[990d8df] | 1 | .. _Writing_a_Plugin: |
---|
| 2 | |
---|
| 3 | Writing a Plugin Model |
---|
| 4 | ====================== |
---|
| 5 | |
---|
| 6 | Overview |
---|
| 7 | ^^^^^^^^ |
---|
| 8 | |
---|
| 9 | In addition to the models provided with the sasmodels package, you are free to |
---|
| 10 | create your own models. |
---|
| 11 | |
---|
| 12 | Models can be of three types: |
---|
| 13 | |
---|
| 14 | - A pure python model : Example - |
---|
| 15 | `broadpeak.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/broad_peak.py>`_ |
---|
| 16 | |
---|
| 17 | - A python model with embedded C : Example - |
---|
| 18 | `sphere.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/sphere.py>`_ |
---|
| 19 | |
---|
| 20 | - A python wrapper with separate C code : Example - |
---|
| 21 | `cylinder.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/cylinder.py>`_, |
---|
| 22 | `cylinder.c <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/cylinder.c>`_ |
---|
| 23 | |
---|
| 24 | When using SasView, plugin models should be saved to the SasView |
---|
| 25 | *plugin_models* folder *C:\\Users\\{username}\\.sasview\\plugin_models* |
---|
| 26 | (on Windows) or */Users/{username}/.sasview\\plugin_models* (on Mac). |
---|
| 27 | The next time SasView is started it will compile the plugin and add |
---|
| 28 | it to the list of *Plugin Models* in a FitPage. Scripts can load |
---|
| 29 | the models from anywhere. |
---|
| 30 | |
---|
| 31 | The built-in modules are available in the *models* subdirectory |
---|
| 32 | of the sasmodels package. For SasView on Windows, these will |
---|
| 33 | be found in *C:\\Program Files (x86)\\SasView\\sasmodels-data\\models*. |
---|
| 34 | On Mac OSX, these will be within the application bundle as |
---|
| 35 | */Applications/SasView 4.0.app/Contents/Resources/sasmodels-data/models*. |
---|
| 36 | |
---|
| 37 | Other models are available for download from the |
---|
| 38 | `Model Marketplace <http://marketplace.sasview.org/>`_. You can contribute your |
---|
| 39 | own models to the Marketplace as well. |
---|
| 40 | |
---|
| 41 | Create New Model Files |
---|
| 42 | ^^^^^^^^^^^^^^^^^^^^^^ |
---|
| 43 | |
---|
| 44 | Copy the appropriate files to your plugin models directory (we recommend |
---|
| 45 | using the examples above as templates) as mymodel.py (and mymodel.c, etc) |
---|
| 46 | as required, where "mymodel" is the name for the model you are creating. |
---|
| 47 | |
---|
| 48 | *Please follow these naming rules:* |
---|
| 49 | |
---|
| 50 | - No capitalization and thus no CamelCase |
---|
| 51 | - If necessary use underscore to separate words (i.e. barbell not BarBell or |
---|
| 52 | broad_peak not BroadPeak) |
---|
| 53 | - Do not include "model" in the name (i.e. barbell not BarBellModel) |
---|
| 54 | |
---|
| 55 | |
---|
| 56 | Edit New Model Files |
---|
| 57 | ^^^^^^^^^^^^^^^^^^^^ |
---|
| 58 | |
---|
| 59 | Model Contents |
---|
| 60 | .............. |
---|
| 61 | |
---|
| 62 | The model interface definition is in the .py file. This file contains: |
---|
| 63 | |
---|
| 64 | - a **model name**: |
---|
| 65 | - this is the **name** string in the *.py* file |
---|
| 66 | - titles should be: |
---|
| 67 | |
---|
| 68 | - all in *lower* case |
---|
| 69 | - without spaces (use underscores to separate words instead) |
---|
| 70 | - without any capitalization or CamelCase |
---|
| 71 | - without incorporating the word "model" |
---|
| 72 | - examples: *barbell* **not** *BarBell*; *broad_peak* **not** *BroadPeak*; |
---|
| 73 | *barbell* **not** *BarBellModel* |
---|
| 74 | |
---|
| 75 | - a **model title**: |
---|
| 76 | - this is the **title** string in the *.py* file |
---|
| 77 | - this is a one or two line description of the model, which will appear |
---|
| 78 | at the start of the model documentation and as a tooltip in the SasView GUI |
---|
| 79 | |
---|
[3048ec6] | 80 | - a **short description**: |
---|
[990d8df] | 81 | - this is the **description** string in the *.py* file |
---|
| 82 | - this is a medium length description which appears when you click |
---|
| 83 | *Description* on the model FitPage |
---|
| 84 | |
---|
| 85 | - a **parameter table**: |
---|
| 86 | - this will be auto-generated from the *parameters* in the *.py* file |
---|
| 87 | |
---|
| 88 | - a **long description**: |
---|
| 89 | - this is ReStructuredText enclosed between the r""" and """ delimiters |
---|
| 90 | at the top of the *.py* file |
---|
| 91 | - what you write here is abstracted into the SasView help documentation |
---|
| 92 | - this is what other users will refer to when they want to know what |
---|
| 93 | your model does; so please be helpful! |
---|
| 94 | |
---|
| 95 | - a **definition** of the model: |
---|
| 96 | - as part of the **long description** |
---|
| 97 | |
---|
| 98 | - a **formula** defining the function the model calculates: |
---|
| 99 | - as part of the **long description** |
---|
| 100 | |
---|
| 101 | - an **explanation of the parameters**: |
---|
| 102 | - as part of the **long description** |
---|
| 103 | - explaining how the symbols in the formula map to the model parameters |
---|
| 104 | |
---|
| 105 | - a **plot** of the function, with a **figure caption**: |
---|
| 106 | - this is automatically generated from your default parameters |
---|
| 107 | |
---|
| 108 | - at least one **reference**: |
---|
| 109 | - as part of the **long description** |
---|
| 110 | - specifying where the reader can obtain more information about the model |
---|
| 111 | |
---|
| 112 | - the **name of the author** |
---|
| 113 | - as part of the **long description** |
---|
| 114 | - the *.py* file should also contain a comment identifying *who* |
---|
| 115 | converted/created the model file |
---|
| 116 | |
---|
| 117 | Models that do not conform to these requirements will *never* be incorporated |
---|
| 118 | into the built-in library. |
---|
| 119 | |
---|
| 120 | |
---|
| 121 | Model Documentation |
---|
| 122 | ................... |
---|
| 123 | |
---|
| 124 | The *.py* file starts with an r (for raw) and three sets of quotes |
---|
| 125 | to start the doc string and ends with a second set of three quotes. |
---|
| 126 | For example:: |
---|
| 127 | |
---|
| 128 | r""" |
---|
| 129 | Definition |
---|
| 130 | ---------- |
---|
| 131 | |
---|
| 132 | The 1D scattering intensity of the sphere is calculated in the following |
---|
| 133 | way (Guinier, 1955) |
---|
| 134 | |
---|
| 135 | .. math:: |
---|
| 136 | |
---|
| 137 | I(q) = \frac{\text{scale}}{V} \cdot \left[ |
---|
| 138 | 3V(\Delta\rho) \cdot \frac{\sin(qr) - qr\cos(qr))}{(qr)^3} |
---|
| 139 | \right]^2 + \text{background} |
---|
| 140 | |
---|
| 141 | where *scale* is a volume fraction, $V$ is the volume of the scatterer, |
---|
| 142 | $r$ is the radius of the sphere and *background* is the background level. |
---|
| 143 | *sld* and *sld_solvent* are the scattering length densities (SLDs) of the |
---|
| 144 | scatterer and the solvent respectively, whose difference is $\Delta\rho$. |
---|
| 145 | |
---|
| 146 | You can included figures in your documentation, as in the following |
---|
| 147 | figure for the cylinder model. |
---|
| 148 | |
---|
| 149 | .. figure:: img/cylinder_angle_definition.jpg |
---|
| 150 | |
---|
| 151 | Definition of the angles for oriented cylinders. |
---|
| 152 | |
---|
| 153 | References |
---|
| 154 | ---------- |
---|
| 155 | |
---|
| 156 | A Guinier, G Fournet, *Small-Angle Scattering of X-Rays*, |
---|
| 157 | John Wiley and Sons, New York, (1955) |
---|
| 158 | """ |
---|
| 159 | |
---|
| 160 | This is where the FULL documentation for the model goes (to be picked up by |
---|
| 161 | the automatic documentation system). Although it feels odd, you |
---|
| 162 | should start the documentation immediately with the **definition**---the model |
---|
| 163 | name, a brief description and the parameter table are automatically inserted |
---|
| 164 | above the definition, and the a plot of the model is automatically inserted |
---|
| 165 | before the **reference**. |
---|
| 166 | |
---|
| 167 | Figures can be included using the *figure* command, with the name |
---|
| 168 | of the *.png* file containing the figure and a caption to appear below the |
---|
| 169 | figure. Figure numbers will be added automatically. |
---|
| 170 | |
---|
| 171 | See this `Sphinx cheat sheet <http://matplotlib.org/sampledoc/cheatsheet.html>`_ |
