and
312    containing only letters, numbers and underscore.
313
[990d8df]314  - parameter names should follow the mathematical convention; e.g.,
315    *radius_core* not *core_radius*, or *sld_solvent* not *solvent_sld*.
316
317  - model parameter names should be consistent between different models,
318    so *sld_solvent*, for example, should have exactly the same name
319    in every model.
320
321  - to see all the parameter names currently in use, type the following in the
322    python shell/editor under the Tools menu::
323
324       import sasmodels.list_pars
325       sasmodels.list_pars.list_pars()
326
327    *re-use* as many as possible!!!
328
329  - use "name[n]" for multiplicity parameters, where *n* is the name of
330    the parameter defining the number of shells/layers/segments, etc.
331
332- **"units"** are displayed along with the parameter name
333
334  - every parameter should have units; use "None" if there are no units.
335
336  - **sld's should be given in units of 1e-6/Ang^2, and not simply
337    1/Ang^2 to be consistent with the builtin models.  Adjust your formulas
338    appropriately.**
339
340  - fancy units markup is available for some units, including::
341
342        Ang, 1/Ang, 1/Ang^2, 1e-6/Ang^2, degrees, 1/cm, Ang/cm, g/cm^3, mg/m^2
343
344  - the list of units is defined in the variable *RST_UNITS* within
345    `sasmodels/generate.py <https://github.com/SasView/sasmodels/tree/master/sasmodels/generate.py>`_
346
347    - new units can be added using the macros defined in *doc/rst_prolog*
348      in the sasmodels source.
349    - units should be properly formatted using sub-/super-scripts
350      and using negative exponents instead of the / operator, though
351      the unit name should use the / operator for consistency.
352    - please post a message to the SasView developers mailing list with your changes.
353
354- **default** is the initial value for the parameter.
355
356  - **the parameter default values are used to auto-generate a plot of
357    the model function in the documentation.**
358
359- **[min, max]** are the lower and upper limits on the parameter.
360
361  - lower and upper limits can be any number, or *-inf* or *inf*.
362
363  - the limits will show up as the default limits for the fit making it easy,
364    for example, to force the radius to always be greater than zero.
365
366  - these are hard limits defining the valid range of parameter values;
367    polydisperity distributions will be truncated at the limits.
368
369- **"type"** can be one of: "", "sld", "volume", or "orientation".
370
371  - "sld" parameters can have magnetic moments when fitting magnetic models;
372    depending on the spin polarization of the beam and the $q$ value being
373    examined, the effective sld for that material will be used to compute the
374    scattered intensity.
375
[108e70e]376  - "volume" parameters are passed to Iq(), Iqac(), Iqabc() and form_volume(),
377    and have polydispersity loops generated automatically.
[990d8df]378
[108e70e]379  - "orientation" parameters are not passed, but instead are combined with
380    orientation dispersity to translate *qx* and *qy* to *qa*, *qb* and *qc*.
381    These parameters should appear at the end of the table with the specific
382    names *theta*, *phi* and for asymmetric shapes *psi*, in that order.
[990d8df]383
[9844c3a]384Some models will have integer parameters, such as number of pearls in the
385pearl necklace model, or number of shells in the multi-layer vesicle model.
386The optimizers in BUMPS treat all parameters as floating point numbers which
387can take arbitrary values, even for integer parameters, so your model should
388round the incoming parameter value to the nearest integer inside your model
389you should round to the nearest integer.  In C code, you can do this using::
390
391    static double
392    Iq(double q, ..., double fp_n, ...)
393    {
394        int n = (int)(fp_n + 0.5);
395        ...
396    }
397
398in python::
399
400    def Iq(q, ..., n, ...):
401        n = int(n+0.5)
402        ...
403
[3048ec6]404Derivative based optimizers such as Levenberg-Marquardt will not work
[9844c3a]405for integer parameters since the partial derivative is always zero, but
406the remaining optimizers (DREAM, differential evolution, Nelder-Mead simplex)
407will still function.
408
[990d8df]409Model Computation
410.................
411
412Models can be defined as pure python models, or they can be a mixture of
413python and C models.  C models are run on the GPU if it is available,
414otherwise they are compiled and run on the CPU.
415
416Models are defined by the scattering kernel, which takes a set of parameter
417values defining the shape, orientation and material, and returns the
418expected scattering. Polydispersity and angular dispersion are defined
419by the computational infrastructure.  Any parameters defined as "volume"
420parameters are polydisperse, with polydispersity defined in proportion
421to their value.  "orientation" parameters use angular dispersion defined
422in degrees, and are not relative to the current angle.
423
424Based on a weighting function $G(x)$ and a number of points $n$, the
425computed value is
426
427.. math::
428
429     \hat I(q)
430     = \frac{\int G(x) I(q, x)\,dx}{\int G(x) V(x)\,dx}
431     \approx \frac{\sum_{i=1}^n G(x_i) I(q,x_i)}{\sum_{i=1}^n G(x_i) V(x_i)}
432
[3048ec6]433That is, the individual models do not need to include polydispersity
[990d8df]434calculations, but instead rely on numerical integration to compute the
[108e70e]435appropriately smeared pattern.
