Changes between Version 1 and Version 2 of KEMM37/Lab1B


Ignore:
Timestamp:
Jan 25, 2018 6:19:23 AM (6 years ago)
Author:
ajj
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • KEMM37/Lab1B

    v1 v2  
    1 = Exercise 9 - SANS Data Analysis using !SasView = 
     1= KEMM37 Lab 1B - SANS Data Analysis using !SasView = 
    22 
    33||= **Table of Contents** =|| 
    4 || [#intro Introduction] || 
    5 || [#section1 1. Familiarisation with SasView] || 
    6 || [#section2  2. Exploring geometrical models] || 
    7 ||   [#section21 2.1 Spheres] || 
    8 ||   [#section22 2.2 Cylinders] || 
    9 ||   [#section23 2.3 Polydispersity] || 
    104|| [#section3 3. Fitting SANS data] || 
    115||   [#section31 3.1 Background Information] || 
     
    159|| [#resources Resources] || 
    1610 
    17  
    18 == [=#intro Introduction] == 
    19 This exercise will introduce you to analysing SANS data using geometrical models in !SasView. You will first look at how different shapes produce different scattering patterns, and how the model parameters affect the scattering pattern. You will then load some real SANS data and attempt to fit models to the data in !SasView. 
    20  
    21 The exercise is divided into 3 sections: 
    22  
    23 1. [#section1 Familiarisation with SasView] 
    24 2. [#section2  Exploring geometrical models] 
    25 3. [#section3 Fitting SANS data] 
    26  
    27 Before beginning the exercise, you must first ensure that !SasView is installed. If you have not done so already, follow [wiki:TartuSchoolSasViewInstall these installation instructions]. 
    28  
    29 Tasks you should perform are shown thus: 
    30 {{{ 
    31 #!div style="background: lightblue" 
    32 **TASK 0:** Install !SasView. Installation instructions can be found here: [wiki:TartuSchoolSasViewInstall] 
    33 }}} 
    34  
    35  
    36  
    37 == [=#section1 1.] Familiarisation with !SasView == 
    38 {{{ 
    39 #!div style="background: lightblue" 
    40 [=#task1 **TASK 1:**] Start !SasView. The application should open and look something like the images below. 
    41 }}} 
    42  
    43 || [[Image(tartu_sasviewmac.png, 500px)]] || [[Image(tartu_sasviewwin.png, 500px)]] || 
    44 || !SasView 4.1.2 on Mac OS || !SasView 4.1.2 on Windows 10 || 
    45  
    46  
    47 The !SasView user interface contains 4 main areas: 
    48 * The Data Explorer 
    49   * This is where data is loaded and can then be plotted or sent to the various types of analysis. 
    50   * Models not associated with data (called "Theories" in !Sasview) can be plotted and converted to datasets. 
    51 * The Analysis Panel (which defaults to showing Fitting) 
    52   * This is where you do the work of analysing data or generating theories 
    53   * !SasView currently supports four analysis tools: 
    54      * Fitting - for theory generation or model fitting to 1D and 2D SANS, SAXS, or SESANS data 
    55      * P(r) Inversion - for converting I(Q) to P(r) 
    56      * Invariant - for calculating the scattering invariant from a 1D data set 
    57      * Correlation Function - for performing a correlation function analysis of a 1D data set 
    58 * The plot windows (which appear when something is plotted) 
    59 * The menus, toolbar, and status area. 
    60  
    61 The capabilities of !SasView are described in more detail in the [http://www.sasview.org/docs/user/user.html  application documentation] with links to the relevant parts of the documentation available as "Help" buttons in each part of the GUI. 
    62  
    63 {{{ 
    64 #!div style="background: lightblue" 
    65 [=#task2 **TASK 2:**] Briefly familiarise yourself with !SasView panels, menus and documentation. Try changing to different analysis tools.  
    66 }}} 
    67  
    68  
    69  
    70 == [=#section2 2.  Exploring geometrical models] == 
    71 In this part of the exercise, you will plot the scattering patterns calculated using different geometrical models and explore the effect that the model parameters have on the scattering. 
    72  
    73 {{{ 
    74 #!div style="background: lightblue" 
    75 [=#task3 **TASK 3:**] Restart !SasView 
    76  