---|
| 172 | for a quick guide to the documentation layout commands, or the |
---|
| 173 | `Sphinx Documentation <http://www.sphinx-doc.org/en/stable/>`_ for |
---|
| 174 | complete details. |
---|
| 175 | |
---|
| 176 | The model should include a **formula** written using LaTeX markup. |
---|
| 177 | The example above uses the *math* command to make a displayed equation. You |
---|
| 178 | can also use *\$formula\$* for an inline formula. This is handy for defining |
---|
| 179 | the relationship between the model parameters and formula variables, such |
---|
| 180 | as the phrase "\$r\$ is the radius" used above. The live demo MathJax |
---|
| 181 | page `<http://www.mathjax.org/>`_ is handy for checking that the equations |
---|
| 182 | will look like you intend. |
---|
| 183 | |
---|
| 184 | Math layout uses the `amsmath <http://www.ams.org/publications/authors/tex/amslatex>`_ |
---|
| 185 | package for aligning equations (see amsldoc.pdf on that page for complete |
---|
| 186 | documentation). You will automatically be in an aligned environment, with |
---|
| 187 | blank lines separating the lines of the equation. Place an ampersand before |
---|
| 188 | the operator on which to align. For example:: |
---|
| 189 | |
---|
| 190 | .. math:: |
---|
| 191 | |
---|
| 192 | x + y &= 1 \\ |
---|
| 193 | y &= x - 1 |
---|
| 194 | |
---|
| 195 | produces |
---|
| 196 | |
---|
| 197 | .. math:: |
---|
| 198 | |
---|
| 199 | x + y &= 1 \\ |
---|
| 200 | y &= x - 1 |
---|
| 201 | |
---|
| 202 | If you need more control, use:: |
---|
| 203 | |
---|
| 204 | .. math:: |
---|
| 205 | :nowrap: |
---|
| 206 | |
---|
| 207 | |
---|
| 208 | Model Definition |
---|
| 209 | ................ |
---|
| 210 | |
---|
| 211 | Following the documentation string, there are a series of definitions:: |
---|
| 212 | |
---|
| 213 | name = "sphere" # optional: defaults to the filename without .py |
---|
| 214 | |
---|
| 215 | title = "Spheres with uniform scattering length density" |
---|
| 216 | |
---|
| 217 | description = """\ |
---|
| 218 | P(q)=(scale/V)*[3V(sld-sld_solvent)*(sin(qr)-qr cos(qr)) |
---|
| 219 | /(qr)^3]^2 + background |
---|
| 220 | r: radius of sphere |
---|
| 221 | V: The volume of the scatter |
---|
| 222 | sld: the SLD of the sphere |
---|
| 223 | sld_solvent: the SLD of the solvent |
---|
| 224 | """ |
---|
| 225 | |
---|
| 226 | category = "shape:sphere" |
---|
| 227 | |
---|
| 228 | single = True # optional: defaults to True |
---|
| 229 | |
---|
| 230 | opencl = False # optional: defaults to False |
---|
| 231 | |
---|
| 232 | structure_factor = False # optional: defaults to False |
---|
| 233 | |
---|
| 234 | **name = "mymodel"** defines the name of the model that is shown to the user. |
---|
[3048ec6] | 235 | If it is not provided it will use the name of the model file. The name must |
---|
| 236 | be a valid variable name, starting with a letter and contains only letters, |
---|
| 237 | numbers or underscore. Spaces, dashes, and other symbols are not permitted. |
---|
[990d8df] | 238 | |
---|
| 239 | **title = "short description"** is short description of the model which |
---|
| 240 | is included after the model name in the automatically generated documentation. |
---|
| 241 | The title can also be used for a tooltip. |
---|
| 242 | |
---|
| 243 | **description = """doc string"""** is a longer description of the model. It |
---|
| 244 | shows up when you press the "Description" button of the SasView FitPage. |
---|
| 245 | It should give a brief description of the equation and the parameters |
---|
| 246 | without the need to read the entire model documentation. The triple quotes |
---|
| 247 | allow you to write the description over multiple lines. Keep the lines |
---|
| 248 | short since the GUI will wrap each one separately if they are too long. |
---|
| 249 | **Make sure the parameter names in the description match the model definition!** |
---|
| 250 | |
---|
| 251 | **category = "shape:sphere"** defines where the model will appear in the |
---|
| 252 | model documentation. In this example, the model will appear alphabetically |
---|
| 253 | in the list of spheroid models in the *Shape* category. |
---|
| 254 | |
---|
| 255 | **single = True** indicates that the model can be run using single |
---|
| 256 | precision floating point values. Set it to False if the numerical |
---|
| 257 | calculation for the model is unstable, which is the case for about 20 of |
---|
| 258 | the built in models. It is worthwhile modifying the calculation to support |
---|
| 259 | single precision, allowing models to run up to 10 times faster. The |
---|
| 260 | section `Test_Your_New_Model`_ describes how to compare model values for |
---|
| 261 | single vs. double precision so you can decide if you need to set |
---|
| 262 | single to False. |
---|
| 263 | |
---|
| 264 | **opencl = False** indicates that the model should not be run using OpenCL. |
---|
| 265 | This may be because the model definition includes code that cannot be |
---|
| 266 | compiled for the GPU (for example, goto statements). It can also be used |
---|
| 267 | for large models which can't run on most GPUs. This flag has not been |
---|
| 268 | used on any of the built in models; models which were failing were |
---|
| 269 | streamlined so this flag was not necessary. |
---|
| 270 | |
---|
| 271 | **structure_factor = True** indicates that the model can be used as a |
---|
| 272 | structure factor to account for interactions between particles. See |
---|
| 273 | `Form_Factors`_ for more details. |
---|
| 274 | |
---|
| 275 | Model Parameters |
---|
| 276 | ................ |
---|
| 277 | |
---|
| 278 | Next comes the parameter table. For example:: |
---|
| 279 | |
---|
| 280 | # pylint: disable=bad-whitespace, line-too-long |
---|
| 281 | # ["name", "units", default, [min, max], "type", "description"], |
---|
| 282 | parameters = [ |
---|
| 283 | ["sld", "1e-6/Ang^2", 1, [-inf, inf], "sld", "Layer scattering length density"], |
---|
| 284 | ["sld_solvent", "1e-6/Ang^2", 6, [-inf, inf], "sld", "Solvent scattering length density"], |
---|
| 285 | ["radius", "Ang", 50, [0, inf], "volume", "Sphere radius"], |
---|
| 286 | ] |
---|
| 287 | # pylint: enable=bad-whitespace, line-too-long |
---|
| 288 | |
---|
| 289 | **parameters = [["name", "units", default, [min,max], "type", "tooltip"],...]** |
---|
| 290 | defines the parameters that form the model. |
---|
| 291 | |
---|
| 292 | **Note: The order of the parameters in the definition will be the order of the |
---|
[31fc4ad] | 293 | parameters in the user interface and the order of the parameters in Fq(), Iq(), |
---|
| 294 | Iqac(), Iqabc(), form_volume() and shell_volume(). |
---|
| 295 | And** *scale* **and** *background* **parameters are implicit to all models, |
---|
| 296 | so they do not need to be included in the parameter table.** |
---|
[990d8df] | 297 | |
---|
| 298 | - **"name"** is the name of the parameter shown on the FitPage. |
---|
| 299 | |
---|
[3048ec6] | 300 | - the name must be a valid variable name, starting with a letter and |
---|
| 301 | containing only letters, numbers and underscore. |
---|
| 302 | |
---|
[990d8df] | 303 | - parameter names should follow the mathematical convention; e.g., |
---|
| 304 | *radius_core* not *core_radius*, or *sld_solvent* not *solvent_sld*. |
---|
| 305 | |
---|
| 306 | - model parameter names should be consistent between different models, |
---|
| 307 | so *sld_solvent*, for example, should have exactly the same name |
---|
| 308 | in every model. |
---|
| 309 | |
---|
| 310 | - to see all the parameter names currently in use, type the following in the |
---|
| 311 | python shell/editor under the Tools menu:: |
---|
| 312 | |
---|
| 313 | import sasmodels.list_pars |
---|
| 314 | sasmodels.list_pars.list_pars() |
---|
| 315 | |
---|
| 316 | *re-use* as many as possible!!! |
---|
| 317 | |
---|
| 318 | - use "name[n]" for multiplicity parameters, where *n* is the name of |
---|
| 319 | the parameter defining the number of shells/layers/segments, etc. |
---|
| 320 | |
---|
| 321 | - **"units"** are displayed along with the parameter name |
---|
| 322 | |
---|
| 323 | - every parameter should have units; use "None" if there are no units. |
---|
| 324 | |
---|
| 325 | - **sld's should be given in units of 1e-6/Ang^2, and not simply |