[990d8df]436
[2015f02]437Each .py file also contains a function::
438
439        def random():
440        ...
[fba9ca0]441
442This function provides a model-specific random parameter set which shows model
443features in the USANS to SANS range.  For example, core-shell sphere sets the
444outer radius of the sphere logarithmically in `[20, 20,000]`, which sets the Q
445value for the transition from flat to falling.  It then uses a beta distribution
446to set the percentage of the shape which is shell, giving a preference for very
447thin or very thick shells (but never 0% or 100%).  Using `-sets=10` in sascomp
448should show a reasonable variety of curves over the default sascomp q range.
449The parameter set is returned as a dictionary of `{parameter: value, ...}`.
450Any model parameters not included in the dictionary will default according to
[2015f02]451the code in the `_randomize_one()` function from sasmodels/compare.py.
452
[990d8df]453Python Models
454.............
455
456For pure python models, define the *Iq* function::
457
458      import numpy as np
459      from numpy import cos, sin, ...
460
461      def Iq(q, par1, par2, ...):
462          return I(q, par1, par2, ...)
463      Iq.vectorized = True
464
465The parameters *par1, par2, ...* are the list of non-orientation parameters
466to the model in the order that they appear in the parameter table.
[3048ec6]467**Note that the auto-generated model file uses** *x* **rather than** *q*.
[990d8df]468
469The *.py* file should import trigonometric and exponential functions from
470numpy rather than from math.  This lets us evaluate the model for the whole
471range of $q$ values at once rather than looping over each $q$ separately in
472python.  With $q$ as a vector, you cannot use if statements, but must instead
473do tricks like
474
475::
476
477     a = x*q*(q>0) + y*q*(q<=0)
478
479or
480
481::
482
483     a = np.empty_like(q)
484     index = q>0
485     a[index] = x*q[index]
486     a[~index] = y*q[~index]
487
488which sets $a$ to $q \cdot x$ if $q$ is positive or $q \cdot y$ if $q$
489is zero or negative. If you have not converted your function to use $q$
490vectors, you can set the following and it will only receive one $q$
491value at a time::
492
493    Iq.vectorized = False
494
495Return np.NaN if the parameters are not valid (e.g., cap_radius < radius in
496barbell).  If I(q; pars) is NaN for any $q$, then those parameters will be
497ignored, and not included in the calculation of the weighted polydispersity.
498
499Models should define *form_volume(par1, par2, ...)* where the parameter
500list includes the *volume* parameters in order.  This is used for a weighted
501volume normalization so that scattering is on an absolute scale.  If
502*form_volume* is not defined, then the default *form_volume = 1.0* will be
503used.
504
505Embedded C Models
506.................
507
508Like pure python models, inline C models need to define an *Iq* function::
509
510    Iq = """
511        return I(q, par1, par2, ...);
512    """
513
514This expands into the equivalent C code::
515
516    #include <math.h>
517    double Iq(double q, double par1, double par2, ...);
518    double Iq(double q, double par1, double par2, ...)
519    {
520        return I(q, par1, par2, ...);
521    }
522
523*form_volume* defines the volume of the shape. As in python models, it
524includes only the volume parameters.
525
526**source=['fn.c', ...]** includes the listed C source files in the
[108e70e]527program before *Iq* and *form_volume* are defined. This allows you to
[ef85a09]528extend the library of C functions available to your model.
529
530*c_code* includes arbitrary C code into your kernel, which can be
531handy for defining helper functions for *Iq* and *form_volume*. Note that
[108e70e]532you can put the full function definition for *Iq* and *form_volume*
[ef85a09]533(include function declaration) into *c_code* as well, or put them into an
534external C file and add that file to the list of sources.
[990d8df]535
536Models are defined using double precision declarations for the
537parameters and return values.  When a model is run using single
538precision or long double precision, each variable is converted
539to the target type, depending on the precision requested.
540
541**Floating point constants must include the decimal point.**  This allows us
542to convert values such as 1.0 (double precision) to 1.0f (single precision)
543so that expressions that use these values are not promoted to double precision
544expressions.  Some graphics card drivers are confused when functions
545that expect floating point values are passed integers, such as 4*atan(1); it
546is safest to not use integers in floating point expressions.  Even better,
547use the builtin constant M_PI rather than 4*atan(1); it is faster and smaller!
548
549The C model operates on a single $q$ value at a time.  The code will be
550run in parallel across different $q$ values, either on the graphics card
551or the processor.
552
553Rather than returning NAN from Iq, you must define the *INVALID(v)*.  The
554*v* parameter lets you access all the parameters in the model using
555*v.par1*, *v.par2*, etc. For example::
556
557    #define INVALID(v) (v.bell_radius < v.radius)
558
[ef85a09]559The INVALID define can go into *Iq*, or *c_code*, or an external C file
560listed in *source*.
561
[108e70e]562Oriented Shapes
563...............