    77 Before starting this part of the exercise, you should have a clean !SasView instance. Quit !SasView and restart it. 
    78 }}} 
    79  
    80  
    81 === [=#section21 2.1 Spheres] === 
    82  
    83 {{{ 
    84 #!div style="background: lightblue" 
    85 [=#task4 **TASK 4:**] Plot the scattering from a collection of spherical particles 
    86  
    87 In the Fit Panel, there should be a single tab labelled "Fitpage1". In that tab, choose the model category "Sphere" and the model "sphere". 
    88 }}} 
    89  
    90 The fit panel and a plot panel that appears should look like the following: 
    91  
    92 [[Image(tartu_fitpage1_1.png, 500px)]] [[Image(tartu_sphere.png, 500px)]] 
    93  
    94 {{{ 
    95 #!div style="background: lightblue" 
    96 [=#task5 **TASK 5:**] Change the parameters and note the changes in the scattering pattern. 
    97  
    98 In the "Fitpage1" tab, scroll down to the bottom and: 
    99  * Increase "Npts" to 200 
    100  * Check the "Log" box 
    101  
    102 Next, click "Compute" 
    103  
    104 This will improve the fidelity of the modelled curve. 
    105  
    106 Now scroll back up and try adjusting the various model parameters one at a time. Pressing enter after changing a value should recalculate the scattering. If not, use the Compute button. 
    107  
    108 What effect do the each of the parameters have on the scattering curve? 
    109 * scale 
    110 * background 
    111 * sld and sld_solvent 
    112 * radius 
    113 }}} 
    114  
    115  
    116 === [=#section22 2.2 Cylinders] === 
    117  
    118 {{{ 
    119 #!div style="background: lightblue" 
    120 [=#task6 **TASK 6:**] Plot the scattering from a collection of cylindrical particles 
    121  
    122 From the "Fitting" menu, select "New Fit Page". 
    123  
    124 In the Fit panel, a new tab labelled "Fitpage2" should appear. In that tab, choose the model category "Cylinder" and the model "cylinder". 
    125 }}} 
    126  
    127 The fit panel and a plot panel that appears should look like the following: 
    128  
    129 [[Image(tartu_fitpage2_1.png, 500px)]][[Image(tartu_cylinder.png, 500px)]] 
    130  
    131 {{{ 
    132 #!div style="background: lightblue" 
    133 [=#task7 **TASK 7:**] Change the parameters and note the changes in the scattering pattern. 
    134  
    135 In the "Fitpage2" tab, scroll down to the bottom and: 
    136  * Increase "Npts" to 200 
    137  * Check the "Log" box 
    138  
    139 Next, click "Compute" 
    140  
    141 This will improve the fidelity of the modelled curve. 
    142  
    143 Now scroll back up and try adjusting the various model parameters one at a time. Pressing enter after changing a value should recalculate the scattering. If not, use the Compute button. 
    144  
    145 What effect do the each of the parameters have on the scattering curve? 
    146 * scale 
    147 * background 
    148 * sld and sld_solvent 
    149 * radius 
    150 * length 
    151 }}} 
    152  
    153  
    154 === [=#section23 2.3 Polydispersity] === 
    155  
    156 {{{ 
    157 #!div style="background: lightblue" 
    158 [=#task8 **TASK 8:**] Apply polydispersity to model parameters 
    159  
    160 Select the "Fitpage1" tab that contains the sphere model. 
    161  
    162 Find the section labelled "Polydispersity and Orientational Distribution" 
    163  
    164 Click the "On" radio button and a new section should appear labelled "Distribution of radius". 
    165  
    166 Enter a value for "PD[ratio]" between 0.0 and 1.0 - this is the polydispersity defined as sigma_r/r. 
    167  
    168 What effect does varying the polydispersity have on the scattering curve? 
    169  
    170 Repeat the exercise for the cylinder model in "Fitpage2" 
    171  
    172 }}} 
    173  
    174  
    17511== [=#section3 3. Fitting SANS data] == 
    17612 
     
    17915{{{ 
    18016#!div style="background: lightblue" 
    181 [=#task9 **TASK 9:**] Restart !SasView 
     17[=#task10 **TASK 10:**] Restart !SasView 
    18218 
    18319Before starting this part of the exercise, you should have a clean !SasView instance. Quit !SasView and restart it. 
     