---|
| 326 | 1/Ang^2 to be consistent with the builtin models. Adjust your formulas |
---|
| 327 | appropriately.** |
---|
| 328 | |
---|
| 329 | - fancy units markup is available for some units, including:: |
---|
| 330 | |
---|
| 331 | Ang, 1/Ang, 1/Ang^2, 1e-6/Ang^2, degrees, 1/cm, Ang/cm, g/cm^3, mg/m^2 |
---|
| 332 | |
---|
| 333 | - the list of units is defined in the variable *RST_UNITS* within |
---|
| 334 | `sasmodels/generate.py <https://github.com/SasView/sasmodels/tree/master/sasmodels/generate.py>`_ |
---|
| 335 | |
---|
| 336 | - new units can be added using the macros defined in *doc/rst_prolog* |
---|
| 337 | in the sasmodels source. |
---|
| 338 | - units should be properly formatted using sub-/super-scripts |
---|
| 339 | and using negative exponents instead of the / operator, though |
---|
| 340 | the unit name should use the / operator for consistency. |
---|
| 341 | - please post a message to the SasView developers mailing list with your changes. |
---|
| 342 | |
---|
| 343 | - **default** is the initial value for the parameter. |
---|
| 344 | |
---|
| 345 | - **the parameter default values are used to auto-generate a plot of |
---|
| 346 | the model function in the documentation.** |
---|
| 347 | |
---|
| 348 | - **[min, max]** are the lower and upper limits on the parameter. |
---|
| 349 | |
---|
| 350 | - lower and upper limits can be any number, or *-inf* or *inf*. |
---|
| 351 | |
---|
| 352 | - the limits will show up as the default limits for the fit making it easy, |
---|
| 353 | for example, to force the radius to always be greater than zero. |
---|
| 354 | |
---|
| 355 | - these are hard limits defining the valid range of parameter values; |
---|
| 356 | polydisperity distributions will be truncated at the limits. |
---|
| 357 | |
---|
| 358 | - **"type"** can be one of: "", "sld", "volume", or "orientation". |
---|
| 359 | |
---|
| 360 | - "sld" parameters can have magnetic moments when fitting magnetic models; |
---|
| 361 | depending on the spin polarization of the beam and the $q$ value being |
---|
| 362 | examined, the effective sld for that material will be used to compute the |
---|
| 363 | scattered intensity. |
---|
| 364 | |
---|
[31fc4ad] | 365 | - "volume" parameters are passed to Fq(), Iq(), Iqac(), Iqabc(), form_volume() |
---|
| 366 | and shell_volume(), and have polydispersity loops generated automatically. |
---|
[990d8df] | 367 | |
---|
[108e70e] | 368 | - "orientation" parameters are not passed, but instead are combined with |
---|
| 369 | orientation dispersity to translate *qx* and *qy* to *qa*, *qb* and *qc*. |
---|
| 370 | These parameters should appear at the end of the table with the specific |
---|
| 371 | names *theta*, *phi* and for asymmetric shapes *psi*, in that order. |
---|
[990d8df] | 372 | |
---|
[9844c3a] | 373 | Some models will have integer parameters, such as number of pearls in the |
---|
| 374 | pearl necklace model, or number of shells in the multi-layer vesicle model. |
---|
| 375 | The optimizers in BUMPS treat all parameters as floating point numbers which |
---|
| 376 | can take arbitrary values, even for integer parameters, so your model should |
---|
| 377 | round the incoming parameter value to the nearest integer inside your model |
---|
| 378 | you should round to the nearest integer. In C code, you can do this using:: |
---|
| 379 | |
---|
| 380 | static double |
---|
| 381 | Iq(double q, ..., double fp_n, ...) |
---|
| 382 | { |
---|
| 383 | int n = (int)(fp_n + 0.5); |
---|
| 384 | ... |
---|
| 385 | } |
---|
| 386 | |
---|
| 387 | in python:: |
---|
| 388 | |
---|
| 389 | def Iq(q, ..., n, ...): |
---|
| 390 | n = int(n+0.5) |
---|
| 391 | ... |
---|
| 392 | |
---|
[3048ec6] | 393 | Derivative based optimizers such as Levenberg-Marquardt will not work |
---|
[9844c3a] | 394 | for integer parameters since the partial derivative is always zero, but |
---|
| 395 | the remaining optimizers (DREAM, differential evolution, Nelder-Mead simplex) |
---|
| 396 | will still function. |
---|
| 397 | |
---|
[990d8df] | 398 | Model Computation |
---|
| 399 | ................. |
---|
| 400 | |
---|
| 401 | Models can be defined as pure python models, or they can be a mixture of |
---|
| 402 | python and C models. C models are run on the GPU if it is available, |
---|
| 403 | otherwise they are compiled and run on the CPU. |
---|
| 404 | |
---|
| 405 | Models are defined by the scattering kernel, which takes a set of parameter |
---|
| 406 | values defining the shape, orientation and material, and returns the |
---|
| 407 | expected scattering. Polydispersity and angular dispersion are defined |
---|
| 408 | by the computational infrastructure. Any parameters defined as "volume" |
---|
| 409 | parameters are polydisperse, with polydispersity defined in proportion |
---|
| 410 | to their value. "orientation" parameters use angular dispersion defined |
---|
| 411 | in degrees, and are not relative to the current angle. |
---|
| 412 | |
---|
| 413 | Based on a weighting function $G(x)$ and a number of points $n$, the |
---|
| 414 | computed value is |
---|
| 415 | |
---|
| 416 | .. math:: |
---|
| 417 | |
---|
| 418 | \hat I(q) |
---|
| 419 | = \frac{\int G(x) I(q, x)\,dx}{\int G(x) V(x)\,dx} |
---|
| 420 | \approx \frac{\sum_{i=1}^n G(x_i) I(q,x_i)}{\sum_{i=1}^n G(x_i) V(x_i)} |
---|
| 421 | |
---|
[3048ec6] | 422 | That is, the individual models do not need to include polydispersity |
---|
[990d8df] | 423 | calculations, but instead rely on numerical integration to compute the |
---|
[108e70e] | 424 | appropriately smeared pattern. |
---|
[990d8df] | 425 | |
---|
[2015f02] | 426 | Each .py file also contains a function:: |
---|
| 427 | |
---|
| 428 | def random(): |
---|
| 429 | ... |
---|
[31fc4ad] | 430 | |
---|
| 431 | This function provides a model-specific random parameter set which shows model |
---|
| 432 | features in the USANS to SANS range. For example, core-shell sphere sets the |
---|
| 433 | outer radius of the sphere logarithmically in `[20, 20,000]`, which sets the Q |
---|
| 434 | value for the transition from flat to falling. It then uses a beta distribution |
---|
| 435 | to set the percentage of the shape which is shell, giving a preference for very |
---|
| 436 | thin or very thick shells (but never 0% or 100%). Using `-sets=10` in sascomp |
---|
| 437 | should show a reasonable variety of curves over the default sascomp q range. |
---|
| 438 | The parameter set is returned as a dictionary of `{parameter: value, ...}`. |
---|
| 439 | Any model parameters not included in the dictionary will default according to |
---|
[2015f02] | 440 | the code in the `_randomize_one()` function from sasmodels/compare.py. |
---|
| 441 | |
---|
[990d8df] | 442 | Python Models |
---|
| 443 | ............. |
---|
| 444 | |
---|
| 445 | For pure python models, define the *Iq* function:: |
---|
| 446 | |
---|
| 447 | import numpy as np |
---|
| 448 | from numpy import cos, sin, ... |
---|
| 449 | |
---|
| 450 | def Iq(q, par1, par2, ...): |
---|
| 451 | return I(q, par1, par2, ...) |
---|
| 452 | Iq.vectorized = True |
---|
| 453 | |
---|
| 454 | The parameters *par1, par2, ...* are the list of non-orientation parameters |
---|
| 455 | to the model in the order that they appear in the parameter table. |
---|
[3048ec6] | 456 | **Note that the auto-generated model file uses** *x* **rather than** *q*. |
---|
[990d8df] | 457 | |
---|
| 458 | The *.py* file should import trigonometric and exponential functions from |
---|
| 459 | numpy rather than from math. This lets us evaluate the model for the whole |
---|
| 460 | range of $q$ values at once rather than looping over each $q$ separately in |
---|
| 461 | python. With $q$ as a vector, you cannot use if statements, but must instead |
---|
| 462 | do tricks like |
---|
| 463 | |
---|
| 464 | :: |
---|
| 465 | |
---|
| 466 | a = x*q*(q>0) + y*q*(q<=0) |
---|
| 467 | |
---|
| 468 | or |
---|
| 469 | |
---|
| 470 | :: |
---|
| 471 | |
---|
| 472 | a = np.empty_like(q) |
---|
| 473 | index = q>0 |
---|
| 474 | a[index] = x*q[index] |
---|
| 475 | a[~index] = y*q[~index] |
---|
| 476 | |
---|
| 477 | which sets $a$ to $q \cdot x$ if $q$ is positive or $q \cdot y$ if $q$ |
---|
| 478 | is zero or negative. If you have not converted your function to use $q$ |
---|
| 479 | vectors, you can set the following and it will only receive one $q$ |