564
565If the scattering is dependent on the orientation of the shape, then you
566will need to include *orientation* parameters *theta*, *phi* and *psi*
[7e6bc45e]567at the end of the parameter table.  As described in the section
568:ref:`orientation`, the individual $(q_x, q_y)$ points on the detector will
569be rotated into $(q_a, q_b, q_c)$ points relative to the sample in its
570canonical orientation with $a$-$b$-$c$ aligned with $x$-$y$-$z$ in the
571laboratory frame and beam travelling along $-z$.
572
573The oriented C model is called using *Iqabc(qa, qb, qc, par1, par2, ...)* where
[108e70e]574*par1*, etc. are the parameters to the model.  If the shape is rotationally
575symmetric about *c* then *psi* is not needed, and the model is called
576as *Iqac(qab, qc, par1, par2, ...)*.  In either case, the orientation
577parameters are not included in the function call.
578
579For 1D oriented shapes, an integral over all angles is usually needed for
[b85227d]580the *Iq* function. Given symmetry and the substitution $u = \cos(\alpha)$,
[108e70e]581$du = -\sin(\alpha)\,d\alpha$ this becomes
582
583.. math::
584
[b85227d]585    I(q) &= \frac{1}{4\pi} \int_{-\pi/2}^{pi/2} \int_{-pi}^{pi}
586            F(q_a, q_b, q_c)^2 \sin(\alpha)\,d\beta\,d\alpha \\
587        &= \frac{8}{4\pi} \int_{0}^{pi/2} \int_{0}^{\pi/2}
588            F^2 \sin(\alpha)\,d\beta\,d\alpha \\
589        &= \frac{8}{4\pi} \int_1^0 \int_{0}^{\pi/2} - F^2 \,d\beta\,du \\
590        &= \frac{8}{4\pi} \int_0^1 \int_{0}^{\pi/2} F^2 \,d\beta\,du
591
592for
593
594.. math::
595
596    q_a &= q \sin(\alpha)\sin(\beta) = q \sqrt{1-u^2} \sin(\beta) \\
597    q_b &= q \sin(\alpha)\cos(\beta) = q \sqrt{1-u^2} \cos(\beta) \\
598    q_c &= q \cos(\alpha) = q u
[108e70e]599
600Using the $z, w$ values for Gauss-Legendre integration in "lib/gauss76.c", the
601numerical integration is then::
602
603    double outer_sum = 0.0;
604    for (int i = 0; i < GAUSS_N; i++) {
605        const double cos_alpha = 0.5*GAUSS_Z[i] + 0.5;
606        const double sin_alpha = sqrt(1.0 - cos_alpha*cos_alpha);
607        const double qc = cos_alpha * q;
608        double inner_sum = 0.0;
609        for (int j = 0; j < GAUSS_N; j++) {
610            const double beta = M_PI_4 * GAUSS_Z[j] + M_PI_4;
611            double sin_beta, cos_beta;
612            SINCOS(beta, sin_beta, cos_beta);
613            const double qa = sin_alpha * sin_beta * q;
[b85227d]614            const double qb = sin_alpha * cos_beta * q;
615            const double form = Fq(qa, qb, qc, ...);
616            inner_sum += GAUSS_W[j] * form * form;
[108e70e]617        }
618        outer_sum += GAUSS_W[i] * inner_sum;
619    }
620    outer_sum *= 0.25; // = 8/(4 pi) * outer_sum * (pi/2) / 4
621
622The *z* values for the Gauss-Legendre integration extends from -1 to 1, so
623the double sum of *w[i]w[j]* explains the factor of 4.  Correcting for the
624average *dz[i]dz[j]* gives $(1-0) \cdot (\pi/2-0) = \pi/2$.  The $8/(4 \pi)$
625factor comes from the integral over the quadrant.  With less symmetry (eg.,
626in the bcc and fcc paracrystal models), then an integral over the entire
627sphere may be necessary.
628
629For simpler models which are rotationally symmetric a single integral
630suffices:
631
632.. math::
633
[b85227d]634    I(q) &= \frac{1}{\pi}\int_{-\pi/2}^{\pi/2}
635            F(q_{ab}, q_c)^2 \sin(\alpha)\,d\alpha/\pi \\
636        &= \frac{2}{\pi} \int_0^1 F^2\,du
637
638for
639
640.. math::
641
642    q_{ab} &= q \sin(\alpha) = q \sqrt{1 - u^2} \\
643    q_c &= q \cos(\alpha) = q u
644
[108e70e]645
646with integration loop::
647
648    double sum = 0.0;
649    for (int i = 0; i < GAUSS_N; i++) {
650        const double cos_alpha = 0.5*GAUSS_Z[i] + 0.5;
651        const double sin_alpha = sqrt(1.0 - cos_alpha*cos_alpha);
652        const double qab = sin_alpha * q;
[b85227d]653        const double qc = cos_alpha * q;
654        const double form = Fq(qab, qc, ...);
655        sum += GAUSS_W[j] * form * form;
[108e70e]656    }
657    sum *= 0.5; // = 2/pi * sum * (pi/2) / 2
658
659Magnetism
660.........
