Changes between Initial Version and Version 1 of KEMM37/Lab1A


Ignore:
Timestamp:
Jan 25, 2018 5:52:46 AM (6 years ago)
Author:
ajj
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • KEMM37/Lab1A

    v1 v1  
     1= Exercise 9 - SANS Data Analysis using !SasView = 
     2 
     3||= **Table of Contents** =|| 
     4|| [#intro Introduction] || 
     5|| [#section1 1. Familiarisation with SasView] || 
     6|| [#section2  2. Exploring geometrical models] || 
     7||   [#section21 2.1 Spheres] || 
     8||   [#section22 2.2 Cylinders] || 
     9||   [#section23 2.3 Polydispersity] || 
     10|| [#section3 3. Fitting SANS data] || 
     11||   [#section31 3.1 Background Information] || 
     12||   [#section32 3.2 Calculating Scattering Length Density] || 
     13||   [#section33 3.3 Loading and Plotting the data] || 
     14||   [#section34 3.4 Fitting the data] || 
     15|| [#resources Resources] || 
     16 
     17 
     18== [=#intro Introduction] == 
     19This exercise will introduce you to analysing SANS data using geometrical models in !SasView. You will first look at how different shapes produce different scattering patterns, and how the model parameters affect the scattering pattern. You will then load some real SANS data and attempt to fit models to the data in !SasView. 
     20 
     21The exercise is divided into 3 sections: 
     22 
     231. [#section1 Familiarisation with SasView] 
     242. [#section2  Exploring geometrical models] 
     253. [#section3 Fitting SANS data] 
     26 
     27Before beginning the exercise, you must first ensure that !SasView is installed. If you have not done so already, follow [wiki:TartuSchoolSasViewInstall these installation instructions]. 
     28 
     29Tasks you should perform are shown thus: 
     30{{{ 
     31#!div style="background: lightblue" 
     32**TASK 0:** Install !SasView. Installation instructions can be found here: [wiki:TartuSchoolSasViewInstall] 
     33}}} 
     34 
     35 
     36 
     37== [=#section1 1.] Familiarisation with !SasView == 
     38{{{ 
     39#!div style="background: lightblue" 
     40[=#task1 **TASK 1:**] Start !SasView. The application should open and look something like the images below. 
     41}}} 
     42 
     43|| [[Image(tartu_sasviewmac.png, 500px)]] || [[Image(tartu_sasviewwin.png, 500px)]] || 
     44|| !SasView 4.1.2 on Mac OS || !SasView 4.1.2 on Windows 10 || 
     45 
     46 
     47The !SasView user interface contains 4 main areas: 
     48* The Data Explorer 
     49  * This is where data is loaded and can then be plotted or sent to the various types of analysis. 
     50  * Models not associated with data (called "Theories" in !Sasview) can be plotted and converted to datasets. 
     51* The Analysis Panel (which defaults to showing Fitting) 
     52  * This is where you do the work of analysing data or generating theories 
     53  * !SasView currently supports four analysis tools: 
     54     * Fitting - for theory generation or model fitting to 1D and 2D SANS, SAXS, or SESANS data 
     55     * P(r) Inversion - for converting I(Q) to P(r) 
     56     * Invariant - for calculating the scattering invariant from a 1D data set 
     57     * Correlation Function - for performing a correlation function analysis of a 1D data set 
     58* The plot windows (which appear when something is plotted) 
     59* The menus, toolbar, and status area. 
     60 
     61The capabilities of !SasView are described in more detail in the [http://www.sasview.org/docs/user/user.html  application documentation] with links to the relevant parts of the documentation available as "Help" buttons in each part of the GUI. 
     62 
     63{{{ 
     64#!div style="background: lightblue" 
     65[=#task2 **TASK 2:**] Briefly familiarise yourself with !SasView panels, menus and documentation. Try changing to different analysis tools.  
