Ignore:
File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/parallelepiped.py

    ref07e95 rf89ec96  
    22# Note: model title and parameter table are inserted automatically 
    33r""" 
    4 The form factor is normalized by the particle volume. 
    5 For information about polarised and magnetic scattering, see 
    6 the :ref:`magnetism` documentation. 
    7  
    84Definition 
    95---------- 
    106 
    11  This model calculates the scattering from a rectangular parallelepiped 
    12  (\:numref:`parallelepiped-image`\). 
    13  If you need to apply polydispersity, see also :ref:`rectangular-prism`. 
     7This model calculates the scattering from a rectangular solid 
     8(:numref:`parallelepiped-image`). 
     9If you need to apply polydispersity, see also :ref:`rectangular-prism`. For 
     10information about polarised and magnetic scattering, see 
     11the :ref:`magnetism` documentation. 
    1412 
    1513.. _parallelepiped-image: 
     
    2119 
    2220The three dimensions of the parallelepiped (strictly here a cuboid) may be 
    23 given in *any* size order. To avoid multiple fit solutions, especially 
    24 with Monte-Carlo fit methods, it may be advisable to restrict their ranges. 
    25 There may be a number of closely similar "best fits", so some trial and 
    26 error, or fixing of some dimensions at expected values, may help. 
    27  
    28 The 1D scattering intensity $I(q)$ is calculated as: 
     21given in *any* size order as long as the particles are randomly oriented (i.e. 
     22take on all possible orientations see notes on 2D below). To avoid multiple fit 
     23solutions, especially with Monte-Carlo fit methods, it may be advisable to 
     24restrict their ranges. There may be a number of closely similar "best fits", so 
     25some trial and error, or fixing of some dimensions at expected values, may 
     26help. 
     27 
     28The form factor is normalized by the particle volume and the 1D scattering 
     29intensity $I(q)$ is then calculated as: 
    2930 
    3031.. Comment by Miguel Gonzalez: 
     
    3940 
    4041    I(q) = \frac{\text{scale}}{V} (\Delta\rho \cdot V)^2 
    41            \left< P(q, \alpha) \right> + \text{background} 
     42           \left< P(q, \alpha, \beta) \right> + \text{background} 
    4243 
    4344where the volume $V = A B C$, the contrast is defined as 
    44 $\Delta\rho = \rho_\text{p} - \rho_\text{solvent}$, 
    45 $P(q, \alpha)$ is the form factor corresponding to a parallelepiped oriented 
    46 at an angle $\alpha$ (angle between the long axis C and $\vec q$), 
    47 and the averaging $\left<\ldots\right>$ is applied over all orientations. 
     45$\Delta\rho = \rho_\text{p} - \rho_\text{solvent}$, $P(q, \alpha, \beta)$ 
     46is the form factor corresponding to a parallelepiped oriented 
     47at an angle $\alpha$ (angle between the long axis C and $\vec q$), and $\beta$ 
     48(the angle between the projection of the particle in the $xy$ detector plane 
     49and the $y$ axis) and the averaging $\left<\ldots\right>$ is applied over all 
     50orientations. 
    4851 
    4952Assuming $a = A/B < 1$, $b = B /B = 1$, and $c = C/B > 1$, the 
    50 form factor is given by (Mittelbach and Porod, 1961) 
     53form factor is given by (Mittelbach and Porod, 1961 [#Mittelbach]_) 
    5154 
    5255.. math:: 
     