661
662Magnetism is supported automatically for all shapes by modifying the
663effective SLD of particle according to the Halpern-Johnson vector
[c654160]664describing the interaction between neutron spin and magnetic field.  All
[108e70e]665parameters marked as type *sld* in the parameter table are treated as
666possibly magnetic particles with magnitude *M0* and direction
667*mtheta* and *mphi*.  Polarization parameters are also provided
668automatically for magnetic models to set the spin state of the measurement.
669
670For more complicated systems where magnetism is not uniform throughout
671the individual particles, you will need to write your own models.
672You should not mark the nuclear sld as type *sld*, but instead leave
673them unmarked and provide your own magnetism and polarization parameters.
674For 2D measurements you will need $(q_x, q_y)$ values for the measurement
675to compute the proper magnetism and orientation, which you can implement
676using *Iqxy(qx, qy, par1, par2, ...)*.
677
[990d8df]678Special Functions
679.................
680
681The C code follows the C99 standard, with the usual math functions,
682as defined in
683`OpenCL <https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/mathFunctions.html>`_.
684This includes the following:
685
686    M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E:
687        $\pi$, $\pi/2$, $\pi/4$, $1/\sqrt{2}$ and Euler's constant $e$
[d0dc9a3]688    exp, log, pow(x,y), expm1, log1p, sqrt, cbrt:
689        Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\ln 1 + x$,
690        $\sqrt{x}$, $\sqrt[3]{x}$. The functions expm1(x) and log1p(x)
691        are accurate across all $x$, including $x$ very close to zero.
[990d8df]692    sin, cos, tan, asin, acos, atan:
693        Trigonometry functions and inverses, operating on radians.
694    sinh, cosh, tanh, asinh, acosh, atanh:
695        Hyperbolic trigonometry functions.
696    atan2(y,x):
697        Angle from the $x$\ -axis to the point $(x,y)$, which is equal to
698        $\tan^{-1}(y/x)$ corrected for quadrant.  That is, if $x$ and $y$ are
699        both negative, then atan2(y,x) returns a value in quadrant III where
700        atan(y/x) would return a value in quadrant I. Similarly for
701        quadrants II and IV when $x$ and $y$ have opposite sign.
[d0dc9a3]702    fabs(x), fmin(x,y), fmax(x,y), trunc, rint:
[990d8df]703        Floating point functions.  rint(x) returns the nearest integer.
704    NAN:
705        NaN, Not a Number, $0/0$.  Use isnan(x) to test for NaN.  Note that
706        you cannot use :code:`x == NAN` to test for NaN values since that
[d0dc9a3]707        will always return false.  NAN does not equal NAN!  The alternative,
708        :code:`x != x` may fail if the compiler optimizes the test away.
[990d8df]709    INFINITY:
710        $\infty, 1/0$.  Use isinf(x) to test for infinity, or isfinite(x)
711        to test for finite and not NaN.
712    erf, erfc, tgamma, lgamma:  **do not use**
713        Special functions that should be part of the standard, but are missing
[fba9ca0]714        or inaccurate on some platforms. Use sas_erf, sas_erfc, sas_gamma
715        and sas_lgamma instead (see below).
[990d8df]716
717Some non-standard constants and functions are also provided:
718
719    M_PI_180, M_4PI_3:
720        $\frac{\pi}{180}$, $\frac{4\pi}{3}$
721    SINCOS(x, s, c):
722        Macro which sets s=sin(x) and c=cos(x). The variables *c* and *s*
723        must be declared first.
724    square(x):
725        $x^2$
726    cube(x):
727        $x^3$
728    sas_sinx_x(x):
729        $\sin(x)/x$, with limit $\sin(0)/0 = 1$.
730    powr(x, y):
731        $x^y$ for $x \ge 0$; this is faster than general $x^y$ on some GPUs.
732    pown(x, n):
733        $x^n$ for $n$ integer; this is faster than general $x^n$ on some GPUs.
734    FLOAT_SIZE:
735        The number of bytes in a floating point value.  Even though all
736        variables are declared double, they may be converted to single
737        precision float before running. If your algorithm depends on
738        precision (which is not uncommon for numerical algorithms), use
739        the following::
740
741            #if FLOAT_SIZE>4
742            ... code for double precision ...
743            #else
744            ... code for single precision ...
745            #endif
746    SAS_DOUBLE:
747        A replacement for :code:`double` so that the declared variable will
748        stay double precision; this should generally not be used since some
749        graphics cards do not support double precision.  There is no provision
750        for forcing a constant to stay double precision.
751
752The following special functions and scattering calculations are defined in
753`sasmodels/models/lib <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib>`_.
754These functions have been tuned to be fast and numerically stable down
755to $q=0$ even in single precision.  In some cases they work around bugs
756which appear on some platforms but not others, so use them where needed.
757Add the files listed in :code:`source = ["lib/file.c", ...]` to your *model.py*
758file in the order given, otherwise these functions will not be available.
759
760    polevl(x, c, n):
761        Polynomial evaluation $p(x) = \sum_{i=0}^n c_i x^i$ using Horner's
762        method so it is faster and more accurate.