---|
| 480 | value at a time:: |
---|
| 481 | |
---|
| 482 | Iq.vectorized = False |
---|
| 483 | |
---|
| 484 | Return np.NaN if the parameters are not valid (e.g., cap_radius < radius in |
---|
| 485 | barbell). If I(q; pars) is NaN for any $q$, then those parameters will be |
---|
| 486 | ignored, and not included in the calculation of the weighted polydispersity. |
---|
| 487 | |
---|
| 488 | Models should define *form_volume(par1, par2, ...)* where the parameter |
---|
| 489 | list includes the *volume* parameters in order. This is used for a weighted |
---|
| 490 | volume normalization so that scattering is on an absolute scale. If |
---|
| 491 | *form_volume* is not defined, then the default *form_volume = 1.0* will be |
---|
| 492 | used. |
---|
| 493 | |
---|
[31fc4ad] | 494 | Hollow shapes, where the volume fraction of particle corresponds to the |
---|
| 495 | material in the shell rather than the volume enclosed by the shape, must |
---|
| 496 | also define a *shell_volume(par1, par2, ...)* function. The parameters |
---|
| 497 | are the same as for *form_volume*. The *I(q)* calculation should use |
---|
| 498 | *shell_volume* squared as its scale factor for the volume normalization. |
---|
| 499 | The structure factor calculation needs *form_volume* in order to properly |
---|
| 500 | scale the volume fraction parameter, so both functions are required for |
---|
| 501 | hollow shapes. |
---|
| 502 | |
---|
| 503 | Note: Pure python models do not yet support direct computation of the |
---|
| 504 | average of $F(q)$ and $F^2(q)$. |
---|
| 505 | |
---|
[990d8df] | 506 | Embedded C Models |
---|
| 507 | ................. |
---|
| 508 | |
---|
| 509 | Like pure python models, inline C models need to define an *Iq* function:: |
---|
| 510 | |
---|
| 511 | Iq = """ |
---|
| 512 | return I(q, par1, par2, ...); |
---|
| 513 | """ |
---|
| 514 | |
---|
| 515 | This expands into the equivalent C code:: |
---|
| 516 | |
---|
| 517 | double Iq(double q, double par1, double par2, ...); |
---|
| 518 | double Iq(double q, double par1, double par2, ...) |
---|
| 519 | { |
---|
| 520 | return I(q, par1, par2, ...); |
---|
| 521 | } |
---|
| 522 | |
---|
| 523 | *form_volume* defines the volume of the shape. As in python models, it |
---|
| 524 | includes only the volume parameters. |
---|
| 525 | |
---|
[31fc4ad] | 526 | *form_volume* defines the volume of the shell for hollow shapes. As in |
---|
| 527 | python models, it includes only the volume parameters. |
---|
| 528 | |
---|
[990d8df] | 529 | **source=['fn.c', ...]** includes the listed C source files in the |
---|
[108e70e] | 530 | program before *Iq* and *form_volume* are defined. This allows you to |
---|
[ef85a09] | 531 | extend the library of C functions available to your model. |
---|
| 532 | |
---|
| 533 | *c_code* includes arbitrary C code into your kernel, which can be |
---|
| 534 | handy for defining helper functions for *Iq* and *form_volume*. Note that |
---|
[108e70e] | 535 | you can put the full function definition for *Iq* and *form_volume* |
---|
[ef85a09] | 536 | (include function declaration) into *c_code* as well, or put them into an |
---|
| 537 | external C file and add that file to the list of sources. |
---|
[990d8df] | 538 | |
---|
| 539 | Models are defined using double precision declarations for the |
---|
| 540 | parameters and return values. When a model is run using single |
---|
| 541 | precision or long double precision, each variable is converted |
---|
| 542 | to the target type, depending on the precision requested. |
---|
| 543 | |
---|
| 544 | **Floating point constants must include the decimal point.** This allows us |
---|
| 545 | to convert values such as 1.0 (double precision) to 1.0f (single precision) |
---|
| 546 | so that expressions that use these values are not promoted to double precision |
---|
| 547 | expressions. Some graphics card drivers are confused when functions |
---|
| 548 | that expect floating point values are passed integers, such as 4*atan(1); it |
---|
| 549 | is safest to not use integers in floating point expressions. Even better, |
---|
| 550 | use the builtin constant M_PI rather than 4*atan(1); it is faster and smaller! |
---|
| 551 | |
---|
| 552 | The C model operates on a single $q$ value at a time. The code will be |
---|
| 553 | run in parallel across different $q$ values, either on the graphics card |
---|
| 554 | or the processor. |
---|
| 555 | |
---|
| 556 | Rather than returning NAN from Iq, you must define the *INVALID(v)*. The |
---|
| 557 | *v* parameter lets you access all the parameters in the model using |
---|
| 558 | *v.par1*, *v.par2*, etc. For example:: |
---|
| 559 | |
---|
| 560 | #define INVALID(v) (v.bell_radius < v.radius) |
---|
| 561 | |
---|
[ef85a09] | 562 | The INVALID define can go into *Iq*, or *c_code*, or an external C file |
---|
| 563 | listed in *source*. |
---|
| 564 | |
---|
[31fc4ad] | 565 | Structure Factors |
---|
| 566 | ................. |
---|
| 567 | |
---|
| 568 | Structure factor calculations may need the underlying $<F(q)>$ and $<F^2(q)>$ |
---|
| 569 | rather than $I(q)$. This is used to compute $\beta = <F(q)>^2/<F^2(q)>$ in |
---|
| 570 | the decoupling approximation to the structure factor. |
---|
| 571 | |
---|
| 572 | Instead of defining the *Iq* function, models can define *Fq* as |
---|
| 573 | something like:: |
---|
| 574 | |
---|
| 575 | double Fq(double q, double *F1, double *F2, double par1, double par2, ...); |
---|
| 576 | double Fq(double q, double *F1, double *F2, double par1, double par2, ...) |
---|
| 577 | { |
---|
| 578 | // Polar integration loop over all orientations. |
---|
| 579 | ... |
---|
| 580 | *F1 = 1e-2 * total_F1 * contrast * volume; |
---|
| 581 | *F2 = 1e-4 * total_F2 * square(contrast * volume); |
---|
| 582 | return I(q, par1, par2, ...); |
---|
| 583 | } |
---|
| 584 | |
---|
| 585 | If the volume fraction scale factor is built into the model (as occurs for |
---|
| 586 | the vesicle model, for example), then scale *F1* by $\surd V_f$ so that |
---|
| 587 | $\beta$ is computed correctly. |
---|
| 588 | |
---|
| 589 | Structure factor calculations are not yet supported for oriented shapes. |
---|
| 590 | |
---|
| 591 | Note: only available as a separate C file listed in *source*, or within |
---|
| 592 | a *c_code* block within the python model definition file. |
---|
| 593 | |
---|
[108e70e] | 594 | Oriented Shapes |
---|
| 595 | ............... |
---|
| 596 | |
---|
| 597 | If the scattering is dependent on the orientation of the shape, then you |
---|
| 598 | will need to include *orientation* parameters *theta*, *phi* and *psi* |
---|
[7e6bc45e] | 599 | at the end of the parameter table. As described in the section |
---|
| 600 | :ref:`orientation`, the individual $(q_x, q_y)$ points on the detector will |
---|
| 601 | be rotated into $(q_a, q_b, q_c)$ points relative to the sample in its |
---|
| 602 | canonical orientation with $a$-$b$-$c$ aligned with $x$-$y$-$z$ in the |
---|
| 603 | laboratory frame and beam travelling along $-z$. |
---|
| 604 | |
---|
| 605 | The oriented C model is called using *Iqabc(qa, qb, qc, par1, par2, ...)* where |
---|
[108e70e] | 606 | *par1*, etc. are the parameters to the model. If the shape is rotationally |
---|
| 607 | symmetric about *c* then *psi* is not needed, and the model is called |
---|
| 608 | as *Iqac(qab, qc, par1, par2, ...)*. In either case, the orientation |
---|
| 609 | parameters are not included in the function call. |
---|
| 610 | |
---|
| 611 | For 1D oriented shapes, an integral over all angles is usually needed for |
---|
[b85227d] | 612 | the *Iq* function. Given symmetry and the substitution $u = \cos(\alpha)$, |
---|
[108e70e] | 613 | $du = -\sin(\alpha)\,d\alpha$ this becomes |
---|
| 614 | |
---|
| 615 | .. math:: |
---|
| 616 | |
---|
[b85227d] | 617 | I(q) &= \frac{1}{4\pi} \int_{-\pi/2}^{pi/2} \int_{-pi}^{pi} |
---|
| 618 | F(q_a, q_b, q_c)^2 \sin(\alpha)\,d\beta\,d\alpha \\ |
---|
| 619 | &= \frac{8}{4\pi} \int_{0}^{pi/2} \int_{0}^{\pi/2} |
---|
| 620 | F^2 \sin(\alpha)\,d\beta\,d\alpha \\ |
---|
| 621 | &= \frac{8}{4\pi} \int_1^0 \int_{0}^{\pi/2} - F^2 \,d\beta\,du \\ |
---|
| 622 | &= \frac{8}{4\pi} \int_0^1 \int_{0}^{\pi/2} F^2 \,d\beta\,du |
---|
| 623 | |
---|
| 624 | for |
---|
| 625 | |
---|
| 626 | .. math:: |
---|