    19026 
    19127||Sodium Dodecyl Sulfate||Choline Chloride||Urea|| 
    192 ||[[Image(tartu_sds.png)]]||[[Image(tartu_choline.png)]]||[[Image(tartu_urea.png)]]|| 
     28||[[Image(kemm37_sds.png)]]||[[Image(kemm37_choline.png)]]||[[Image(kemm37_urea.png)]]|| 
    19329 
    19430{{{ 
    19531#!div style="background: lightblue" 
    196 [=#task10 **TASK 10:**] Download the SANS data :  [attachment:TartuSasViewTutorialData.zip​] and unzip the file in a known location on your filesystem. Note where you have placed the data. 
     32[=#task11 **TASK 11:**] Download the SANS data :  [attachment:kemm37SasViewTutorialData.zip​] and unzip the file in a known location on your filesystem. Note where you have placed the data. 
    19733}}} 
    19834 
    19935You should now have a folder containing a set of files named as follows: 
    20036 
    201 [[Image(tartu_datafileslist.png)]] 
     37[[Image(kemm37_datafileslist.png)]] 
    20238 
    20339The data are SANS curves collected on SANS2D at ISIS and D22 at ILL for samples of protonated (normal) SDS in 1:2 d9-choline chloride:d4-urea. This sample was chosen to give maximum contrast and minimum background signal from incoherent scattering. There were 7 samples with 0.2 wt%, 0.5 wt%, 1.0 wt%, 2.0 wt%, 5.0 wt%, 7.5 wt% and 10 wt% of SDS in the DES with the filenames corresponding to each sample given below: 
     
    22056The scattering length density is given by  
    22157 
    222 [[Image(tartu_sld.png, 100px)]] 
     58[[Image(kemm37_sld.png, 100px)]] 
    22359 
    22460Scattering lengths of relevant elements: 
     
    24076{{{ 
    24177#!div style="background: lightblue" 
    242 [=#task11 **TASK 11:**] Calculate the scattering length density (SLD) of a 1:2 mole ratio mixture of choline chloride and urea. 
     78[=#task12 **TASK 12:**] Calculate the scattering length density (SLD) of a 1:2 mole ratio mixture of choline chloride and urea. 
    24379 
    24480Use the information in the table above to calculate the SLD. There are multiple ways to do so, including: 
     
    25894{{{ 
    25995#!div style="background: lightblue" 
    260 [=#task12 **TASK 12:**] Click on the "Load Data" button in the Data Explorer 
     96[=#task13 **TASK 13:**] Click on the "Load Data" button in the Data Explorer 
    26197 
    26298Locate the folder where you placed the data, select all the files in that folder and click "Open" in the dialog. 
     
    265101The Available Data section of the Data Explorer should look something like: 
    266102 
    267 [[Image(tartu_loaddata.png)]] 
     103[[Image(kemm37_loaddata.png)]] 
    268104 
    269105 
    270106{{{ 
    271107#!div style="background: lightblue" 
    272 [=#task13 **TASK 13:**] Plot the loaded data 
     108[=#task14 **TASK 14:**] Plot the loaded data 
    273109 
    274110Make sure that all the datasets have check marks next to them in the Available Data section of the Data Explorer, as shown above. 
     
    279115A new window should appear with a plot of the data that looks something like: 
    280116 
    281 [[Image(tartu_dataplot.png)]] 
     117[[Image(kemm37_dataplot.png)]] 
    282118 
    283119{{{ 
    284120#!div style="background: lightblue" 
    285 [=#task14 **TASK 14:**] Examining the Data. 
     121[=#task15 **TASK 15:**] Examining the Data. 
    286122 
    287123Visually inspect the data, zooming in and making additional plots as needed. 
     
    296132{{{ 
    297133#!div style="background: lightblue" 
    298 [=#task15 **TASK 15:**] Fitting the lowest concentration data. 
     134[=#task16 **TASK 16:**] Fitting the lowest concentration data. 
    299135 
    300136Select the lowest concentration data only in the data explorer by ensuring only 0p2hSDS_dChCldUrea_sub.txt has a check mark next to it and click “Send to" fitting. 
     
    312148{{{ 
    313149#!div style="background: lightblue" 
    314 [=#task16 **TASK 16:**] Fitting the other data, starting with the 7.5 wt% data set. 
     150[=#task17 **TASK 17:**] Fitting the other data, starting with the 7.5 wt% data set. 
    315151 
    316152Repeat for other concentrations 
     
    325161== [=#resources Resources] == 
    326162 
    327 * The original [attachment:MicelleStructureinDeepEutecticSolvents.pdf paper] and [attachment:MicelleStructureinDeepEutecticSolventsSupplementaryInformation.pdf​ supplementary information] 
    328163* NIST SLD calculator [https://www.ncnr.nist.gov/resources/activation/] 
    329164* NIST Scattering Length and Scattering Cross Section Database [https://www.ncnr.nist.gov/resources/n-lengths/]