     66}}} 
     67 
     68 
     69 
     70== [=#section2 2.  Exploring geometrical models] == 
     71In this part of the exercise, you will plot the scattering patterns calculated using different geometrical models and explore the effect that the model parameters have on the scattering. 
     72 
     73{{{ 
     74#!div style="background: lightblue" 
     75[=#task3 **TASK 3:**] Restart !SasView 
     76 
     77Before starting this part of the exercise, you should have a clean !SasView instance. Quit !SasView and restart it. 
     78}}} 
     79 
     80 
     81=== [=#section21 2.1 Spheres] === 
     82 
     83{{{ 
     84#!div style="background: lightblue" 
     85[=#task4 **TASK 4:**] Plot the scattering from a collection of spherical particles 
     86 
     87In the Fit Panel, there should be a single tab labelled "Fitpage1". In that tab, choose the model category "Sphere" and the model "sphere". 
     88}}} 
     89 
     90The fit panel and a plot panel that appears should look like the following: 
     91 
     92[[Image(tartu_fitpage1_1.png, 500px)]] [[Image(tartu_sphere.png, 500px)]] 
     93 
     94{{{ 
     95#!div style="background: lightblue" 
     96[=#task5 **TASK 5:**] Change the parameters and note the changes in the scattering pattern. 
     97 
     98In the "Fitpage1" tab, scroll down to the bottom and: 
     99 * Increase "Npts" to 200 
     100 * Check the "Log" box 
     101 
     102Next, click "Compute" 
     103 
     104This will improve the fidelity of the modelled curve. 
     105 
     106Now scroll back up and try adjusting the various model parameters one at a time. Pressing enter after changing a value should recalculate the scattering. If not, use the Compute button. 
     107 
     108What effect do the each of the parameters have on the scattering curve? 
     109* scale 
     110* background 
     111* sld and sld_solvent 
     112* radius 
     113}}} 
     114 
     115 
     116=== [=#section22 2.2 Cylinders] === 
     117 
     118{{{ 
     119#!div style="background: lightblue" 
     120[=#task6 **TASK 6:**] Plot the scattering from a collection of cylindrical particles 
     121 
     122From the "Fitting" menu, select "New Fit Page". 
     123 
     124In the Fit panel, a new tab labelled "Fitpage2" should appear. In that tab, choose the model category "Cylinder" and the model "cylinder". 
     125}}} 
     126 
     127The fit panel and a plot panel that appears should look like the following: 
     128 
     129[[Image(tartu_fitpage2_1.png, 500px)]][[Image(tartu_cylinder.png, 500px)]] 
     130 
     131{{{ 
     132#!div style="background: lightblue" 
     133[=#task7 **TASK 7:**] Change the parameters and note the changes in the scattering pattern. 
     134 
     135In the "Fitpage2" tab, scroll down to the bottom and: 
     136 * Increase "Npts" to 200 
     137 * Check the "Log" box 
     138 
     139Next, click "Compute" 
     140 
     141This will improve the fidelity of the modelled curve. 
     142 
     143Now scroll back up and try adjusting the various model parameters one at a time. Pressing enter after changing a value should recalculate the scattering. If not, use the Compute button. 
     144 
     145What effect do the each of the parameters have on the scattering curve? 
     146* scale 
     147* background 
     148* sld and sld_solvent 
     149* radius 
     150* length 
     151}}} 
     152 
     153 
     154=== [=#section23 2.3 Polydispersity] === 
     155 
     156{{{ 
     157#!div style="background: lightblue" 
     158[=#task8 **TASK 8:**] Apply polydispersity to model parameters 
     159 
     160Select the "Fitpage1" tab that contains the sphere model. 
     161 
     162Find the section labelled "Polydispersity and Orientational Distribution" 
     163 
     164Click the "On" radio button and a new section should appear labelled "Distribution of radius". 
     165 
     166Enter a value for "PD[ratio]" between 0.0 and 1.0 - this is the polydispersity defined as sigma_r/r. 
     167 
     168What effect does varying the polydispersity have on the scattering curve? 