| 627 | |
---|
| 628 | q_a &= q \sin(\alpha)\sin(\beta) = q \sqrt{1-u^2} \sin(\beta) \\ |
---|
| 629 | q_b &= q \sin(\alpha)\cos(\beta) = q \sqrt{1-u^2} \cos(\beta) \\ |
---|
| 630 | q_c &= q \cos(\alpha) = q u |
---|
[108e70e] | 631 | |
---|
| 632 | Using the $z, w$ values for Gauss-Legendre integration in "lib/gauss76.c", the |
---|
| 633 | numerical integration is then:: |
---|
| 634 | |
---|
| 635 | double outer_sum = 0.0; |
---|
| 636 | for (int i = 0; i < GAUSS_N; i++) { |
---|
| 637 | const double cos_alpha = 0.5*GAUSS_Z[i] + 0.5; |
---|
| 638 | const double sin_alpha = sqrt(1.0 - cos_alpha*cos_alpha); |
---|
| 639 | const double qc = cos_alpha * q; |
---|
| 640 | double inner_sum = 0.0; |
---|
| 641 | for (int j = 0; j < GAUSS_N; j++) { |
---|
| 642 | const double beta = M_PI_4 * GAUSS_Z[j] + M_PI_4; |
---|
| 643 | double sin_beta, cos_beta; |
---|
| 644 | SINCOS(beta, sin_beta, cos_beta); |
---|
| 645 | const double qa = sin_alpha * sin_beta * q; |
---|
[b85227d] | 646 | const double qb = sin_alpha * cos_beta * q; |
---|
| 647 | const double form = Fq(qa, qb, qc, ...); |
---|
| 648 | inner_sum += GAUSS_W[j] * form * form; |
---|
[108e70e] | 649 | } |
---|
| 650 | outer_sum += GAUSS_W[i] * inner_sum; |
---|
| 651 | } |
---|
| 652 | outer_sum *= 0.25; // = 8/(4 pi) * outer_sum * (pi/2) / 4 |
---|
| 653 | |
---|
| 654 | The *z* values for the Gauss-Legendre integration extends from -1 to 1, so |
---|
| 655 | the double sum of *w[i]w[j]* explains the factor of 4. Correcting for the |
---|
| 656 | average *dz[i]dz[j]* gives $(1-0) \cdot (\pi/2-0) = \pi/2$. The $8/(4 \pi)$ |
---|
| 657 | factor comes from the integral over the quadrant. With less symmetry (eg., |
---|
| 658 | in the bcc and fcc paracrystal models), then an integral over the entire |
---|
| 659 | sphere may be necessary. |
---|
| 660 | |
---|
| 661 | For simpler models which are rotationally symmetric a single integral |
---|
| 662 | suffices: |
---|
| 663 | |
---|
| 664 | .. math:: |
---|
| 665 | |
---|
[b85227d] | 666 | I(q) &= \frac{1}{\pi}\int_{-\pi/2}^{\pi/2} |
---|
| 667 | F(q_{ab}, q_c)^2 \sin(\alpha)\,d\alpha/\pi \\ |
---|
| 668 | &= \frac{2}{\pi} \int_0^1 F^2\,du |
---|
| 669 | |
---|
| 670 | for |
---|
| 671 | |
---|
| 672 | .. math:: |
---|
| 673 | |
---|
| 674 | q_{ab} &= q \sin(\alpha) = q \sqrt{1 - u^2} \\ |
---|
| 675 | q_c &= q \cos(\alpha) = q u |
---|
| 676 | |
---|
[108e70e] | 677 | |
---|
| 678 | with integration loop:: |
---|
| 679 | |
---|
| 680 | double sum = 0.0; |
---|
| 681 | for (int i = 0; i < GAUSS_N; i++) { |
---|
| 682 | const double cos_alpha = 0.5*GAUSS_Z[i] + 0.5; |
---|
| 683 | const double sin_alpha = sqrt(1.0 - cos_alpha*cos_alpha); |
---|
| 684 | const double qab = sin_alpha * q; |
---|
[b85227d] | 685 | const double qc = cos_alpha * q; |
---|
| 686 | const double form = Fq(qab, qc, ...); |
---|
| 687 | sum += GAUSS_W[j] * form * form; |
---|
[108e70e] | 688 | } |
---|
| 689 | sum *= 0.5; // = 2/pi * sum * (pi/2) / 2 |
---|
| 690 | |
---|
| 691 | Magnetism |
---|
| 692 | ......... |
---|
| 693 | |
---|
| 694 | Magnetism is supported automatically for all shapes by modifying the |
---|
| 695 | effective SLD of particle according to the Halpern-Johnson vector |
---|
[c654160] | 696 | describing the interaction between neutron spin and magnetic field. All |
---|
[108e70e] | 697 | parameters marked as type *sld* in the parameter table are treated as |
---|
| 698 | possibly magnetic particles with magnitude *M0* and direction |
---|
| 699 | *mtheta* and *mphi*. Polarization parameters are also provided |
---|
| 700 | automatically for magnetic models to set the spin state of the measurement. |
---|
| 701 | |
---|
| 702 | For more complicated systems where magnetism is not uniform throughout |
---|
| 703 | the individual particles, you will need to write your own models. |
---|
| 704 | You should not mark the nuclear sld as type *sld*, but instead leave |
---|
| 705 | them unmarked and provide your own magnetism and polarization parameters. |
---|
| 706 | For 2D measurements you will need $(q_x, q_y)$ values for the measurement |
---|
| 707 | to compute the proper magnetism and orientation, which you can implement |
---|
| 708 | using *Iqxy(qx, qy, par1, par2, ...)*. |
---|
| 709 | |
---|
[990d8df] | 710 | Special Functions |
---|
| 711 | ................. |
---|
| 712 | |
---|
| 713 | The C code follows the C99 standard, with the usual math functions, |
---|
| 714 | as defined in |
---|
| 715 | `OpenCL <https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/mathFunctions.html>`_. |
---|
| 716 | This includes the following: |
---|
| 717 | |
---|
| 718 | M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E: |
---|
| 719 | $\pi$, $\pi/2$, $\pi/4$, $1/\sqrt{2}$ and Euler's constant $e$ |
---|
[d0dc9a3] | 720 | exp, log, pow(x,y), expm1, log1p, sqrt, cbrt: |
---|
| 721 | Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\ln 1 + x$, |
---|
| 722 | $\sqrt{x}$, $\sqrt[3]{x}$. The functions expm1(x) and log1p(x) |
---|
| 723 | are accurate across all $x$, including $x$ very close to zero. |
---|
[990d8df] | 724 | sin, cos, tan, asin, acos, atan: |
---|
| 725 | Trigonometry functions and inverses, operating on radians. |
---|
| 726 | sinh, cosh, tanh, asinh, acosh, atanh: |
---|
| 727 | Hyperbolic trigonometry functions. |
---|
| 728 | atan2(y,x): |
---|
| 729 | Angle from the $x$\ -axis to the point $(x,y)$, which is equal to |
---|
| 730 | $\tan^{-1}(y/x)$ corrected for quadrant. That is, if $x$ and $y$ are |
---|
| 731 | both negative, then atan2(y,x) returns a value in quadrant III where |
---|
| 732 | atan(y/x) would return a value in quadrant I. Similarly for |
---|
| 733 | quadrants II and IV when $x$ and $y$ have opposite sign. |
---|
[d0dc9a3] | 734 | fabs(x), fmin(x,y), fmax(x,y), trunc, rint: |
---|
[990d8df] | 735 | Floating point functions. rint(x) returns the nearest integer. |
---|
| 736 | NAN: |
---|
| 737 | NaN, Not a Number, $0/0$. Use isnan(x) to test for NaN. Note that |
---|
| 738 | you cannot use :code:`x == NAN` to test for NaN values since that |
---|
[d0dc9a3] | 739 | will always return false. NAN does not equal NAN! The alternative, |
---|
| 740 | :code:`x != x` may fail if the compiler optimizes the test away. |
---|
[990d8df] | 741 | INFINITY: |
---|
| 742 | $\infty, 1/0$. Use isinf(x) to test for infinity, or isfinite(x) |
---|
| 743 | to test for finite and not NaN. |
---|
| 744 | erf, erfc, tgamma, lgamma: **do not use** |
---|
| 745 | Special functions that should be part of the standard, but are missing |
---|
[fba9ca0] | 746 | or inaccurate on some platforms. Use sas_erf, sas_erfc, sas_gamma |
---|
| 747 | and sas_lgamma instead (see below). |
---|
[990d8df] | 748 | |
---|
| 749 | Some non-standard constants and functions are also provided: |
---|
| 750 | |
---|
| 751 | M_PI_180, M_4PI_3: |
---|
| 752 | $\frac{\pi}{180}$, $\frac{4\pi}{3}$ |
---|
| 753 | SINCOS(x, s, c): |
---|
| 754 | Macro which sets s=sin(x) and c=cos(x). The variables *c* and *s* |
---|
| 755 | must be declared first. |
---|
| 756 | square(x): |
---|
| 757 | $x^2$ |
---|
| 758 | cube(x): |
---|
| 759 | $x^3$ |
---|
| 760 | sas_sinx_x(x): |
---|
| 761 | $\sin(x)/x$, with limit $\sin(0)/0 = 1$. |
---|
| 762 | powr(x, y): |
---|
| 763 | $x^y$ for $x \ge 0$; this is faster than general $x^y$ on some GPUs. |
---|
| 764 | pown(x, n): |
---|
| 765 | $x^n$ for $n$ integer; this is faster than general $x^n$ on some GPUs. |
---|
| 766 | FLOAT_SIZE: |
---|
| 767 | The number of bytes in a floating point value. Even though all |
---|
| 768 | variables are declared double, they may be converted to single |
---|
| 769 | precision float before running. If your algorithm depends on |
---|
| 770 | precision (which is not uncommon for numerical algorithms), use |
---|
| 771 | the following:: |
---|
| 772 | |
---|
| 773 | #if FLOAT_SIZE>4 |
---|
| 774 | ... code for double precision ... |
---|
| 775 | #else |
---|
| 776 | ... code for single precision ... |
---|
| 777 | #endif |
---|
| 778 | SAS_DOUBLE: |
---|
| 779 | A replacement for :code:`double` so that the declared variable will |
---|
| 780 | stay double precision; this should generally not be used since some |
---|
| 781 | graphics cards do not support double precision. There is no provision |
---|
| 782 | for forcing a constant to stay double precision. |
---|
| 783 | |
---|
