Changes in / [a3412a6:f752b9b] in sasmodels


Ignore:
Files:
7 edited

Legend:

Unmodified
Added
Removed
  • doc/guide/plugin.rst

    r94bfa42 r81751c2  
    272272structure factor to account for interactions between particles.  See 
    273273`Form_Factors`_ for more details. 
    274  
    275 **model_info = ...** lets you define a model directly, for example, by 
    276 loading and modifying existing models.  This is done implicitly by 
    277 :func:`sasmodels.core.load_model_info`, which can create a mixture model 
    278 from a pair of existing models.  For example:: 
    279  
    280     from sasmodels.core import load_model_info 
    281     model_info = load_model_info('sphere+cylinder') 
    282  
    283 See :class:`sasmodels.modelinfo.ModelInfo` for details about the model 
    284 attributes that are defined. 
    285274 
    286275Model Parameters 
     
    905894             - \frac{\sin(x)}{x}\left(\frac{1}{x} - \frac{3!}{x^3} + \frac{5!}{x^5} - \frac{7!}{x^7}\right) 
    906895 
    907         For small arguments, 
     896        For small arguments , 
    908897 
    909898        .. math:: 
  • example/multiscatfit.py

    r2c4a190 r49d1f8b8  
    1515 
    1616    # Show the model without fitting 
    17     PYTHONPATH=..:../../bumps:../../sasview/src python multiscatfit.py 
     17    PYTHONPATH=..:../explore:../../bumps:../../sasview/src python multiscatfit.py 
    1818 
    1919    # Run the fit 
    20     PYTHONPATH=..:../../bumps:../../sasview/src ../../bumps/run.py \ 
     20    PYTHONPATH=..:../explore:../../bumps:../../sasview/src ../../bumps/run.py \ 
    2121    multiscatfit.py --store=/tmp/t1 
    2222 
     
    5555    ) 
    5656 
    57 # Tie the model to the data 
    58 M = Experiment(data=data, model=model) 
    59  
    60 # Stack mulitple scattering on top of the existing resolution function. 
    61 M.resolution = MultipleScattering(resolution=M.resolution, probability=0.) 
    62  
    6357# SET THE FITTING PARAMETERS 
    6458model.radius_polar.range(15, 3000) 
     
    7165model.scale.range(0, 0.1) 
    7266 
    73 # The multiple scattering probability parameter is in the resolution function 
    74 # instead of the scattering function, so access it through M.resolution 
    75 M.scattering_probability.range(0.0, 0.9) 
     67# Mulitple scattering probability parameter 
     68# HACK: the probability is stuffed in as an extra parameter to the experiment. 
     69probability = Parameter(name="probability", value=0.0) 
     70probability.range(0.0, 0.9) 
    7671 
    77 # Let bumps know that we are fitting this experiment 
     72M = Experiment(data=data, model=model, extra_pars={'probability': probability}) 
     73 
     74# Stack mulitple scattering on top of the existing resolution function. 
     75# Because resolution functions in sasview don't have fitting parameters, 
     76# we instead allow the multiple scattering calculator to take a function 
     77# instead of a probability.  This function returns the current value of 
     78# the parameter. ** THIS IS TEMPORARY ** when multiple scattering is 
     79# properly integrated into sasmodels and sasview, its fittable parameter 
     80# will be treated like the model parameters. 
     81M.resolution = MultipleScattering(resolution=M.resolution, 
     82                                  probability=lambda: probability.value, 
     83                                  ) 
     84M._kernel_inputs = M.resolution.q_calc 
    7885problem = FitProblem(M) 
    7986 
  • sasmodels/__init__.py

    r37f38ff ra1ec908  
    1414defining new models. 
    1515""" 
    16 __version__ = "0.99" 
     16__version__ = "0.98" 
    1717 
    1818def data_files(): 
  • sasmodels/bumps_model.py

    r2c4a190 r49d1f8b8  
    3535    # when bumps is not on the path. 
    3636    from bumps.names import Parameter # type: ignore 
    37     from bumps.parameter import Reference # type: ignore 
    3837except ImportError: 
    3938    pass 
     
