Changeset f536cbf in sasview
- Timestamp:
- Apr 16, 2010 11:53:48 AM (15 years ago)
- Branches:
- master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, release_4.0.1, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
- Children:
- e59da79
- Parents:
- fb071900
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
theoryview/media/model_functions.html
r614cf546 rf536cbf 4 4 <meta http-equiv=Content-Type content="text/html; charset=windows-1252"> 5 5 <meta name=Generator content="Microsoft Word 12 (filtered)"> 6 7 6 <style> 8 7 <!-- … … 113 112 {font-family:Tahoma; 114 113 panose-1:2 11 6 4 3 5 4 4 2 4;} 115 @font-face116 {font-family:Coronet;117 panose-1:0 0 0 0 0 0 0 0 0 0;}118 @font-face119 {font-family:"CG Omega";120 panose-1:0 0 0 0 0 0 0 0 0 0;}121 @font-face122 {font-family:"CG Times";123 panose-1:0 0 0 0 0 0 0 0 0 0;}124 @font-face125 {font-family:Marigold;126 panose-1:0 0 0 0 0 0 0 0 0 0;}127 @font-face128 {font-family:CourierHP;129 panose-1:0 0 0 0 0 0 0 0 0 0;}130 @font-face131 {font-family:Times;132 panose-1:0 0 0 0 0 0 0 0 0 0;}133 @font-face134 {font-family:"Antique Olive";135 panose-1:0 0 0 0 0 0 0 0 0 0;}136 @font-face137 {font-family:Bookman;138 panose-1:0 0 0 0 0 0 0 0 0 0;}139 @font-face140 {font-family:"Letter Gothic";141 panose-1:0 0 0 0 0 0 0 0 0 0;}142 @font-face143 {font-family:"Univers 45 Light";144 panose-1:0 0 0 0 0 0 0 0 0 0;}145 @font-face146 {font-family:ZapfDingbats;147 panose-1:0 0 0 0 0 0 0 0 0 0;}148 @font-face149 {font-family:Palatino;150 panose-1:0 0 0 0 0 0 0 0 0 0;}151 @font-face152 {font-family:Univers;153 panose-1:0 0 0 0 0 0 0 0 0 0;}154 @font-face155 {font-family:Garamond;156 panose-1:2 2 4 4 3 3 1 1 8 3;}157 @font-face158 {font-family:Albertus;159 panose-1:0 0 0 0 0 0 0 0 0 0;}160 @font-face161 {font-family:AvantGarde;162 panose-1:0 0 0 0 0 0 0 0 0 0;}163 @font-face164 {font-family:Helvetica-Narrow;165 panose-1:0 0 0 0 0 0 0 0 0 0;}166 @font-face167 {font-family:"Antique Olive Roman";168 panose-1:0 0 0 0 0 0 0 0 0 0;}169 @font-face170 {font-family:"Albertus ExtraBold";171 panose-1:0 0 0 0 0 0 0 0 0 0;}172 @font-face173 {font-family:NewCenturySchlbk;174 panose-1:0 0 0 0 0 0 0 0 0 0;}175 @font-face176 {font-family:"Clarendon Condensed";177 panose-1:0 0 0 0 0 0 0 0 0 0;}178 @font-face179 {font-family:"Univers Condensed";180 panose-1:0 0 0 0 0 0 0 0 0 0;}181 @font-face182 {font-family:ZapfChancery;183 panose-1:0 0 0 0 0 0 0 0 0 0;}184 @font-face185 {font-family:Marlett;186 panose-1:0 0 0 0 0 0 0 0 0 0;}187 @font-face188 {font-family:"Lucida Console";189 panose-1:2 11 6 9 4 5 4 2 2 4;}190 @font-face191 {font-family:"Lucida Sans Unicode";192 panose-1:2 11 6 2 3 5 4 2 2 4;}193 @font-face194 {font-family:Verdana;195 panose-1:2 11 6 4 3 5 4 4 2 4;}196 @font-face197 {font-family:"Arial Black";198 panose-1:2 11 10 4 2 1 2 2 2 4;}199 @font-face200 {font-family:"Comic Sans MS";201 panose-1:3 15 7 2 3 3 2 2 2 4;}202 @font-face203 {font-family:Impact;204 panose-1:2 11 8 6 3 9 2 5 2 4;}205 @font-face206 {font-family:Georgia;207 panose-1:2 4 5 2 5 4 5 2 3 3;}208 @font-face209 {font-family:"Franklin Gothic Medium";210 panose-1:2 11 6 3 2 1 2 2 2 4;}211 @font-face212 {font-family:"Palatino Linotype";213 panose-1:2 4 5 2 5 5 5 3 3 4;}214 @font-face215 {font-family:"Trebuchet MS";216 panose-1:2 11 