| 784 | The following special functions and scattering calculations are defined in |
---|
| 785 | `sasmodels/models/lib <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib>`_. |
---|
| 786 | These functions have been tuned to be fast and numerically stable down |
---|
| 787 | to $q=0$ even in single precision. In some cases they work around bugs |
---|
| 788 | which appear on some platforms but not others, so use them where needed. |
---|
| 789 | Add the files listed in :code:`source = ["lib/file.c", ...]` to your *model.py* |
---|
| 790 | file in the order given, otherwise these functions will not be available. |
---|
| 791 | |
---|
| 792 | polevl(x, c, n): |
---|
| 793 | Polynomial evaluation $p(x) = \sum_{i=0}^n c_i x^i$ using Horner's |
---|
| 794 | method so it is faster and more accurate. |
---|
| 795 | |
---|
| 796 | $c = \{c_n, c_{n-1}, \ldots, c_0 \}$ is the table of coefficients, |
---|
| 797 | sorted from highest to lowest. |
---|
| 798 | |
---|
| 799 | :code:`source = ["lib/polevl.c", ...]` (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/polevl.c>`_) |
---|
| 800 | |
---|
| 801 | p1evl(x, c, n): |
---|
| 802 | Evaluation of normalized polynomial $p(x) = x^n + \sum_{i=0}^{n-1} c_i x^i$ |
---|
| 803 | using Horner's method so it is faster and more accurate. |
---|
| 804 | |
---|
| 805 | $c = \{c_{n-1}, c_{n-2} \ldots, c_0 \}$ is the table of coefficients, |
---|
| 806 | sorted from highest to lowest. |
---|
| 807 | |
---|
| 808 | :code:`source = ["lib/polevl.c", ...]` |
---|
[870a2f4] | 809 | (`polevl.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/polevl.c>`_) |
---|
[990d8df] | 810 | |
---|
| 811 | sas_gamma(x): |
---|
[30b60d2] | 812 | Gamma function sas_gamma\ $(x) = \Gamma(x)$. |
---|
[990d8df] | 813 | |
---|
[fba9ca0] | 814 | The standard math function, tgamma(x), is unstable for $x < 1$ |
---|
[990d8df] | 815 | on some platforms. |
---|
| 816 | |
---|
[870a2f4] | 817 | :code:`source = ["lib/sas_gamma.c", ...]` |
---|
| 818 | (`sas_gamma.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gamma.c>`_) |
---|
[990d8df] | 819 | |
---|
[fba9ca0] | 820 | sas_gammaln(x): |
---|
| 821 | log gamma function sas_gammaln\ $(x) = \log \Gamma(|x|)$. |
---|
| 822 | |
---|
| 823 | The standard math function, lgamma(x), is incorrect for single |
---|
| 824 | precision on some platforms. |
---|
| 825 | |
---|
| 826 | :code:`source = ["lib/sas_gammainc.c", ...]` |
---|
| 827 | (`sas_gammainc.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gammainc.c>`_) |
---|
| 828 | |
---|
| 829 | sas_gammainc(a, x), sas_gammaincc(a, x): |
---|
| 830 | Incomplete gamma function |
---|
| 831 | sas_gammainc\ $(a, x) = \int_0^x t^{a-1}e^{-t}\,dt / \Gamma(a)$ |
---|
| 832 | and complementary incomplete gamma function |
---|
| 833 | sas_gammaincc\ $(a, x) = \int_x^\infty t^{a-1}e^{-t}\,dt / \Gamma(a)$ |
---|
| 834 | |
---|
| 835 | :code:`source = ["lib/sas_gammainc.c", ...]` |
---|
| 836 | (`sas_gammainc.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gammainc.c>`_) |
---|
| 837 | |
---|
[990d8df] | 838 | sas_erf(x), sas_erfc(x): |
---|
| 839 | Error function |
---|
[30b60d2] | 840 | sas_erf\ $(x) = \frac{2}{\sqrt\pi}\int_0^x e^{-t^2}\,dt$ |
---|
[990d8df] | 841 | and complementary error function |
---|
[30b60d2] | 842 | sas_erfc\ $(x) = \frac{2}{\sqrt\pi}\int_x^{\infty} e^{-t^2}\,dt$. |
---|
[990d8df] | 843 | |
---|
| 844 | The standard math functions erf(x) and erfc(x) are slower and broken |
---|
| 845 | on some platforms. |
---|
| 846 | |
---|
| 847 | :code:`source = ["lib/polevl.c", "lib/sas_erf.c", ...]` |
---|
[870a2f4] | 848 | (`sas_erf.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_erf.c>`_) |
---|
[990d8df] | 849 | |
---|
| 850 | sas_J0(x): |
---|
[30b60d2] | 851 | Bessel function of the first kind sas_J0\ $(x)=J_0(x)$ where |
---|
[990d8df] | 852 | $J_0(x) = \frac{1}{\pi}\int_0^\pi \cos(x\sin(\tau))\,d\tau$. |
---|
| 853 | |
---|
| 854 | The standard math function j0(x) is not available on all platforms. |
---|
| 855 | |
---|
| 856 | :code:`source = ["lib/polevl.c", "lib/sas_J0.c", ...]` |
---|
[870a2f4] | 857 | (`sas_J0.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J0.c>`_) |
---|
[990d8df] | 858 | |
---|
| 859 | sas_J1(x): |
---|
[30b60d2] | 860 | Bessel function of the first kind sas_J1\ $(x)=J_1(x)$ where |
---|
[990d8df] | 861 | $J_1(x) = \frac{1}{\pi}\int_0^\pi \cos(\tau - x\sin(\tau))\,d\tau$. |
---|
| 862 | |
---|
| 863 | The standard math function j1(x) is not available on all platforms. |
---|
| 864 | |
---|
| 865 | :code:`source = ["lib/polevl.c", "lib/sas_J1.c", ...]` |
---|
[870a2f4] | 866 | (`sas_J1.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J1.c>`_) |
---|
[990d8df] | 867 | |
---|
| 868 | sas_JN(n, x): |
---|
[30b60d2] | 869 | Bessel function of the first kind and integer order $n$, |
---|
| 870 | sas_JN\ $(n, x) =J_n(x)$ where |
---|
[990d8df] | 871 | $J_n(x) = \frac{1}{\pi}\int_0^\pi \cos(n\tau - x\sin(\tau))\,d\tau$. |
---|
[30b60d2] | 872 | If $n$ = 0 or 1, it uses sas_J0($x$) or sas_J1($x$), respectively. |
---|
[990d8df] | 873 | |
---|
[57c609b] | 874 | Warning: JN(n,x) can be very inaccurate (0.1%) for x not in [0.1, 100]. |
---|
| 875 | |
---|
[990d8df] | 876 | The standard math function jn(n, x) is not available on all platforms. |
---|
| 877 | |
---|
| 878 | :code:`source = ["lib/polevl.c", "lib/sas_J0.c", "lib/sas_J1.c", "lib/sas_JN.c", ...]` |
---|
[870a2f4] | 879 | (`sas_JN.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_JN.c>`_) |
---|
[990d8df] | 880 | |
---|
| 881 | sas_Si(x): |
---|
[30b60d2] | 882 | Sine integral Si\ $(x) = \int_0^x \tfrac{\sin t}{t}\,dt$. |
---|
[990d8df] | 883 | |
---|
[57c609b] | 884 | Warning: Si(x) can be very inaccurate (0.1%) for x in [0.1, 100]. |
---|
| 885 | |
---|
[990d8df] | 886 | This function uses Taylor series for small and large arguments: |
---|
| 887 | |
---|
[57c609b] | 888 | For large arguments use the following Taylor series, |
---|
[990d8df] | 889 | |
---|
| 890 | .. math:: |
---|
| 891 | |
---|
| 892 | \text{Si}(x) \sim \frac{\pi}{2} |
---|
| 893 | - \frac{\cos(x)}{x}\left(1 - \frac{2!}{x^2} + \frac{4!}{x^4} - \frac{6!}{x^6} \right) |
---|
| 894 | - \frac{\sin(x)}{x}\left(\frac{1}{x} - \frac{3!}{x^3} + \frac{5!}{x^5} - \frac{7!}{x^7}\right) |
---|
| 895 | |
---|
[57c609b] | 896 | For small arguments , |
---|
[990d8df] | 897 | |
---|
| 898 | .. math:: |
---|
| 899 | |
---|
| 900 | \text{Si}(x) \sim x |
---|
| 901 | - \frac{x^3}{3\times 3!} + \frac{x^5}{5 \times 5!} - \frac{x^7}{7 \times 7!} |
---|
| 902 | + \frac{x^9}{9\times 9!} - \frac{x^{11}}{11\times 11!} |
---|
| 903 | |
---|
| 904 | :code:`source = ["lib/Si.c", ...]` |
---|
[f796469] | 905 | (`Si.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_Si.c>`_) |
---|
[990d8df] | 906 | |
---|
| 907 | sas_3j1x_x(x): |
---|
| 908 | Spherical Bessel form |
---|
[30b60d2] | 909 | sph_j1c\ $(x) = 3 j_1(x)/x = 3 (\sin(x) - x \cos(x))/x^3$, |
---|
[990d8df] | 910 | with a limiting value of 1 at $x=0$, where $j_1(x)$ is the spherical |
---|
| 911 | Bessel function of the first kind and first order. |
---|
| 912 | |
---|
| 913 | This function uses a Taylor series for small $x$ for numerical accuracy. |
---|
| 914 | |
---|
| 915 | :code:`source = ["lib/sas_3j1x_x.c", ...]` |
---|
[870a2f4] | 916 | (`sas_3j1x_x.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_3j1x_x.c>`_) |
---|
[990d8df] | 917 | |
---|
| 918 | |
---|
| 919 | sas_2J1x_x(x): |
---|
[30b60d2] | 920 | Bessel form sas_J1c\ $(x) = 2 J_1(x)/x$, with a limiting value |
---|
[990d8df] | 921 | of 1 at $x=0$, where $J_1(x)$ is the Bessel function of first kind |
---|
| 922 | and first order. |
---|
| 923 | |
---|
| 924 | :code:`source = ["lib/polevl.c", "lib/sas_J1.c", ...]` |
---|
[870a2f4] | 925 | (`sas_J1.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J1.c>`_) |
---|
[990d8df] | 926 | |
---|
| 927 | |
---|
| 928 | Gauss76Z[i], Gauss76Wt[i]: |
---|
| 929 | Points $z_i$ and weights $w_i$ for 76-point Gaussian quadrature, respectively, |
---|
| 930 | computing $\int_{-1}^1 f(z)\,dz \approx \sum_{i=1}^{76} w_i\,f(z_i)$. |
---|
| 931 | |
---|
| 932 | Similar arrays are available in :code:`gauss20.c` for 20-point |
---|
| 933 | quadrature and in :code:`gauss150.c` for 150-point quadrature. |
---|
[d0dc9a3] | 934 | The macros :code:`GAUSS_N`, :code:`GAUSS_Z` and :code:`GAUSS_W` are |
---|