    6669    \mu &= qB 
    6770 
    68 The scattering intensity per unit volume is returned in units of |cm^-1|. 
    69  
    70 NB: The 2nd virial coefficient of the parallelepiped is calculated based on 
    71 the averaged effective radius, after appropriately sorting the three 
    72 dimensions, to give an oblate or prolate particle, $(=\sqrt{AB/\pi})$ and 
    73 length $(= C)$ values, and used as the effective radius for 
    74 $S(q)$ when $P(q) \cdot S(q)$ is applied. 
    75  
    76 For 2d data the orientation of the particle is required, described using 
    77 angles $\theta$, $\phi$ and $\Psi$ as in the diagrams below, for further details 
    78 of the calculation and angular dispersions see :ref:`orientation` . 
    79  
    80 .. Comment by Miguel Gonzalez: 
    81    The following text has been commented because I think there are two 
    82    mistakes. Psi is the rotational angle around C (but I cannot understand 
    83    what it means against the q plane) and psi=0 corresponds to a||x and b||y. 
    84  
    85    The angle $\Psi$ is the rotational angle around the $C$ axis against 
    86    the $q$ plane. For example, $\Psi = 0$ when the $B$ axis is parallel 
    87    to the $x$-axis of the detector. 
    88  
    89 The angle $\Psi$ is the rotational angle around the $C$ axis. 
    90 For $\theta = 0$ and $\phi = 0$, $\Psi = 0$ corresponds to the $B$ axis 
    91 oriented parallel to the y-axis of the detector with $A$ along the x-axis. 
    92 For other $\theta$, $\phi$ values, the parallelepiped has to be first rotated 
    93 $\theta$ degrees in the $z-x$ plane and then $\phi$ degrees around the $z$ axis, 
    94 before doing a final rotation of $\Psi$ degrees around the resulting $C$ axis 
    95 of the particle to obtain the final orientation of the parallelepiped. 
    96  
    97 .. _parallelepiped-orientation: 
    98  
    99 .. figure:: img/parallelepiped_angle_definition.png 
    100  
    101     Definition of the angles for oriented parallelepiped, shown with $A<B<C$. 
    102  
    103 .. figure:: img/parallelepiped_angle_projection.png 
    104  
    105     Examples of the angles for an oriented parallelepiped against the 
    106     detector plane. 
    107  
    108 On introducing "Orientational Distribution" in the angles, "distribution of 
    109 theta" and "distribution of phi" parameters will appear. These are actually 
    110 rotations about axes $\delta_1$ and $\delta_2$ of the parallelepiped, 
    111 perpendicular to the $a$ x $c$ and $b$ x $c$ faces. (When $\theta = \phi = 0$ 
    112 these are parallel to the $Y$ and $X$ axes of the instrument.) The third 
    113 orientation distribution, in $\psi$, is about the $c$ axis of the particle, 
    114 perpendicular to the $a$ x $b$ face. Some experimentation may be required to 
    115 understand the 2d patterns fully as discussed in :ref:`orientation` . 
    116  
    117 For a given orientation of the parallelepiped, the 2D form factor is 
    118 calculated as 
    119  
    120 .. math:: 
    121  
    122     P(q_x, q_y) = \left[\frac{\sin(\tfrac{1}{2}qA\cos\alpha)}{(\tfrac{1}{2}qA\cos\alpha)}\right]^2 
    123                   \left[\frac{\sin(\tfrac{1}{2}qB\cos\beta)}{(\tfrac{1}{2}qB\cos\beta)}\right]^2 
    124                   \left[\frac{\sin(\tfrac{1}{2}qC\cos\gamma)}{(\tfrac{1}{2}qC\cos\gamma)}\right]^2 
    125  
    126 with 
    127  
    128 .. math:: 
    129  
    130     \cos\alpha &= \hat A \cdot \hat q, \\ 
    131     \cos\beta  &= \hat B \cdot \hat q, \\ 
    132     \cos\gamma &= \hat C \cdot \hat q 
    133  
    134 and the scattering intensity as: 
    135  
    136 .. math:: 
    137  
    138     I(q_x, q_y) = \frac{\text{scale}}{V} V^2 \Delta\rho^2 P(q_x, q_y) 
     71where substitution of $\sigma = cos\alpha$ and $\beta = \pi/2 \ u$ have been 
     72applied. 
     73 
     74For **oriented** particles, the 2D scattering intensity, $I(q_x, q_y)$, is 
     75given as: 
     76 
     77.. math:: 
     78 
     79    I(q_x, q_y) = \frac{\text{scale}}{V} (\Delta\rho \cdot V)^2 P(q_x, q_y) 
    13980            + \text{background} 
    14081 
     