763
764        $c = \{c_n, c_{n-1}, \ldots, c_0 \}$ is the table of coefficients,
765        sorted from highest to lowest.
766
767        :code:`source = ["lib/polevl.c", ...]` (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/polevl.c>`_)
768
769    p1evl(x, c, n):
770        Evaluation of normalized polynomial $p(x) = x^n + \sum_{i=0}^{n-1} c_i x^i$
771        using Horner's method so it is faster and more accurate.
772
773        $c = \{c_{n-1}, c_{n-2} \ldots, c_0 \}$ is the table of coefficients,
774        sorted from highest to lowest.
775
776        :code:`source = ["lib/polevl.c", ...]`
[870a2f4]777        (`polevl.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/polevl.c>`_)
[990d8df]778
779    sas_gamma(x):
[30b60d2]780        Gamma function sas_gamma\ $(x) = \Gamma(x)$.
[990d8df]781
[fba9ca0]782        The standard math function, tgamma(x), is unstable for $x < 1$
[990d8df]783        on some platforms.
784
[870a2f4]785        :code:`source = ["lib/sas_gamma.c", ...]`
786        (`sas_gamma.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gamma.c>`_)
[990d8df]787
[fba9ca0]788    sas_gammaln(x):
789        log gamma function sas_gammaln\ $(x) = \log \Gamma(|x|)$.
790
791        The standard math function, lgamma(x), is incorrect for single
792        precision on some platforms.
793
794        :code:`source = ["lib/sas_gammainc.c", ...]`
795        (`sas_gammainc.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gammainc.c>`_)
796
797    sas_gammainc(a, x), sas_gammaincc(a, x):
798        Incomplete gamma function
799        sas_gammainc\ $(a, x) = \int_0^x t^{a-1}e^{-t}\,dt / \Gamma(a)$
800        and complementary incomplete gamma function
801        sas_gammaincc\ $(a, x) = \int_x^\infty t^{a-1}e^{-t}\,dt / \Gamma(a)$
802
803        :code:`source = ["lib/sas_gammainc.c", ...]`
804        (`sas_gammainc.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gammainc.c>`_)
805
[990d8df]806    sas_erf(x), sas_erfc(x):
807        Error function
[30b60d2]808        sas_erf\ $(x) = \frac{2}{\sqrt\pi}\int_0^x e^{-t^2}\,dt$
[990d8df]809        and complementary error function
[30b60d2]810        sas_erfc\ $(x) = \frac{2}{\sqrt\pi}\int_x^{\infty} e^{-t^2}\,dt$.
[990d8df]811
812        The standard math functions erf(x) and erfc(x) are slower and broken
813        on some platforms.
814
815        :code:`source = ["lib/polevl.c", "lib/sas_erf.c", ...]`
[870a2f4]816        (`sas_erf.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_erf.c>`_)
[990d8df]817
818    sas_J0(x):
[30b60d2]819        Bessel function of the first kind sas_J0\ $(x)=J_0(x)$ where
[990d8df]820        $J_0(x) = \frac{1}{\pi}\int_0^\pi \cos(x\sin(\tau))\,d\tau$.
821
822        The standard math function j0(x) is not available on all platforms.
823
824        :code:`source = ["lib/polevl.c", "lib/sas_J0.c", ...]`
[870a2f4]825        (`sas_J0.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J0.c>`_)
[990d8df]826
827    sas_J1(x):
[30b60d2]828        Bessel function of the first kind  sas_J1\ $(x)=J_1(x)$ where
[990d8df]829        $J_1(x) = \frac{1}{\pi}\int_0^\pi \cos(\tau - x\sin(\tau))\,d\tau$.
830
831        The standard math function j1(x) is not available on all platforms.
832
833        :code:`source = ["lib/polevl.c", "lib/sas_J1.c", ...]`
[870a2f4]834        (`sas_J1.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J1.c>`_)
[990d8df]835
836    sas_JN(n, x):
[30b60d2]837        Bessel function of the first kind and integer order $n$,
838        sas_JN\ $(n, x) =J_n(x)$ where
[990d8df]839        $J_n(x) = \frac{1}{\pi}\int_0^\pi \cos(n\tau - x\sin(\tau))\,d\tau$.
[30b60d2]840        If $n$ = 0 or 1, it uses sas_J0($x$) or sas_J1($x$), respectively.
[990d8df]841
[57c609b]842        Warning: JN(n,x) can be very inaccurate (0.1%) for x not in [0.1, 100].
843
[990d8df]844        The standard math function jn(n, x) is not available on all platforms.
845
846        :code:`source = ["lib/polevl.c", "lib/sas_J0.c", "lib/sas_J1.c", "lib/sas_JN.c", ...]`
[870a2f4]847        (`sas_JN.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_JN.c>`_)
[990d8df]848
849    sas_Si(x):
[30b60d2]850        Sine integral Si\ $(x) = \int_0^x \tfrac{\sin t}{t}\,dt$.
[990d8df]851
[57c609b]852        Warning: Si(x) can be very inaccurate (0.1%) for x in [0.1, 100].