| 935 | defined so that you can change the order of the integration by |
---|
| 936 | selecting an different source without touching the C code. |
---|
[990d8df] | 937 | |
---|
| 938 | :code:`source = ["lib/gauss76.c", ...]` |
---|
[870a2f4] | 939 | (`gauss76.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/gauss76.c>`_) |
---|
[990d8df] | 940 | |
---|
| 941 | |
---|
| 942 | |
---|
| 943 | Problems with C models |
---|
| 944 | ...................... |
---|
| 945 | |
---|
| 946 | The graphics processor (GPU) in your computer is a specialized computer tuned |
---|
| 947 | for certain kinds of problems. This leads to strange restrictions that you |
---|
| 948 | need to be aware of. Your code may work fine on some platforms or for some |
---|
| 949 | models, but then return bad values on other platforms. Some examples of |
---|
| 950 | particular problems: |
---|
| 951 | |
---|
| 952 | **(1) Code is too complex, or uses too much memory.** GPU devices only |
---|
| 953 | have a limited amount of memory available for each processor. If you run |
---|
| 954 | programs which take too much memory, then rather than running multiple |
---|
| 955 | values in parallel as it usually does, the GPU may only run a single |
---|
| 956 | version of the code at a time, making it slower than running on the CPU. |
---|
| 957 | It may fail to run on some platforms, or worse, cause the screen to go |
---|
| 958 | blank or the system to reboot. |
---|
| 959 | |
---|
| 960 | **(2) Code takes too long.** Because GPU devices are used for the computer |
---|
| 961 | display, the OpenCL drivers are very careful about the amount of time they |
---|
| 962 | will allow any code to run. For example, on OS X, the model will stop |
---|
| 963 | running after 5 seconds regardless of whether the computation is complete. |
---|
| 964 | You may end up with only some of your 2D array defined, with the rest |
---|
| 965 | containing random data. Or it may cause the screen to go blank or the |
---|
| 966 | system to reboot. |
---|
| 967 | |
---|
| 968 | **(3) Memory is not aligned**. The GPU hardware is specialized to operate |
---|
| 969 | on multiple values simultaneously. To keep the GPU simple the values in |
---|
| 970 | memory must be aligned with the different GPU compute engines. Not |
---|
| 971 | following these rules can lead to unexpected values being loaded into |
---|
| 972 | memory, and wrong answers computed. The conclusion from a very long and |
---|
| 973 | strange debugging session was that any arrays that you declare in your |
---|
| 974 | model should be a multiple of four. For example:: |
---|
| 975 | |
---|
| 976 | double Iq(q, p1, p2, ...) |
---|
| 977 | { |
---|
| 978 | double vector[8]; // Only going to use seven slots, but declare 8 |
---|
| 979 | ... |
---|
| 980 | } |
---|
| 981 | |
---|
| 982 | The first step when your model is behaving strangely is to set |
---|
| 983 | **single=False**. This automatically restricts the model to only run on the |
---|
| 984 | CPU, or on high-end GPU cards. There can still be problems even on high-end |
---|
| 985 | cards, so you can force the model off the GPU by setting **opencl=False**. |
---|
| 986 | This runs the model as a normal C program without any GPU restrictions so |
---|
| 987 | you know that strange results are probably from your code rather than the |
---|
| 988 | environment. Once the code is debugged, you can compare your output to the |
---|
| 989 | output on the GPU. |
---|
| 990 | |
---|
| 991 | Although it can be difficult to get your model to work on the GPU, the reward |
---|
| 992 | can be a model that runs 1000x faster on a good card. Even your laptop may |
---|
| 993 | show a 50x improvement or more over the equivalent pure python model. |
---|
| 994 | |
---|
| 995 | |
---|
| 996 | .. _Form_Factors: |
---|
| 997 | |
---|
| 998 | Form Factors |
---|
| 999 | ............ |
---|
| 1000 | |
---|
| 1001 | Away from the dilute limit you can estimate scattering including |
---|
| 1002 | particle-particle interactions using $I(q) = P(q)*S(q)$ where $P(q)$ |
---|
| 1003 | is the form factor and $S(q)$ is the structure factor. The simplest |
---|
| 1004 | structure factor is the *hardsphere* interaction, which |
---|
| 1005 | uses the effective radius of the form factor as an input to the structure |
---|
| 1006 | factor model. The effective radius is the average radius of the |
---|
| 1007 | form averaged over all the polydispersity values. |
---|
| 1008 | |
---|
| 1009 | :: |
---|
| 1010 | |
---|
| 1011 | def ER(radius, thickness): |
---|
| 1012 | """Effective radius of a core-shell sphere.""" |
---|
| 1013 | return radius + thickness |
---|
| 1014 | |
---|
| 1015 | Now consider the *core_shell_sphere*, which has a simple effective radius |
---|
| 1016 | equal to the radius of the core plus the thickness of the shell, as |
---|
| 1017 | shown above. Given polydispersity over *(r1, r2, ..., rm)* in radius and |
---|
| 1018 | *(t1, t2, ..., tn)* in thickness, *ER* is called with a mesh |
---|
| 1019 | grid covering all possible combinations of radius and thickness. |
---|
| 1020 | That is, *radius* is *(r1, r2, ..., rm, r1, r2, ..., rm, ...)* |
---|
| 1021 | and *thickness* is *(t1, t1, ... t1, t2, t2, ..., t2, ...)*. |
---|
| 1022 | The *ER* function returns one effective radius for each combination. |
---|
| 1023 | The effective radius calculator weights each of these according to |
---|
| 1024 | the polydispersity distributions and calls the structure factor |
---|
| 1025 | with the average *ER*. |
---|
| 1026 | |
---|
| 1027 | :: |
---|
| 1028 | |
---|
| 1029 | def VR(radius, thickness): |
---|
| 1030 | """Sphere and shell volumes for a core-shell sphere.""" |
---|
| 1031 | whole = 4.0/3.0 * pi * (radius + thickness)**3 |
---|
| 1032 | core = 4.0/3.0 * pi * radius**3 |
---|
| 1033 | return whole, whole - core |
---|
| 1034 | |
---|
| 1035 | Core-shell type models have an additional volume ratio which scales |
---|
| 1036 | the structure factor. The *VR* function returns the volume of |
---|
| 1037 | the whole sphere and the volume of the shell. Like *ER*, there is |
---|
| 1038 | one return value for each point in the mesh grid. |
---|
| 1039 | |
---|
| 1040 | *NOTE: we may be removing or modifying this feature soon. As of the |
---|
| 1041 | time of writing, core-shell sphere returns (1., 1.) for VR, giving a volume |
---|
| 1042 | ratio of 1.0.* |
---|
| 1043 | |
---|
| 1044 | Unit Tests |
---|
| 1045 | .......... |
---|
| 1046 | |
---|
| 1047 | THESE ARE VERY IMPORTANT. Include at least one test for each model and |
---|
| 1048 | PLEASE make sure that the answer value is correct (i.e. not a random number). |
---|
| 1049 | |
---|
| 1050 | :: |
---|
| 1051 | |
---|
| 1052 | tests = [ |
---|
| 1053 | [{}, 0.2, 0.726362], |
---|
| 1054 | [{"scale": 1., "background": 0., "sld": 6., "sld_solvent": 1., |
---|
| 1055 | "radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, |
---|
| 1056 | 0.2, 0.228843], |
---|
[304c775] | 1057 | [{"radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, |
---|
| 1058 | 0.1, None, None, 120., None, 1.], # q, F, F^2, R_eff, V, form:shell |
---|
[81751c2] | 1059 | [{"@S": "hardsphere"}, 0.1, None], |
---|
[990d8df] | 1060 | ] |
---|
| 1061 | |
---|
| 1062 | |
---|
[304c775] | 1063 | **tests=[[{parameters}, q, Iq], ...]** is a list of lists. |
---|
[990d8df] | 1064 | Each list is one test and contains, in order: |
---|
| 1065 | |
---|
| 1066 | - a dictionary of parameter values. This can be *{}* using the default |
---|
| 1067 | parameters, or filled with some parameters that will be different from the |
---|
| 1068 | default, such as *{"radius":10.0, "sld":4}*. Unlisted parameters will |
---|
| 1069 | be given the default values. |
---|
| 1070 | - the input $q$ value or tuple of $(q_x, q_y)$ values. |
---|
| 1071 | - the output $I(q)$ or $I(q_x,q_y)$ expected of the model for the parameters |
---|
| 1072 | and input value given. |
---|
| 1073 | - input and output values can themselves be lists if you have several |
---|
| 1074 | $q$ values to test for the same model parameters. |
---|
[304c775] | 1075 | - for testing effective radius, volume and form:shell volume ratio, use the |
---|
| 1076 | extended form of the tests results, with *None, None, R_eff, V, V_r* |
---|
| 1077 | instead of *Iq*. This calls the kernel *Fq* function instead of *Iq*. |
---|
