Changes between Version 1 and Version 2 of KEMM37/Report


Ignore:
Timestamp:
Jan 25, 2018 4:42:45 AM (6 years ago)
Author:
ajj
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • KEMM37/Report

    v1 v2  
    1 = Exercise 9 - SANS Data Analysis using !SasView = 
     1= Lab 1 Report = 
    22 
    3 ||= **Table of Contents** =|| 
    4 || [#intro Introduction] || 
    5 || [#section1 1. Familiarisation with SasView] || 
    6 || [#section2  2. Exploring geometrical models] || 
    7 ||   [#section21 2.1 Spheres] || 
    8 ||   [#section22 2.2 Cylinders] || 
    9 ||   [#section23 2.3 Polydispersity] || 
    10 || [#section3 3. Fitting SANS data] || 
    11 ||   [#section31 3.1 Background Information] || 
    12 ||   [#section32 3.2 Calculating Scattering Length Density] || 
    13 ||   [#section33 3.3 Loading and Plotting the data] || 
    14 ||   [#section34 3.4 Fitting the data] || 
    15 || [#resources Resources] || 
     3The lab report consists of writing up some of the results you have obtained from the practical work. 
    164 
     5You should write up the following tasks from [wiki:KEMM37/Lab1A Lab 1A] and [wiki:KEMM37/Lab1B Lab 1B]  
    176 
    18 == [=#intro Introduction] == 
    19 This exercise will introduce you to analysing SANS data using geometrical models in !SasView. You will first look at how different shapes produce different scattering patterns, and how the model parameters affect the scattering pattern. You will then load some real SANS data and attempt to fit models to the data in !SasView. 
     7== Scattering Models == 
    208 
    21 The exercise is divided into 3 sections: 
     9Include your plot results from tasks 5 and 7 and answer the questions there. 
    2210 
    23 1. [#section1 Familiarisation with SasView] 
    24 2. [#section2  Exploring geometrical models] 
    25 3. [#section3 Fitting SANS data] 
     11== Polydispersity and Resolution == 
    2612 
    27 Before beginning the exercise, you must first ensure that !SasView is installed. If you have not done so already, follow [wiki:TartuSchoolSasViewInstall these installation instructions]. 
     13Include your plot results from tasks 8 and 9. Answer the questions there and compare the effects of polydispersity and resolution on the data. 
    2814 
    29 Tasks you should perform are shown thus: 
    30 {{{ 
    31 #!div style="background: lightblue" 
    32 **TASK 0:** Install !SasView. Installation instructions can be found here: [wiki:TartuSchoolSasViewInstall] 
    33 }}} 
     15== Fitting SANS Data == 
    3416 
     17=== SLD Calculation == 
     18Calculate SLD by hand and using one other method from the list in Task 12. Show your working for the hand calculation. 
    3519 
    36  
    37 == [=#section1 1.] Familiarisation with !SasView == 
    38 {{{ 
    39 #!div style="background: lightblue" 
    40 [=#task1 **TASK 1:**] Start !SasView. The application should open and look something like the images below. 
    41 }}} 
    42  
    43 || [[Image(tartu_sasviewmac.png, 500px)]] || [[Image(tartu_sasviewwin.png, 500px)]] || 
    44 || !SasView 4.1.2 on Mac OS || !SasView 4.1.2 on Windows 10 || 
    45  
    46  
    47 The !SasView user interface contains 4 main areas: 
    48 * The Data Explorer 
    49   * This is where data is loaded and can then be plotted or sent to the various types of analysis. 
    50   * Models not associated with data (called "Theories" in !Sasview) can be plotted and converted to datasets. 
    51 * The Analysis Panel (which defaults to showing Fitting) 
    52   * This is where you do the work of analysing data or generating theories 
    53   * !SasView currently supports four analysis tools: 
    54      * Fitting - for theory generation or model fitting to 1D and 2D SANS, SAXS, or SESANS data 
    55      * P(r) Inversion - for converting I(Q) to P(r) 
    56      * Invariant - for calculating the scattering invariant from a 1D data set 
    57      * Correlation Function - for performing a correlation function analysis of a 1D data set 
    58 * The plot windows (which appear when something is plotted) 
    59 * The menus, toolbar, and status area. 