    14889   with scale being the volume fraction. 
    14990 
     91Where $P(q_x, q_y)$ for a given orientation of the form factor is calculated as 
     92 
     93.. math:: 
     94 
     95    P(q_x, q_y) = \left[\frac{\sin(\tfrac{1}{2}qA\cos\alpha)}{(\tfrac{1} 
     96                   {2}qA\cos\alpha)}\right]^2 
     97                  \left[\frac{\sin(\tfrac{1}{2}qB\cos\beta)}{(\tfrac{1} 
     98                   {2}qB\cos\beta)}\right]^2 
     99                  \left[\frac{\sin(\tfrac{1}{2}qC\cos\gamma)}{(\tfrac{1} 
     100                   {2}qC\cos\gamma)}\right]^2 
     101 
     102with 
     103 
     104.. math:: 
     105 
     106    \cos\alpha &= \hat A \cdot \hat q, \\ 
     107    \cos\beta  &= \hat B \cdot \hat q, \\ 
     108    \cos\gamma &= \hat C \cdot \hat q 
     109 
     110 
     111FITTING NOTES 
     112~~~~~~~~~~~~~ 
     113 
     114#. The 2nd virial coefficient of the parallelepiped is calculated based on 
     115   the averaged effective radius, after appropriately sorting the three 
     116   dimensions, to give an oblate or prolate particle, $(=\sqrt{AB/\pi})$ and 
     117   length $(= C)$ values, and used as the effective radius for 
     118   $S(q)$ when $P(q) \cdot S(q)$ is applied. 
     119 
     120#. For 2d data the orientation of the particle is required, described using 
     121   angles $\theta$, $\phi$ and $\Psi$ as in the diagrams below, where $\theta$ 
     122   and $\phi$ define the orientation of the director in the laboratry reference 
     123   frame of the beam direction ($z$) and detector plane ($x-y$ plane), while 
     124   the angle $\Psi$ is effectively the rotational angle around the particle 
     125   $C$ axis. For $\theta = 0$ and $\phi = 0$, $\Psi = 0$ corresponds to the 
     126   $B$ axis oriented parallel to the y-axis of the detector with $A$ along 
     127   the x-axis. For other $\theta$, $\phi$ values, the order of rotations 
     128   matters. In particular, the parallelepiped must first be rotated $\theta$ 
     129   degrees in the $x-z$ plane before rotating $\phi$ degrees around the $z$ 
     130   axis (in the $x-y$ plane). Applying orientational distribution to the 
     131   particle orientation (i.e  `jitter` to one or more of these angles) can get 
     132   more confusing as `jitter` is defined **NOT** with respect to the laboratory 
     133   frame but the particle reference frame. It is thus highly recmmended to 
     134   read :ref:`orientation` for further details of the calculation and angular 
     135   dispersions. 
     136 
     137.. note:: For 2d, constraints must be applied during fitting to ensure that the 
     138   order of sides chosen is not altered, and hence that the correct definition 
     139   of angles is preserved. For the default choice shown here, that means 
     140   ensuring that the inequality $A < B < C$ is not violated,  The calculation 
     141   will not report an error, but the results may be not correct. 
     142    
     143.. _parallelepiped-orientation: 
     144 
     145.. figure:: img/parallelepiped_angle_definition.png 
     146 
     147    Definition of the angles for oriented parallelepiped, shown with $A<B<C$. 
     148 
     149.. figure:: img/parallelepiped_angle_projection.png 
     150 
     151    Examples of the angles for an oriented parallelepiped against the 
     152    detector plane. 
     153 
     154.. Comment by Paul Butler 
     155   I am commenting this section out as we are trying to minimize the amount of 
     156   oritentational detail here and encourage the user to go to the full 
     157   orientation documentation so that changes can be made in just one place. 
     158   below is the commented paragrah: 
     159   On introducing "Orientational Distribution" in the angles, "distribution of 
     160   theta" and "distribution of phi" parameters will appear. These are actually 
     161   rotations about axes $\delta_1$ and $\delta_2$ of the parallelepiped, 
     162   perpendicular to the $a$ x $c$ and $b$ x $c$ faces. (When $\theta = \phi = 0$ 
     163   these are parallel to the $Y$ and $X$ axes of the instrument.) The third 
     164   orientation distribution, in $\psi$, is about the $c$ axis of the particle, 
     165   perpendicular to the $a$ x $b$ face. Some experimentation may be required to 
     166   understand the 2d patterns fully as discussed in :ref:`orientation` . 
     167 
    150168 
    151169Validation 
     
    156174angles. 
    157175 
    158  
    159176References 
    160177---------- 
    161178 
    162 P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211 
    163  
    164 R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854 
     179.. [#Mittelbach] P Mittelbach and G Porod, *Acta Physica Austriaca*, 
     180   14 (1961) 185-211 
     181.. [#] R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854 
    165182 
    166183Authorship and Verification 
     
    169186* **Author:** NIST IGOR/DANSE **Date:** pre 2010 
    170187* **Last Modified by:**  Paul Kienzle **Date:** April 05, 2017 
    171 * **Last Reviewed by:**  Richard Heenan **Date:** April 06, 2017 
     188* **Last Reviewed by:**  Miguel Gonzales and Paul Butler **Date:** May 24, 
     189  2018 - documentation updated 
    172190""" 
    173191 
Note: See TracChangeset for help on using the changeset viewer.