| 1078 | - for testing F and F^2 (used for beta approximation) do the same as the |
---|
| 1079 | effective radius test, but include values for the first two elements, |
---|
| 1080 | $<F(q)>$ and $<F^2(q)>$. |
---|
[81751c2] | 1081 | - for testing interaction between form factor and structure factor, specify |
---|
| 1082 | the structure factor name in the parameters as *{"@S": "name", ...}* with |
---|
| 1083 | the remaining list of parameters defined by the *P@S* product model. |
---|
[990d8df] | 1084 | |
---|
| 1085 | .. _Test_Your_New_Model: |
---|
| 1086 | |
---|
| 1087 | Test Your New Model |
---|
| 1088 | ^^^^^^^^^^^^^^^^^^^ |
---|
| 1089 | |
---|
| 1090 | Minimal Testing |
---|
| 1091 | ............... |
---|
| 1092 | |
---|
| 1093 | From SasView either open the Python shell (*Tools* > *Python Shell/Editor*) |
---|
| 1094 | or the plugin editor (*Fitting* > *Plugin Model Operations* > *Advanced |
---|
| 1095 | Plugin Editor*), load your model, and then select *Run > Check Model* from |
---|
| 1096 | the menu bar. An *Info* box will appear with the results of the compilation |
---|
| 1097 | and a check that the model runs. |
---|
| 1098 | |
---|
| 1099 | If you are not using sasmodels from SasView, skip this step. |
---|
| 1100 | |
---|
| 1101 | Recommended Testing |
---|
| 1102 | ................... |
---|
| 1103 | |
---|
| 1104 | If the model compiles and runs, you can next run the unit tests that |
---|
| 1105 | you have added using the **test =** values. |
---|
| 1106 | |
---|
| 1107 | From SasView, switch to the *Shell* tab and type the following:: |
---|
| 1108 | |
---|
| 1109 | from sasmodels.model_test import run_one |
---|
| 1110 | run_one("~/.sasview/plugin_models/model.py") |
---|
| 1111 | |
---|
| 1112 | This should print:: |
---|
| 1113 | |
---|
| 1114 | test_model_python (sasmodels.model_test.ModelTestCase) ... ok |
---|
| 1115 | |
---|
| 1116 | To check whether single precision is good enough, type the following:: |
---|
| 1117 | |
---|
| 1118 | from sasmodels.compare import main as compare |
---|
| 1119 | compare("~/.sasview/plugin_models/model.py") |
---|
| 1120 | |
---|
| 1121 | This will pop up a plot showing the difference between single precision |
---|
| 1122 | and double precision on a range of $q$ values. |
---|
| 1123 | |
---|
| 1124 | :: |
---|
| 1125 | |
---|
| 1126 | demo = dict(scale=1, background=0, |
---|
| 1127 | sld=6, sld_solvent=1, |
---|
| 1128 | radius=120, |
---|
| 1129 | radius_pd=.2, radius_pd_n=45) |
---|
| 1130 | |
---|
| 1131 | **demo={'par': value, ...}** in the model file sets the default values for |
---|
| 1132 | the comparison. You can include polydispersity parameters such as |
---|
| 1133 | *radius_pd=0.2, radius_pd_n=45* which would otherwise be zero. |
---|
| 1134 | |
---|
| 1135 | These commands can also be run directly in the python interpreter: |
---|
| 1136 | |
---|
| 1137 | $ python -m sasmodels.model_test -v ~/.sasview/plugin_models/model.py |
---|
| 1138 | $ python -m sasmodels.compare ~/.sasview/plugin_models/model.py |
---|
| 1139 | |
---|
| 1140 | The options to compare are quite extensive; type the following for help:: |
---|
| 1141 | |
---|
| 1142 | compare() |
---|
| 1143 | |
---|
| 1144 | Options will need to be passed as separate strings. |
---|
| 1145 | For example to run your model with a random set of parameters:: |
---|
| 1146 | |
---|
| 1147 | compare("-random", "-pars", "~/.sasview/plugin_models/model.py") |
---|
| 1148 | |
---|
| 1149 | For the random models, |
---|
| 1150 | |
---|
| 1151 | - *sld* will be in the range (-0.5,10.5), |
---|
| 1152 | - angles (*theta, phi, psi*) will be in the range (-180,180), |
---|
| 1153 | - angular dispersion will be in the range (0,45), |
---|
| 1154 | - polydispersity will be in the range (0,1) |
---|
| 1155 | - other values will be in the range (0, 2\ *v*), where *v* is the value |
---|
| 1156 | of the parameter in demo. |
---|
| 1157 | |
---|
| 1158 | Dispersion parameters *n*\, *sigma* and *type* will be unchanged from |
---|
| 1159 | demo so that run times are more predictable (polydispersity calculated |
---|
| 1160 | across multiple parameters can be very slow). |
---|
| 1161 | |
---|
[3048ec6] | 1162 | If your model has 2D orientation calculation, then you should also |
---|
[990d8df] | 1163 | test with:: |
---|
| 1164 | |
---|
| 1165 | compare("-2d", "~/.sasview/plugin_models/model.py") |
---|
| 1166 | |
---|
| 1167 | Check The Docs |
---|
| 1168 | ^^^^^^^^^^^^^^ |
---|
| 1169 | |
---|
| 1170 | You can get a rough idea of how the documentation will look using the |
---|
| 1171 | following:: |
---|
| 1172 | |
---|
| 1173 | compare("-help", "~/.sasview/plugin_models/model.py") |
---|
| 1174 | |
---|
| 1175 | This does not use the same styling as the rest of the docs, but it will |
---|
| 1176 | allow you to check that your ReStructuredText and LaTeX formatting. |
---|
| 1177 | Here are some tools to help with the inevitable syntax errors: |
---|
| 1178 | |
---|
| 1179 | - `Sphinx cheat sheet <http://matplotlib.org/sampledoc/cheatsheet.html>`_ |
---|
| 1180 | - `Sphinx Documentation <http://www.sphinx-doc.org/en/stable/>`_ |
---|
| 1181 | - `MathJax <http://www.mathjax.org/>`_ |
---|
| 1182 | - `amsmath <http://www.ams.org/publications/authors/tex/amslatex>`_ |
---|
| 1183 | |
---|
| 1184 | There is also a neat online WYSIWYG ReStructuredText editor at |
---|
| 1185 | http://rst.ninjs.org\ . |
---|
| 1186 | |
---|
| 1187 | |
---|
| 1188 | Clean Lint - (Developer Version Only) |
---|
| 1189 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
| 1190 | |
---|
| 1191 | **NB: For now we are not providing pylint with the installer version |
---|
| 1192 | of SasView; so unless you have a SasView build environment available, |
---|
| 1193 | you can ignore this section!** |
---|
| 1194 | |
---|
| 1195 | Run the lint check with:: |
---|
| 1196 | |
---|
| 1197 | python -m pylint --rcfile=extra/pylint.rc ~/.sasview/plugin_models/model.py |
---|
| 1198 | |
---|
| 1199 | We are not aiming for zero lint just yet, only keeping it to a minimum. |
---|
| 1200 | For now, don't worry too much about *invalid-name*. If you really want a |
---|
| 1201 | variable name *Rg* for example because $R_g$ is the right name for the model |
---|
| 1202 | parameter then ignore the lint errors. Also, ignore *missing-docstring* |
---|
[108e70e] | 1203 | for standard model functions *Iq*, *Iqac*, etc. |
---|
[990d8df] | 1204 | |
---|
| 1205 | We will have delinting sessions at the SasView Code Camps, where we can |
---|
| 1206 | decide on standards for model files, parameter names, etc. |
---|
| 1207 | |
---|
| 1208 | For now, you can tell pylint to ignore things. For example, to align your |
---|
| 1209 | parameters in blocks:: |
---|
| 1210 | |
---|
| 1211 | # pylint: disable=bad-whitespace,line-too-long |
---|
| 1212 | # ["name", "units", default, [lower, upper], "type", "description"], |
---|
| 1213 | parameters = [ |
---|
| 1214 | ["contrast_factor", "barns", 10.0, [-inf, inf], "", "Contrast factor of the polymer"], |
---|
| 1215 | ["bjerrum_length", "Ang", 7.1, [0, inf], "", "Bjerrum length"], |
---|
| 1216 | ["virial_param", "1/Ang^2", 12.0, [-inf, inf], "", "Virial parameter"], |
---|
| 1217 | ["monomer_length", "Ang", 10.0, [0, inf], "", "Monomer length"], |
---|
| 1218 | ["salt_concentration", "mol/L", 0.0, [-inf, inf], "", "Concentration of monovalent salt"], |
---|
| 1219 | ["ionization_degree", "", 0.05, [0, inf], "", "Degree of ionization"], |
---|
| 1220 | ["polymer_concentration", "mol/L", 0.7, [0, inf], "", "Polymer molar concentration"], |
---|
| 1221 | ] |
---|
| 1222 | # pylint: enable=bad-whitespace,line-too-long |
---|
| 1223 | |
---|
| 1224 | Don't put in too many pylint statements, though, since they make the code ugly. |
---|
| 1225 | |
---|
| 1226 | Share Your Model! |
---|
| 1227 | ^^^^^^^^^^^^^^^^^ |
---|
| 1228 | |
---|
| 1229 | Once compare and the unit test(s) pass properly and everything is done, |
---|
| 1230 | consider adding your model to the |
---|
| 1231 | `Model Marketplace <http://marketplace.sasview.org/>`_ so that others may use it! |
---|
| 1232 | |
---|
| 1233 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 1234 | |
---|
| 1235 | *Document History* |
---|
| 1236 | |
---|
| 1237 | | 2016-10-25 Steve King |
---|
[c654160] | 1238 | | 2017-05-07 Paul Kienzle - Moved from sasview to sasmodels docs |
---|