    60  
    61 The capabilities of !SasView are described in more detail in the [http://www.sasview.org/docs/user/user.html  application documentation] with links to the relevant parts of the documentation available as "Help" buttons in each part of the GUI. 
    62  
    63 {{{ 
    64 #!div style="background: lightblue" 
    65 [=#task2 **TASK 2:**] Briefly familiarise yourself with !SasView panels, menus and documentation. Try changing to different analysis tools.  
    66 }}} 
    67  
    68  
    69  
    70 == [=#section2 2.  Exploring geometrical models] == 
    71 In this part of the exercise, you will plot the scattering patterns calculated using different geometrical models and explore the effect that the model parameters have on the scattering. 
    72  
    73 {{{ 
    74 #!div style="background: lightblue" 
    75 [=#task3 **TASK 3:**] Restart !SasView 
    76  
    77 Before starting this part of the exercise, you should have a clean !SasView instance. Quit !SasView and restart it. 
    78 }}} 
    79  
    80  
    81 === [=#section21 2.1 Spheres] === 
    82  
    83 {{{ 
    84 #!div style="background: lightblue" 
    85 [=#task4 **TASK 4:**] Plot the scattering from a collection of spherical particles 
    86  
    87 In the Fit Panel, there should be a single tab labelled "Fitpage1". In that tab, choose the model category "Sphere" and the model "sphere". 
    88 }}} 
    89  
    90 The fit panel and a plot panel that appears should look like the following: 
    91  
    92 [[Image(tartu_fitpage1_1.png, 500px)]] [[Image(tartu_sphere.png, 500px)]] 
    93  
    94 {{{ 
    95 #!div style="background: lightblue" 
    96 [=#task5 **TASK 5:**] Change the parameters and note the changes in the scattering pattern. 
    97  
    98 In the "Fitpage1" tab, scroll down to the bottom and: 
    99  * Increase "Npts" to 200 
    100  * Check the "Log" box 
    101  
    102 Next, click "Compute" 
    103  
    104 This will improve the fidelity of the modelled curve. 
    105  
    106 Now scroll back up and try adjusting the various model parameters one at a time. Pressing enter after changing a value should recalculate the scattering. If not, use the Compute button. 
    107  
    108 What effect do the each of the parameters have on the scattering curve? 
    109 * scale 
    110 * background 
    111 * sld and sld_solvent 
    112 * radius 
    113 }}} 
    114  
    115  
    116 === [=#section22 2.2 Cylinders] === 
    117  
    118 {{{ 
    119 #!div style="background: lightblue" 
    120 [=#task6 **TASK 6:**] Plot the scattering from a collection of cylindrical particles 
    121  
    122 From the "Fitting" menu, select "New Fit Page". 
    123  
    124 In the Fit panel, a new tab labelled "Fitpage2" should appear. In that tab, choose the model category "Cylinder" and the model "cylinder". 
    125 }}} 
    126  
    127 The fit panel and a plot panel that appears should look like the following: 
    128  
    129 [[Image(tartu_fitpage2_1.png, 500px)]][[Image(tartu_cylinder.png, 500px)]] 
    130  
    131 {{{ 
    132 #!div style="background: lightblue" 
    133 [=#task7 **TASK 7:**] Change the parameters and note the changes in the scattering pattern. 
    134  
    135 In the "Fitpage2" tab, scroll down to the bottom and: 
    136  * Increase "Npts" to 200 
    137  * Check the "Log" box 
    138  
    139 Next, click "Compute" 
    140  
    141 This will improve the fidelity of the modelled curve. 
    142  
    143 Now scroll back up and try adjusting the various model parameters one at a time. Pressing enter after changing a value should recalculate the scattering. If not, use the Compute button. 
    144  
    145 What effect do the each of the parameters have on the scattering curve? 
    146 * scale 
    147 * background 
    148 * sld and sld_solvent 
    149 * radius 
    150 * length 
    151 }}} 
    152  
    153  
    154 === [=#section23 2.3 Polydispersity] === 
    155  
    156 {{{ 
    157 #!div style="background: lightblue" 
    158 [=#task8 **TASK 8:**] Apply polydispersity to model parameters 
    159  
    160 Select the "Fitpage1" tab that contains the sphere model. 
    161  
    162 Find the section labelled "Polydispersity and Orientational Distribution" 
    163  
    164 Click the "On" radio button and a new section should appear labelled "Distribution of radius". 
    165  
    166 Enter a value for "PD[ratio]" between 0.0 and 1.0 - this is the polydispersity defined as sigma_r/r. 
    167  
    168 What effect does varying the polydispersity have on the scattering curve? 
    169  
    170 Repeat the exercise for the cylinder model in "Fitpage2" 
    171  
    172 }}} 
    173  
    174  
    175 == [=#section3 3. Fitting SANS data] == 
    176  
    177 This part of the exercise will use real SANS data taken from a study of surfactant self assembly in deep eutectic solvents (DES).  