     169 
     170Repeat the exercise for the cylinder model in "Fitpage2" 
     171 
     172}}} 
     173 
     174 
     175== [=#section3 3. Fitting SANS data] == 
     176 
     177This part of the exercise will use real SANS data taken from a study of surfactant self assembly in deep eutectic solvents (DES).  
     178 
     179{{{ 
     180#!div style="background: lightblue" 
     181[=#task9 **TASK 9:**] Restart !SasView 
     182 
     183Before starting this part of the exercise, you should have a clean !SasView instance. Quit !SasView and restart it. 
     184}}} 
     185 
     186=== [=#section31 3.1 Background Information] === 
     187Deep eutectic solvents are a class of ionic liquids formed from a hydrogen bond donor and a halide salt. At a certain mixture ratio, the eutectic mixture, the melting point is significantly depressed to values below room temperature. 
     188 
     189Here we will examine the self-assembly of a [https://en.wikipedia.org/wiki/Surfactant surfactant], [https://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate sodium dodecyl sulfate (SDS)] in the deep eutectic solvent formed from a 1:2 molar ratio mixture of [https://en.wikipedia.org/wiki/Choline_chloride   choline chloride] and [https://en.wikipedia.org/wiki/Urea   urea]. 
     190 
     191||Sodium Dodecyl Sulfate||Choline Chloride||Urea|| 
     192||[[Image(tartu_sds.png)]]||[[Image(tartu_choline.png)]]||[[Image(tartu_urea.png)]]|| 
     193 
     194{{{ 
     195#!div style="background: lightblue" 
     196[=#task10 **TASK 10:**] Download the SANS data :  [attachment:TartuSasViewTutorialData.zip​] and unzip the file in a known location on your filesystem. Note where you have placed the data. 
     197}}} 
     198 
     199You should now have a folder containing a set of files named as follows: 
     200 
     201[[Image(tartu_datafileslist.png)]] 
     202 
     203The data are SANS curves collected on SANS2D at ISIS and D22 at ILL for samples of protonated (normal) SDS in 1:2 d9-choline chloride:d4-urea. This sample was chosen to give maximum contrast and minimum background signal from incoherent scattering. There were 7 samples with 0.2 wt%, 0.5 wt%, 1.0 wt%, 2.0 wt%, 5.0 wt%, 7.5 wt% and 10 wt% of SDS in the DES with the filenames corresponding to each sample given below: 
     204 
     205|| Surfactant Concentration (wt%) || Data File || 
     206|| 0.2 || 0p2hSDS_dChCldUrea_sub.txt || 
     207|| 0.5 || 0p5hSDS_dChCldUrea_sub.txt || 
     208|| 1.0 || 1hSDS_dChCldUrea_sub.txt || 
     209|| 2.0 || 2hSDS_dChCldUrea_sub.txt || 
     210|| 5.0 || 5hSDS_dChCldUrea_sub.txt || 
     211|| 7.5 || 7p5hSDS_dChCldUrea_sub.txt || 
     212|| 10.0 || 10hSDS_dChCldUrea_sub.txt || 
     213 
     214 
     215All the data files have been processed to 1D scattering curves with the solvent background subtracted to leave only the coherent scattering signal on absolute scale. 
     216 
     217 
     218=== [=#section32 3.2 Calculating Scattering Length Density] === 
     219 
     220The scattering length density is given by  
     221 
     222[[Image(tartu_sld.png, 100px)]] 
     223 
     224Scattering lengths of relevant elements: 
     225||= **Element** =||= **Scattering Length (fm)** =|| 
     226||C     ||6.646|| 
     227||H     ||-3.739|| 
     228||D     ||6.671|| 
     229||N     ||9.36|| 
     230||O     ||5.803|| 
     231||Cl    ||9.577|| 
     232 
     233 
     234Physical properties of the DES components: 
     235||= **Component**       =||= **Chemical Formula** =||=  **Molecular Volume (Å3)**       =||= **Density (g/cm3)** =|| 
     236||d9-Choline Chloride|| C5H5D9NOCl      || 210.77 ||1.17|| 
     237||d4-Urea||     CD4N2O  ||.75.55 ||     1.41|| 
     238 
     239 
     240{{{ 
     241#!div style="background: lightblue" 
     242[=#task11 **TASK 11:**] Calculate the scattering length density (SLD) of a 1:2 mole ratio mixture of choline chloride and urea. 