853
[990d8df]854        This function uses Taylor series for small and large arguments:
855
[57c609b]856        For large arguments use the following Taylor series,
[990d8df]857
858        .. math::
859
860             \text{Si}(x) \sim \frac{\pi}{2}
861             - \frac{\cos(x)}{x}\left(1 - \frac{2!}{x^2} + \frac{4!}{x^4} - \frac{6!}{x^6} \right)
862             - \frac{\sin(x)}{x}\left(\frac{1}{x} - \frac{3!}{x^3} + \frac{5!}{x^5} - \frac{7!}{x^7}\right)
863
[57c609b]864        For small arguments ,
[990d8df]865
866        .. math::
867
868           \text{Si}(x) \sim x
869           - \frac{x^3}{3\times 3!} + \frac{x^5}{5 \times 5!} - \frac{x^7}{7 \times 7!}
870           + \frac{x^9}{9\times 9!} - \frac{x^{11}}{11\times 11!}
871
872        :code:`source = ["lib/Si.c", ...]`
[f796469]873        (`Si.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_Si.c>`_)
[990d8df]874
875    sas_3j1x_x(x):
876        Spherical Bessel form
[30b60d2]877        sph_j1c\ $(x) = 3 j_1(x)/x = 3 (\sin(x) - x \cos(x))/x^3$,
[990d8df]878        with a limiting value of 1 at $x=0$, where $j_1(x)$ is the spherical
879        Bessel function of the first kind and first order.
880
881        This function uses a Taylor series for small $x$ for numerical accuracy.
882
883        :code:`source = ["lib/sas_3j1x_x.c", ...]`
[870a2f4]884        (`sas_3j1x_x.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_3j1x_x.c>`_)
[990d8df]885
886
887    sas_2J1x_x(x):
[30b60d2]888        Bessel form sas_J1c\ $(x) = 2 J_1(x)/x$, with a limiting value
[990d8df]889        of 1 at $x=0$, where $J_1(x)$ is the Bessel function of first kind
890        and first order.
891
892        :code:`source = ["lib/polevl.c", "lib/sas_J1.c", ...]`
[870a2f4]893        (`sas_J1.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J1.c>`_)
[990d8df]894
895
896    Gauss76Z[i], Gauss76Wt[i]:
897        Points $z_i$ and weights $w_i$ for 76-point Gaussian quadrature, respectively,
898        computing $\int_{-1}^1 f(z)\,dz \approx \sum_{i=1}^{76} w_i\,f(z_i)$.
899
900        Similar arrays are available in :code:`gauss20.c` for 20-point
901        quadrature and in :code:`gauss150.c` for 150-point quadrature.
[d0dc9a3]902        The macros :code:`GAUSS_N`, :code:`GAUSS_Z` and :code:`GAUSS_W` are
903        defined so that you can change the order of the integration by
904        selecting an different source without touching the C code.
[990d8df]905
906        :code:`source = ["lib/gauss76.c", ...]`
[870a2f4]907        (`gauss76.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/gauss76.c>`_)
[990d8df]908
909
910
911Problems with C models
912......................
913
914The graphics processor (GPU) in your computer is a specialized computer tuned
915for certain kinds of problems.  This leads to strange restrictions that you
916need to be aware of.  Your code may work fine on some platforms or for some
917models, but then return bad values on other platforms.  Some examples of
918particular problems:
919
920  **(1) Code is too complex, or uses too much memory.** GPU devices only
921  have a limited amount of memory available for each processor. If you run
922  programs which take too much memory, then rather than running multiple
923  values in parallel as it usually does, the GPU may only run a single
924  version of the code at a time, making it slower than running on the CPU.
925  It may fail to run on some platforms, or worse, cause the screen to go
926  blank or the system to reboot.
927
928  **(2) Code takes too long.** Because GPU devices are used for the computer
929  display, the OpenCL drivers are very careful about the amount of time they
930  will allow any code to run. For example, on OS X, the model will stop
931  running after 5 seconds regardless of whether the computation is complete.
932  You may end up with only some of your 2D array defined, with the rest
933  containing random data. Or it may cause the screen to go blank or the
934  system to reboot.
935
936  **(3) Memory is not aligned**. The GPU hardware is specialized to operate
937  on multiple values simultaneously. To keep the GPU simple the values in
938  memory must be aligned with the different GPU compute engines. Not
939  following these rules can lead to unexpected values being loaded into
940  memory, and wrong answers computed. The conclusion from a very long and
941  strange debugging session was that any arrays that you declare in your
942  model should be a multiple of four. For example::
943
944      double Iq(q, p1, p2, ...)
945      {
946          double vector[8];  // Only going to use seven slots, but declare 8
947          ...
948      }
949
950The first step when your model is behaving strangely is to set
951**single=False**. This automatically restricts the model to only run on the
952CPU, or on high-end GPU cards. There can still be problems even on high-end
953cards, so you can force the model off the GPU by setting **opencl=False**.
954This runs the model as a normal C program without any GPU restrictions so
955you know that strange results are probably from your code rather than the
956environment. Once the code is debugged, you can compare your output to the
957output on the GPU.