    178  
    179 {{{ 
    180 #!div style="background: lightblue" 
    181 [=#task9 **TASK 9:**] Restart !SasView 
    182  
    183 Before starting this part of the exercise, you should have a clean !SasView instance. Quit !SasView and restart it. 
    184 }}} 
    185  
    186 === [=#section31 3.1 Background Information] === 
    187 Deep eutectic solvents are a class of ionic liquids formed from a hydrogen bond donor and a halide salt. At a certain mixture ratio, the eutectic mixture, the melting point is significantly depressed to values below room temperature. 
    188  
    189 Here we will examine the self-assembly of a [https://en.wikipedia.org/wiki/Surfactant surfactant], [https://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate sodium dodecyl sulfate (SDS)] in the deep eutectic solvent formed from a 1:2 molar ratio mixture of [https://en.wikipedia.org/wiki/Choline_chloride   choline chloride] and [https://en.wikipedia.org/wiki/Urea   urea]. 
    190  
    191 ||Sodium Dodecyl Sulfate||Choline Chloride||Urea|| 
    192 ||[[Image(tartu_sds.png)]]||[[Image(tartu_choline.png)]]||[[Image(tartu_urea.png)]]|| 
    193  
    194 {{{ 
    195 #!div style="background: lightblue" 
    196 [=#task10 **TASK 10:**] Download the SANS data :  [attachment:TartuSasViewTutorialData.zip​] and unzip the file in a known location on your filesystem. Note where you have placed the data. 
    197 }}} 
    198  
    199 You should now have a folder containing a set of files named as follows: 
    200  
    201 [[Image(tartu_datafileslist.png)]] 
    202  
    203 The data are SANS curves collected on SANS2D at ISIS and D22 at ILL for samples of protonated (normal) SDS in 1:2 d9-choline chloride:d4-urea. This sample was chosen to give maximum contrast and minimum background signal from incoherent scattering. There were 7 samples with 0.2 wt%, 0.5 wt%, 1.0 wt%, 2.0 wt%, 5.0 wt%, 7.5 wt% and 10 wt% of SDS in the DES with the filenames corresponding to each sample given below: 
    204  
    205 || Surfactant Concentration (wt%) || Data File || 
    206 || 0.2 || 0p2hSDS_dChCldUrea_sub.txt || 
    207 || 0.5 || 0p5hSDS_dChCldUrea_sub.txt || 
    208 || 1.0 || 1hSDS_dChCldUrea_sub.txt || 
    209 || 2.0 || 2hSDS_dChCldUrea_sub.txt || 
    210 || 5.0 || 5hSDS_dChCldUrea_sub.txt || 
    211 || 7.5 || 7p5hSDS_dChCldUrea_sub.txt || 
    212 || 10.0 || 10hSDS_dChCldUrea_sub.txt || 
    213  
    214  
    215 All the data files have been processed to 1D scattering curves with the solvent background subtracted to leave only the coherent scattering signal on absolute scale. 
    216  
    217  
    218 === [=#section32 3.2 Calculating Scattering Length Density] === 
    219  
    220 The scattering length density is given by  
    221  
    222 [[Image(tartu_sld.png, 100px)]] 
    223  
    224 Scattering lengths of relevant elements: 
    225 ||= **Element** =||= **Scattering Length (fm)** =|| 
    226 ||C     ||6.646|| 
    227 ||H     ||-3.739|| 
    228 ||D     ||6.671|| 
    229 ||N     ||9.36|| 
    230 ||O     ||5.803|| 
    231 ||Cl    ||9.577|| 
    232  
    233  
    234 Physical properties of the DES components: 
    235 ||= **Component**       =||= **Chemical Formula** =||=  **Molecular Volume (Å3)**       =||= **Density (g/cm3)** =|| 
    236 ||d9-Choline Chloride|| C5H5D9NOCl      || 210.77 ||1.17|| 
    237 ||d4-Urea||     CD4N2O  ||.75.55 ||     1.41|| 
    238  
    239  
    240 {{{ 
    241 #!div style="background: lightblue" 
    242 [=#task11 **TASK 11:**] Calculate the scattering length density (SLD) of a 1:2 mole ratio mixture of choline chloride and urea. 