    140139    def __init__(self, data, model, cutoff=1e-5, name=None, extra_pars=None): 
    141140        # type: (Data, Model, float) -> None 
    142         # Allow resolution function to define fittable parameters.  We do this 
    143         # by creating reference parameters within the resolution object rather 
    144         # than modifying the object itself to use bumps parameters.  We need 
    145         # to reset the parameters each time the object has changed.  These 
    146         # additional parameters need to be returned from the fitting engine. 
    147         # To make them available to the user, they are added as top-level 
    148         # attributes to the experiment object.  The only change to the 
    149         # resolution function is that it needs an optional 'fittable' attribute 
    150         # which maps the internal name to the user visible name for the 
    151         # for the parameter. 
    152         self._resolution = None 
    153         self._resolution_pars = {} 
    154141        # remember inputs so we can inspect from outside 
    155142        self.name = data.filename if name is None else name 
     
    158145        self._interpret_data(data, model.sasmodel) 
    159146        self._cache = {} 
    160         # CRUFT: no longer need extra parameters 
    161         # Multiple scattering probability is now retrieved directly from the 
    162         # multiple scattering resolution function. 
    163147        self.extra_pars = extra_pars 
    164148 
     
    178162        return len(self.Iq) 
    179163 
    180     @property 
    181     def resolution(self): 
    182         return self._resolution 
    183  
    184     @resolution.setter 
    185     def resolution(self, value): 
    186         self._resolution = value 
    187  
    188         # Remove old resolution fitting parameters from experiment 
    189         for name in self._resolution_pars: 
    190             delattr(self, name) 
    191  
    192         # Create new resolution fitting parameters 
    193         res_pars = getattr(self._resolution, 'fittable', {}) 
    194         self._resolution_pars = { 
    195             name: Reference(self._resolution, refname, name=name) 
    196             for refname, name in res_pars.items() 
    197         } 
    198  
    199         # Add new resolution fitting parameters as experiment attributes 
    200         for name, ref in self._resolution_pars.items(): 
    201             setattr(self, name, ref) 
    202  
    203164    def parameters(self): 
    204165        # type: () -> Dict[str, Parameter] 
     
    207168        """ 
    208169        pars = self.model.parameters() 
    209         if self.extra_pars is not None: 
     170        if self.extra_pars: 
    210171            pars.update(self.extra_pars) 
    211         pars.update(self._resolution_pars) 
    212172        return pars 
    213173 
  • sasmodels/direct_model.py

    r2c4a190 r5024a56  
    224224            else: 
    225225                Iq, dIq = None, None 
     226            #self._theory = np.zeros_like(q) 
     227            q_vectors = [res.q_calc] 
    226228        elif self.data_type == 'Iqxy': 
    227229            #if not model.info.parameters.has_2d: 
     
    240242            res = resolution2d.Pinhole2D(data=data, index=index, 
    241243                                         nsigma=3.0, accuracy=accuracy) 
     244            #self._theory = np.zeros_like(self.Iq) 
     245            q_vectors = res.q_calc 
    242246        elif self.data_type == 'Iq': 
    243247            index = (data.x >= data.qmin) & (data.x <= data.qmax) 
     
    264268            else: 
    265269                res = resolution.Perfect1D(data.x[index]) 
     270 
     271            #self._theory = np.zeros_like(self.Iq) 
     272            q_vectors = [res.q_calc] 
    266273        elif self.data_type == 'Iq-oriented': 
    267274            index = (data.x >= data.qmin) & (data.x <= data.qmax) 
     
    279286                                      qx_width=data.dxw[index], 
    280287                                      qy_width=data.dxl[index]) 
     288            q_vectors = res.q_calc 
    281289        else: 
    282290            raise ValueError("Unknown data type") # never gets here 
     
    284292        # Remember function inputs so we can delay loading the function and 
    285293        # so we can save/restore state 
     294        self._kernel_inputs = q_vectors 
    286295        self._kernel = None 
    287296        self.Iq, self.dIq, self.index = Iq, dIq, index 
     