     243 
     244Use the information in the table above to calculate the SLD. There are multiple ways to do so, including: 
     245* Calculating by hand 
     246* Using a spreadsheet 
     247* Using the SLD calculator built in to !SasView (in the Tools menu). 
     248* Using online calculators e.g. [https://www.ncnr.nist.gov/resources/activation/] 
     249 
     250Try multiple ways and see if you get the same answer! 
     251}}} 
     252 
     253 
     254=== [=#section33 3.3 Loading and Plotting the data] === 
     255 
     256You will now load the data into !SasView and make a plot in order to visually inspect the scattering curves. 
     257 
     258{{{ 
     259#!div style="background: lightblue" 
     260[=#task12 **TASK 12:**] Click on the "Load Data" button in the Data Explorer 
     261 
     262Locate the folder where you placed the data, select all the files in that folder and click "Open" in the dialog. 
     263}}} 
     264 
     265The Available Data section of the Data Explorer should look something like: 
     266 
     267[[Image(tartu_loaddata.png)]] 
     268 
     269 
     270{{{ 
     271#!div style="background: lightblue" 
     272[=#task13 **TASK 13:**] Plot the loaded data 
     273 
     274Make sure that all the datasets have check marks next to them in the Available Data section of the Data Explorer, as shown above. 
     275 
     276Click the "New Plot" button in the Data Explorer. 
     277}}} 
     278 
     279A new window should appear with a plot of the data that looks something like: 
     280 
     281[[Image(tartu_dataplot.png)]] 
     282 
     283{{{ 
     284#!div style="background: lightblue" 
     285[=#task14 **TASK 14:**] Examining the Data. 
     286 
     287Visually inspect the data, zooming in and making additional plots as needed. 
     288 
     289* What trends do you notice? 
     290* What can you say about the possible solution structure from looking at the data? 
     291 
     292}}} 
     293 
     294 
     295=== [=#section34 3.4 Fitting the data] === 
     296{{{ 
     297#!div style="background: lightblue" 
     298[=#task15 **TASK 15:**] Fitting the lowest concentration data. 
     299 
     300Select the lowest concentration data only in the data explorer by ensuring only 0p2hSDS_dChCldUrea_sub.txt has a check mark next to it and click “Send to" fitting. 
     301 
     302* Select the model for the structure you predicted for this dataset.  
     303  * How does it compare to the data? 
     304* Fill in parameters you know and adjust the others to see how close you get to the data. 
     305* Select parameters to fit and run the fit by clicking "Fit" at the bottom of the fitting panel. 
     306  * Do you get a good fit? 
     307  * Are the parameters you get physically reasonable? 
     308 
     309}}} 
     310 
     311 
     312{{{ 
     313#!div style="background: lightblue" 
     314[=#task16 **TASK 16:**] Fitting the other data, starting with the 7.5 wt% data set. 
     315 
     316Repeat for other concentrations 
     317* Does the same model fit all data? 
     318* What is consistent between datasets? What is different?  
     319 
     320 
     321}}} 
     322 
     323 
     324 
     325== [=#resources Resources] == 
     326 
     327* The original [attachment:MicelleStructureinDeepEutecticSolvents.pdf paper] and [attachment:MicelleStructureinDeepEutecticSolventsSupplementaryInformation.pdf​ supplementary information] 
     328* NIST SLD calculator [https://www.ncnr.nist.gov/resources/activation/] 
     329* NIST Scattering Length and Scattering Cross Section Database [https://www.ncnr.nist.gov/resources/n-lengths/]