    243  
    244 Use the information in the table above to calculate the SLD. There are multiple ways to do so, including: 
    245 * Calculating by hand 
    246 * Using a spreadsheet 
    247 * Using the SLD calculator built in to !SasView (in the Tools menu). 
    248 * Using online calculators e.g. [https://www.ncnr.nist.gov/resources/activation/] 
    249  
    250 Try multiple ways and see if you get the same answer! 
    251 }}} 
    252  
    253  
    254 === [=#section33 3.3 Loading and Plotting the data] === 
    255  
    256 You will now load the data into !SasView and make a plot in order to visually inspect the scattering curves. 
    257  
    258 {{{ 
    259 #!div style="background: lightblue" 
    260 [=#task12 **TASK 12:**] Click on the "Load Data" button in the Data Explorer 
    261  
    262 Locate the folder where you placed the data, select all the files in that folder and click "Open" in the dialog. 
    263 }}} 
    264  
    265 The Available Data section of the Data Explorer should look something like: 
    266  
    267 [[Image(tartu_loaddata.png)]] 
    268  
    269  
    270 {{{ 
    271 #!div style="background: lightblue" 
    272 [=#task13 **TASK 13:**] Plot the loaded data 
    273  
    274 Make sure that all the datasets have check marks next to them in the Available Data section of the Data Explorer, as shown above. 
    275  
    276 Click the "New Plot" button in the Data Explorer. 
    277 }}} 
    278  
    279 A new window should appear with a plot of the data that looks something like: 
    280  
    281 [[Image(tartu_dataplot.png)]] 
    282  
    283 {{{ 
    284 #!div style="background: lightblue" 
    285 [=#task14 **TASK 14:**] Examining the Data. 
    286  
    287 Visually inspect the data, zooming in and making additional plots as needed. 
    288  
    289 * What trends do you notice? 
    290 * What can you say about the possible solution structure from looking at the data? 
    291  
    292 }}} 
    293  
    294  
    295 === [=#section34 3.4 Fitting the data] === 
    296 {{{ 
    297 #!div style="background: lightblue" 
    298 [=#task15 **TASK 15:**] Fitting the lowest concentration data. 
    299  
    300 Select the lowest concentration data only in the data explorer by ensuring only 0p2hSDS_dChCldUrea_sub.txt has a check mark next to it and click “Send to" fitting. 
    301  
    302 * Select the model for the structure you predicted for this dataset.  
    303   * How does it compare to the data? 
    304 * Fill in parameters you know and adjust the others to see how close you get to the data. 
    305 * Select parameters to fit and run the fit by clicking "Fit" at the bottom of the fitting panel. 
    306   * Do you get a good fit? 
    307   * Are the parameters you get physically reasonable? 
    308  
    309 }}} 
    310  
    311  
    312 {{{ 
    313 #!div style="background: lightblue" 
    314 [=#task16 **TASK 16:**] Fitting the other data, starting with the 7.5 wt% data set. 
    315  
    316 Repeat for other concentrations 
    317 * Does the same model fit all data? 
    318 * What is consistent between datasets? What is different?  
    319  
    320  
    321 }}} 
    322  
    323  
    324  
    325 == [=#resources Resources] == 
    326  
    327 * The original [attachment:MicelleStructureinDeepEutecticSolvents.pdf paper] and [attachment:MicelleStructureinDeepEutecticSolventsSupplementaryInformation.pdf​ supplementary information] 
    328 * NIST SLD calculator [https://www.ncnr.nist.gov/resources/activation/] 
    329 * NIST Scattering Length and Scattering Cross Section Database [https://www.ncnr.nist.gov/resources/n-lengths/] 
     20=== Data Analysis == 
     21Include your plot from task 14. Answer the questions in tasks 15, 16, 17 & 18.