958
959Although it can be difficult to get your model to work on the GPU, the reward
960can be a model that runs 1000x faster on a good card.  Even your laptop may
961show a 50x improvement or more over the equivalent pure python model.
962
963
964.. _Form_Factors:
965
966Form Factors
967............
968
969Away from the dilute limit you can estimate scattering including
970particle-particle interactions using $I(q) = P(q)*S(q)$ where $P(q)$
971is the form factor and $S(q)$ is the structure factor.  The simplest
972structure factor is the *hardsphere* interaction, which
973uses the effective radius of the form factor as an input to the structure
974factor model.  The effective radius is the average radius of the
975form averaged over all the polydispersity values.
976
977::
978
979    def ER(radius, thickness):
980        """Effective radius of a core-shell sphere."""
981        return radius + thickness
982
983Now consider the *core_shell_sphere*, which has a simple effective radius
984equal to the radius of the core plus the thickness of the shell, as
985shown above. Given polydispersity over *(r1, r2, ..., rm)* in radius and
986*(t1, t2, ..., tn)* in thickness, *ER* is called with a mesh
987grid covering all possible combinations of radius and thickness.
988That is, *radius* is *(r1, r2, ..., rm, r1, r2, ..., rm, ...)*
989and *thickness* is *(t1, t1, ... t1, t2, t2, ..., t2, ...)*.
990The *ER* function returns one effective radius for each combination.
991The effective radius calculator weights each of these according to
992the polydispersity distributions and calls the structure factor
993with the average *ER*.
994
995::
996
997    def VR(radius, thickness):
998        """Sphere and shell volumes for a core-shell sphere."""
999        whole = 4.0/3.0 * pi * (radius + thickness)**3
1000        core = 4.0/3.0 * pi * radius**3
1001        return whole, whole - core
1002
1003Core-shell type models have an additional volume ratio which scales
1004the structure factor.  The *VR* function returns the volume of
1005the whole sphere and the volume of the shell. Like *ER*, there is
1006one return value for each point in the mesh grid.
1007
1008*NOTE: we may be removing or modifying this feature soon. As of the
1009time of writing, core-shell sphere returns (1., 1.) for VR, giving a volume
1010ratio of 1.0.*
1011
1012Unit Tests
1013..........
1014
1015THESE ARE VERY IMPORTANT. Include at least one test for each model and
1016PLEASE make sure that the answer value is correct (i.e. not a random number).
1017
1018::
1019
1020    tests = [
1021        [{}, 0.2, 0.726362],
1022        [{"scale": 1., "background": 0., "sld": 6., "sld_solvent": 1.,
1023          "radius": 120., "radius_pd": 0.2, "radius_pd_n":45},
1024         0.2, 0.228843],
1025        [{"radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, "ER", 120.],
1026        [{"radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, "VR", 1.],
1027    ]
1028
1029
1030**tests=[[{parameters}, q, result], ...]** is a list of lists.
1031Each list is one test and contains, in order:
1032
1033- a dictionary of parameter values. This can be *{}* using the default
1034  parameters, or filled with some parameters that will be different from the
1035  default, such as *{"radius":10.0, "sld":4}*. Unlisted parameters will
1036  be given the default values.
1037- the input $q$ value or tuple of $(q_x, q_y)$ values.
1038- the output $I(q)$ or $I(q_x,q_y)$ expected of the model for the parameters
1039  and input value given.
1040- input and output values can themselves be lists if you have several
1041  $q$ values to test for the same model parameters.
1042- for testing *ER* and *VR*, give the inputs as "ER" and "VR" respectively;
1043  the output for *VR* should be the sphere/shell ratio, not the individual
1044  sphere and shell values.
1045
1046.. _Test_Your_New_Model:
1047
1048Test Your New Model
1049^^^^^^^^^^^^^^^^^^^
1050
1051Minimal Testing
1052...............
1053
1054From SasView either open the Python shell (*Tools* > *Python Shell/Editor*)
1055or the plugin editor (*Fitting* > *Plugin Model Operations* > *Advanced
1056Plugin Editor*), load your model, and then select *Run > Check Model* from
1057the menu bar. An *Info* box will appear with the results of the compilation
1058and a check that the model runs.
1059
1060If you are not using sasmodels from SasView, skip this step.
1061
1062Recommended Testing
1063...................
1064
1065If the model compiles and runs, you can next run the unit tests that
1066you have added using the **test =** values.
1067
1068From SasView, switch to the *Shell* tab and type the following::
1069
1070    from sasmodels.model_test import run_one
1071    run_one("~/.sasview/plugin_models/model.py")
1072
1073This should print::
1074
1075    test_model_python (sasmodels.model_test.ModelTestCase) ... ok
1076
1077To check whether single precision is good enough, type the following::
1078
1079    from sasmodels.compare import main as compare
1080    compare("~/.sasview/plugin_models/model.py")
1081
1082This will pop up a plot showing the difference between single precision
1083and double precision on a range of $q$ values.