    320329        # type: (ParameterSet, float) -> np.ndarray 
    321330        if self._kernel is None: 
    322             # TODO: change interfaces so that resolution returns kernel inputs 
    323             # Maybe have resolution always return a tuple, or maybe have 
    324             # make_kernel accept either an ndarray or a pair of ndarrays. 
    325             kernel_inputs = self.resolution.q_calc 
    326             if isinstance(kernel_inputs, np.ndarray): 
    327                 kernel_inputs = (kernel_inputs,) 
    328             self._kernel = self._model.make_kernel(kernel_inputs) 
     331            self._kernel = self._model.make_kernel(self._kernel_inputs) 
    329332 
    330333        # Need to pull background out of resolution for multiple scattering 
  • sasmodels/multiscat.py

    r2c4a190 rb3703f5  
    342342 
    343343    *probability* is related to the expected number of scattering 
    344     events in the sample $\lambda$ as $p = 1 - e^{-\lambda}$. 
    345     *coverage* determines how many scattering steps to consider.  The 
    346     default is 0.99, which sets $n$ such that $1 \ldots n$ covers 99% 
    347     of the Poisson probability mass function. 
     344    events in the sample $\lambda$ as $p = 1 = e^{-\lambda}$.  As a 
     345    hack to allow probability to be a fitted parameter, the "value" 
     346    can be a function that takes no parameters and returns the current 
     347    value of the probability.  *coverage* determines how many scattering 
     348    steps to consider.  The default is 0.99, which sets $n$ such that 
     349    $1 \ldots n$ covers 99% of the Poisson probability mass function. 
    348350 
    349351    *is2d* is True then 2D scattering is used, otherwise it accepts 
     
    397399        self.qmin = qmin 
    398400        self.nq = nq 
    399         self.probability = 0. if probability is None else probability 
     401        self.probability = probability 
    400402        self.coverage = coverage 
    401403        self.is2d = is2d 
     
    454456        self.Iqxy = None # type: np.ndarray 
    455457 
    456         # Label probability as a fittable parameter, and give its external name 
    457         # Note that the external name must be a valid python identifier, since 
    458         # is will be set as an experiment attribute. 
    459         self.fittable = {'probability': 'scattering_probability'} 
    460  
    461458    def apply(self, theory): 
    462459        if self.is2d: 
     
    466463        Iq_calc = Iq_calc.reshape(self.nq, self.nq) 
    467464 
    468         # CRUFT: don't need probability as a function anymore 
    469465        probability = self.probability() if callable(self.probability) else self.probability 
    470466        coverage = self.coverage 
  • sasmodels/sasview_model.py

    r3a1afed r3a1afed  
    2525from . import core 
    2626from . import custom 
    27 from . import kernelcl 
    2827from . import product 
    2928from . import generate 
     
    3130from . import modelinfo 
    3231from .details import make_kernel_args, dispersion_mesh 
    33 from .kernelcl import reset_environment 
    3432 
    3533# pylint: disable=unused-import 
     
    7068#: has changed since we last reloaded. 
    7169_CACHED_MODULE = {}  # type: Dict[str, "module"] 
    72  
    73 def reset_environment(): 
    74     # type: () -> None 
    75     """ 
    76     Clear the compute engine context so that the GUI can change devices. 
    77  
    78     This removes all compiled kernels, even those that are active on fit 
    79     pages, but they will be restored the next time they are needed. 
    80     """ 
    81     kernelcl.reset_environment() 
    82     for model in MODELS.values(): 
    83         model._model = None 
    8470 
    8571def find_model(modelname): 
     
    710696    def _calculate_Iq(self, qx, qy=None): 
    711697        if self._model is None: 
    712             # Only need one copy of the compiled kernel regardless of how many 
    713             # times it is used, so store it in the class.  Also, to reset the 
    714             # compute engine, need to clear out all existing compiled kernels, 
    715             # which is much easier to do if we store them in the class. 
    716             self.__class__._model = core.build_model(self._model_info) 
     698            self._model = core.build_model(self._model_info) 
    717699        if qy is not None: 
    718700            q_vectors = [np.asarray(qx), np.asarray(qy)] 
Note: See TracChangeset for help on using the changeset viewer.