1 | #!/usr/bin/env python |
---|
2 | # -*- coding: utf-8 -*- |
---|
3 | |
---|
4 | import numpy as np |
---|
5 | import pyopencl as cl |
---|
6 | from Models.weights import GaussianDispersion |
---|
7 | from sasmodel import set_precision |
---|
8 | |
---|
9 | |
---|
10 | class GpuLamellar(object): |
---|
11 | PARS = { |
---|
12 | 'scale':1, 'bi_thick':1, 'sld_bi':1e-6, 'sld_sol':0, 'background':0, |
---|
13 | } |
---|
14 | PD_PARS = {'bi_thick'} |
---|
15 | def __init__(self, qx, qy, dtype='float32'): |
---|
16 | |
---|
17 | #create context, queue, and build program |
---|
18 | self.ctx = cl.create_some_context() |
---|
19 | self.queue = cl.CommandQueue(self.ctx) |
---|
20 | src,qx,qy = set_precision(open('Kernel/Kernel-Lamellar.cpp').read(), qx, qy, dtype=dtype) |
---|
21 | self.prg = cl.Program(self.ctx, src).build() |
---|
22 | self.qx, self.qy = qx, qy |
---|
23 | |
---|
24 | #buffers |
---|
25 | mf = cl.mem_flags |
---|
26 | self.qx_b = cl.Buffer(self.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.qx) |
---|
27 | self.qy_b = cl.Buffer(self.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.qy) |
---|
28 | self.res_b = cl.Buffer(self.ctx, mf.WRITE_ONLY, qx.nbytes) |
---|
29 | self.res = np.empty_like(self.qx) |
---|
30 | |
---|
31 | def eval(self, pars): |
---|
32 | |
---|
33 | bi_thick = GaussianDispersion(int(pars['bi_thick_pd_n']), pars['bi_thick_pd'], pars['bi_thick_pd_nsigma']) |
---|
34 | bi_thick.value, bi_thick.weight = bi_thick.get_weights(pars['bi_thick'], 0, 10000, True) |
---|
35 | |
---|
36 | sum, norm = 0.0, 0.0 |
---|
37 | sub = pars['sld_bi'] - pars['sld_sol'] |
---|
38 | |
---|
39 | real = np.float32 if self.qx.dtype == np.dtype('float32') else np.float64 |
---|
40 | for i in xrange(len(bi_thick.weight)): |
---|
41 | self.prg.LamellarKernel(self.queue, self.qx.shape, None, self.qx_b, self.qy_b, self.res_b, real(bi_thick.value[i]), |
---|
42 | real(pars['scale']), real(sub), np.uint32(self.qx.size)) |
---|
43 | cl.enqueue_copy(self.queue, self.res, self.res_b) |
---|
44 | |
---|
45 | sum += bi_thick.weight[i]*self.res |
---|
46 | norm += bi_thick.weight[i] |
---|
47 | |
---|
48 | return sum/norm + pars['background'] |
---|
49 | |
---|
50 | |
---|
51 | |
---|
52 | |
---|
53 | |
---|
54 | |
---|
55 | |
---|
56 | |
---|
57 | |
---|
58 | |
---|
59 | |
---|
60 | |
---|
61 | |
---|
62 | |
---|
63 | |
---|
64 | |
---|
65 | |
---|
66 | |
---|
67 | |
---|
68 | |
---|
69 | |
---|
70 | |
---|
71 | |
---|
72 | |
---|
73 | |
---|
74 | |
---|
75 | |
---|
76 | |
---|
77 | |
---|