1084
1085::
1086
1087  demo = dict(scale=1, background=0,
1088              sld=6, sld_solvent=1,
1089              radius=120,
1090              radius_pd=.2, radius_pd_n=45)
1091
1092**demo={'par': value, ...}** in the model file sets the default values for
1093the comparison. You can include polydispersity parameters such as
1094*radius_pd=0.2, radius_pd_n=45* which would otherwise be zero.
1095
1096These commands can also be run directly in the python interpreter:
1097
1098    $ python -m sasmodels.model_test -v ~/.sasview/plugin_models/model.py
1099    $ python -m sasmodels.compare ~/.sasview/plugin_models/model.py
1100
1101The options to compare are quite extensive; type the following for help::
1102
1103    compare()
1104
1105Options will need to be passed as separate strings.
1106For example to run your model with a random set of parameters::
1107
1108    compare("-random", "-pars", "~/.sasview/plugin_models/model.py")
1109
1110For the random models,
1111
1112- *sld* will be in the range (-0.5,10.5),
1113- angles (*theta, phi, psi*) will be in the range (-180,180),
1114- angular dispersion will be in the range (0,45),
1115- polydispersity will be in the range (0,1)
1116- other values will be in the range (0, 2\ *v*), where *v* is the value
1117  of the parameter in demo.
1118
1119Dispersion parameters *n*\, *sigma* and *type* will be unchanged from
1120demo so that run times are more predictable (polydispersity calculated
1121across multiple parameters can be very slow).
1122
[3048ec6]1123If your model has 2D orientation calculation, then you should also
[990d8df]1124test with::
1125
1126    compare("-2d", "~/.sasview/plugin_models/model.py")
1127
1128Check The Docs
1129^^^^^^^^^^^^^^
1130
1131You can get a rough idea of how the documentation will look using the
1132following::
1133
1134    compare("-help", "~/.sasview/plugin_models/model.py")
1135
1136This does not use the same styling as the rest of the docs, but it will
1137allow you to check that your ReStructuredText and LaTeX formatting.
1138Here are some tools to help with the inevitable syntax errors:
1139
1140- `Sphinx cheat sheet <http://matplotlib.org/sampledoc/cheatsheet.html>`_
1141- `Sphinx Documentation <http://www.sphinx-doc.org/en/stable/>`_
1142- `MathJax <http://www.mathjax.org/>`_
1143- `amsmath <http://www.ams.org/publications/authors/tex/amslatex>`_
1144
1145There is also a neat online WYSIWYG ReStructuredText editor at
1146http://rst.ninjs.org\ .
1147
1148
1149Clean Lint - (Developer Version Only)
1150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1151
1152**NB: For now we are not providing pylint with the installer version
1153of SasView; so unless you have a SasView build environment available,
1154you can ignore this section!**
1155
1156Run the lint check with::
1157
1158    python -m pylint --rcfile=extra/pylint.rc ~/.sasview/plugin_models/model.py
1159
1160We are not aiming for zero lint just yet, only keeping it to a minimum.
1161For now, don't worry too much about *invalid-name*. If you really want a
1162variable name *Rg* for example because $R_g$ is the right name for the model
1163parameter then ignore the lint errors.  Also, ignore *missing-docstring*
[108e70e]1164for standard model functions *Iq*, *Iqac*, etc.
[990d8df]1165
1166We will have delinting sessions at the SasView Code Camps, where we can
1167decide on standards for model files, parameter names, etc.
1168
1169For now, you can tell pylint to ignore things.  For example, to align your
1170parameters in blocks::
1171
1172    # pylint: disable=bad-whitespace,line-too-long
1173    #   ["name",                  "units", default, [lower, upper], "type", "description"],
1174    parameters = [
1175        ["contrast_factor",       "barns",    10.0,  [-inf, inf], "", "Contrast factor of the polymer"],
1176        ["bjerrum_length",        "Ang",       7.1,  [0, inf],    "", "Bjerrum length"],
1177        ["virial_param",          "1/Ang^2",  12.0,  [-inf, inf], "", "Virial parameter"],
1178        ["monomer_length",        "Ang",      10.0,  [0, inf],    "", "Monomer length"],
1179        ["salt_concentration",    "mol/L",     0.0,  [-inf, inf], "", "Concentration of monovalent salt"],
1180        ["ionization_degree",     "",          0.05, [0, inf],    "", "Degree of ionization"],
1181        ["polymer_concentration", "mol/L",     0.7,  [0, inf],    "", "Polymer molar concentration"],
1182        ]
1183    # pylint: enable=bad-whitespace,line-too-long
1184
1185Don't put in too many pylint statements, though, since they make the code ugly.
1186
1187Share Your Model!
1188^^^^^^^^^^^^^^^^^
1189
1190Once compare and the unit test(s) pass properly and everything is done,
1191consider adding your model to the
1192`Model Marketplace <http://marketplace.sasview.org/>`_ so that others may use it!
1193
1194.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
1195
1196*Document History*
1197
1198| 2016-10-25 Steve King
[c654160]1199| 2017-05-07 Paul Kienzle - Moved from sasview to sasmodels docs
Note: See TracBrowser for help on using the repository browser.