Changeset f5f8553 in sasview for src/sas/sasgui
- Timestamp:
- Mar 31, 2019 5:43:12 AM (6 years ago)
- Parents:
- 6d7b252b (diff), d4cde37 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent. - git-author:
- Paul Kienzle <pkienzle@…> (03/31/19 05:43:12)
- git-committer:
- GitHub <noreply@…> (03/31/19 05:43:12)
- Location:
- src/sas/sasgui/perspectives/fitting
- Files:
-
- 1 added
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sas/sasgui/perspectives/fitting/fitpage.py
r82d88d5 rd4cde37 2365 2365 percent = self.dx_percent/100 2366 2366 if self._is_2D(): 2367 data.dqx_data[data.dqx_data == 0] = percent * data.qx_data2368 data.dq y_data[data.dqy_data == 0] = percent * data.qy_data2367 q = np.sqrt(data.qx_data**2 + data.qy_data**2) 2368 data.dqx_data = data.dqy_data = percent*q 2369 2369 else: 2370 2370 data.dx = percent * data.x -
src/sas/sasgui/perspectives/fitting/media/fitting.rst
rc926a97 r332c10d 17 17 Smearing Functions <resolution> 18 18 19 Fitting Models with Structure Factors <fitting_sq> 20 21 Writing a Plugin Model <plugin> 22 19 23 Polarisation/Magnetic Scattering <magnetism/magnetism> 20 24 21 25 Oriented Particles <orientation/orientation> 22 26 … … 27 31 Fitting SESANS Data <sesans/sesans_fitting> 28 32 29 Writing a Plugin Model <plugin>30 31 33 Computations with a GPU <gpu_setup> 32 34 -
src/sas/sasgui/perspectives/fitting/media/fitting_help.rst
r9258c43c r6d7b252b 42 42 * *Ellipsoid* - ellipsoidal shapes (oblate,prolate, core shell, etc) 43 43 * *Parellelepiped* - as the name implies 44 * *Sphere* - s heroidal shapes (sphere, core multishell, vesicle, etc)44 * *Sphere* - spheroidal shapes (sphere, core multishell, vesicle, etc) 45 45 * *Lamellae* - lamellar shapes (lamellar, core shell lamellar, stacked 46 46 lamellar, etc) … … 61 61 on the *Description* button to the right. 62 62 63 Product Models 64 ^^^^^^^^^^^^^^ 65 66 .. figure:: p_and_s_buttons.png 67 68 S(Q) models can be combined with models in the other categories to generate 69 what SasView calls "product models". See :ref:`Product_Models` for more 70 information. 71 63 72 Show 1D/2D 64 73 ^^^^^^^^^^ … … 119 128 120 129 For a complete list of all the library models available in SasView, see 121 the `Model Documentation <../../../ index.html>`_ .130 the `Model Documentation <../../../sasgui/perspectives/fitting/models/index.html>`_ . 122 131 123 132 It is also possible to add your own models. … … 338 347 These optimisers form the *Bumps* package written by P Kienzle. For more information 339 348 on each optimiser, see the :ref:`Fitting_Documentation`. 349 350 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 351 352 Fitting Integer Parameters 353 -------------------------- 354 355 Most of the parameters in SasView models will naturally take floating point (decimal) 356 values, but there are some parameters which can only have integer values. Examples 357 include, but are not limited to, the number of shells in a multilayer vesicle, the 358 number of beads in a pearl necklace, the number of arms of a star polymer, and so on. 359 Wherever possible/recognised, the integer nature of a parameter is specified in the 360 respective model documentation and/or parameter table, so read the documentation 361 carefully! 362 363 Integer parameters must be fitted with care. 364 365 Start with your best possible guess for the value of the parameter. And using 366 *a priori* knowledge, fix as many of the other parameters as possible. 367 368 The SasView optimizers treat integer parameters internally as floating point 369 numbers, but the values presented to the user are truncated or rounded, as 370 appropriate. 371 372 In most instances integer parameters will probably be greater than zero. A good 373 policy in such cases is to use a constraint to enforce this. 374 375 Because an integer parameter should, by definition, only move in integer steps, 376 problems may be encountered if the optimizer step size is too small. Similarly, 377 be **very careful** about applying polydispersity to integer parameters. 378 379 The Levenberg-Marquardt and Quasi-Newton BFGS (and other derivative-based) 380 optimizers are probably best avoided for fitting models with integer parameters. 340 381 341 382 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Note: See TracChangeset
for help on using the changeset viewer.