6 3 2 2 2 2 2 4;}217 @font-face218 {font-family:Webdings;219 panose-1:5 3 1 2 1 5 9 6 7 3;}220 @font-face221 {font-family:"MV Boli";}222 @font-face223 {font-family:"Microsoft Sans Serif";224 panose-1:2 11 6 4 2 2 2 2 2 4;}225 @font-face226 {font-family:"Agency FB";227 panose-1:2 11 5 3 2 2 2 2 2 4;}228 @font-face229 {font-family:Algerian;230 panose-1:4 2 7 5 4 10 2 6 7 2;}231 @font-face232 {font-family:"Arial Rounded MT Bold";233 panose-1:2 15 7 4 3 5 4 3 2 4;}234 @font-face235 {font-family:"\@Arial Unicode MS";236 panose-1:2 11 6 4 2 2 2 2 2 4;}237 @font-face238 {font-family:"Baskerville Old Face";239 panose-1:2 2 6 2 8 5 5 2 3 3;}240 @font-face241 {font-family:"Bauhaus 93";242 panose-1:4 3 9 5 2 11 2 2 12 2;}243 @font-face244 {font-family:"Bell MT";245 panose-1:2 2 5 3 6 3 5 2 3 3;}246 @font-face247 {font-family:"Berlin Sans FB";248 panose-1:2 14 6 2 2 5 2 2 3 6;}249 @font-face250 {font-family:"Bernard MT Condensed";251 panose-1:2 5 8 6 6 9 5 2 4 4;}252 @font-face253 {font-family:"Blackadder ITC";254 panose-1:4 2 5 5 5 16 7 2 13 2;}255 @font-face256 {font-family:"Bodoni MT";257 panose-1:2 7 6 3 8 6 6 2 2 3;}258 @font-face259 {font-family:"Bodoni MT Black";260 panose-1:2 7 10 3 8 6 6 2 2 3;}261 @font-face262 {font-family:"Bodoni MT Condensed";263 panose-1:2 7 6 6 8 6 6 2 2 3;}264 @font-face265 {font-family:"Bodoni MT Poster Compressed";266 panose-1:2 7 7 6 8 6 1 5 2 4;}267 @font-face268 {font-family:"Book Antiqua";269 panose-1:2 4 6 2 5 3 5 3 3 4;}270 @font-face271 {font-family:"Bookman Old Style";272 panose-1:2 5 6 4 5 5 5 2 2 4;}273 @font-face274 {font-family:"Bradley Hand ITC";275 panose-1:3 7 4 2 5 3 2 3 2 3;}276 @font-face277 {font-family:"Britannic Bold";278 panose-1:2 11 9 3 6 7 3 2 2 4;}279 @font-face280 {font-family:Broadway;281 panose-1:4 4 9 5 8 11 2 2 5 2;}282 @font-face283 {font-family:"Brush Script MT";284 panose-1:3 6 8 2 4 4 6 7 3 4;}285 @font-face286 {font-family:"Californian FB";287 panose-1:2 7 4 3 6 8 11 3 2 4;}288 @font-face289 {font-family:"Calisto MT";290 panose-1:2 4 6 3 5 5 5 3 3 4;}291 @font-face292 {font-family:Castellar;293 panose-1:2 10 4 2 6 4 6 1 3 1;}294 @font-face295 {font-family:Centaur;296 panose-1:2 3 5 4 5 2 5 2 3 4;}297 @font-face298 {font-family:"Century Gothic";299 panose-1:2 11 5 2 2 2 2 2 2 4;}300 @font-face301 {font-family:"Century Schoolbook";302 panose-1:2 4 6 4 5 5 5 2 3 4;}303 @font-face304 {font-family:Chiller;305 panose-1:4 2 4 4 3 16 7 2 6 2;}306 @font-face307 {font-family:"Colonna MT";308 panose-1:4 2 8 5 6 2 2 3 2 3;}309 @font-face310 {font-family:"Cooper Black";311 panose-1:2 8 9 4 4 3 11 2 4 4;}312 @font-face313 {font-family:"Copperplate Gothic Bold";314 panose-1:2 14 7 5 2 2 6 2 4 4;}315 @font-face316 {font-family:"Copperplate Gothic Light";317 panose-1:2 14 5 7 2 2 6 2 4 4;}318 @font-face319 {font-family:"Curlz MT";320 panose-1:4 4 4 4 5 7 2 2 2 2;}321 @font-face322 {font-family:"Edwardian Script ITC";323 panose-1:3 3 3 2 4 7 7 13 8 4;}324 @font-face325 {font-family:Elephant;326 panose-1:2 2 9 4 9 5 5 2 3 3;}327 @font-face328 {font-family:"Engravers MT";329 panose-1:2 9 7 7 8 5 5 2 3 4;}330 @font-face331 {font-family:"Eras Bold ITC";332 panose-1:2 11 9 7 3 5 4 2 2 4;}333 @font-face334 {font-family:"Eras Demi ITC";335 panose-1:2 11 8 5 3 5 4 2 8 4;}336 @font-face337 {font-family:"Eras Light ITC";338 panose-1:2 11 4 2 3 5 4 2 8 4;}339 @font-face340 {font-family:"Eras Medium ITC";341 panose-1:2 11 6 2 3 5 4 2 8 4;}342 @font-face343 {font-family:"Felix Titling";344 panose-1:4 6 5 5 6 2 2 2 10 4;}345 @font-face346 {font-family:"Footlight MT Light";347 panose-1:2 4 6 2 6 3 10 2 3 4;}348 @font-face349 {font-family:Forte;350 panose-1:3 6 9 2 4 5 2 7 2 3;}351 @font-face352 {font-family:"Franklin Gothic Book";353 panose-1:2 11 5 3 2 1 2 2 2 4;}354 @font-face355 {font-family:"Franklin Gothic Demi";356 panose-1:2 11 7 3 2 1 2 2 2 4;}357 @font-face358 {font-family:"Franklin Gothic Demi Cond";359 panose-1:2 11 7 6 3 4 2 2 2 4;}360 @font-face361 {font-family:"Franklin Gothic Heavy";362 panose-1:2 11 9 3 2 1 2 2 2 4;}363 @font-face364 {font-family:"Franklin Gothic Medium Cond";365 panose-1:2 11 6 6 3 4 2 2 2 4;}366 @font-face367 {font-family:"Freestyle Script";368 panose-1:3 8 4 2 3 2 5 11 4 4;}369 @font-face370 {font-family:"French Script MT";371 panose-1:3 2 4 2 4 6 7 4 6 5;}372 @font-face373 {font-family:Gigi;374 panose-1:4 4 5 4 6 16 7 2 13 2;}375 @font-face376 {font-family:"Gill Sans MT Ext Condensed Bold";377 panose-1:2 11 9 2 2 1 4 2 2 3;}378 @font-face379 {font-family:"Gill Sans MT";380 panose-1:2 11 5 2 2 1 4 2 2 3;}381 @font-face382 {font-family:"Gill Sans MT Condensed";383 panose-1:2 11 5 6 2 1 4 2 2 3;}384 @font-face385 {font-family:"Gill Sans Ultra Bold";386 panose-1:2 11 10 2 2 1 4 2 2 3;}387 @font-face388 {font-family:"Gill Sans Ultra Bold Condensed";389 panose-1:2 11 10 6 2 1 4 2 2 3;}390 @font-face391 {font-family:"Gloucester MT Extra Condensed";392 panose-1:2 3 8 8 2 6 1 1 1 1;}393 @font-face394 {font-family:"Goudy Old Style";395 panose-1:2 2 5 2 5 3 5 2 3 3;}396 @font-face397 {font-family:"Goudy Stout";398 panose-1:2 2 9 4 7 3 11 2 4 1;}399 @font-face400 {font-family:Haettenschweiler;401 panose-1:2 11 7 6 4 9 2 6 2 4;}402 @font-face403 {font-family:"Harlow Solid Italic";404 panose-1:4 3 6 4 2 15 2 2 13 2;}405 @font-face406 {font-family:Harrington;407 panose-1:4 4 5 5 5 10 2 2 7 2;}408 @font-face409 {font-family:"High Tower Text";410 panose-1:2 4 5 2 5 5 6 3 3 3;}411 @font-face412 {font-family:"Imprint MT Shadow";413 panose-1:4 2 6 5 6 3 3 3 2 2;}414 @font-face415 {font-family:Jokerman;416 panose-1:4 9 6 5 6 13 6 2 7 2;}417 @font-face418 {font-family:"Juice ITC";419 panose-1:4 4 4 3 4 10 2 2 2 2;}420 @font-face421 {font-family:"Kristen ITC";422 panose-1:3 5 5 2 4 2 2 3 2 2;}423 @font-face424 {font-family:"Kunstler Script";425 panose-1:3 3 4 2 2 6 7 13 13 6;}426 @font-face427 {font-family:"Lucida Bright";428 panose-1:2 4 6 2 5 5 5 2 3 4;}429 @font-face430 {font-family:"Lucida Calligraphy";431 panose-1:3 1 1 1 1 1 1 1 1 1;}432 @font-face433 {font-family:"Lucida Fax";434 panose-1:2 6 6 2 5 5 5 2 2 4;}435 @font-face436 {font-family:"Lucida Handwriting";437 panose-1:3 1 1 1 1 1 1 1 1 1;}438 @font-face439 {font-family:"Lucida Sans";440 panose-1:2 11 6 2 3 5 4 2 2 4;}441 @font-face442 {font-family:"Lucida Sans Typewriter";443 panose-1:2 11 5 9 3 5 4 3 2 4;}444 @font-face445 {font-family:Magneto;446 panose-1:4 3 8 5 5 8 2 2 13 2;}447 @font-face448 {font-family:"Maiandra GD";449 panose-1:2 14 5 2 3 3 8 2 2 4;}450 @font-face451 {font-family:"Matura MT Script Capitals";452 panose-1:3 2 8 2 6 6 2 7 2 2;}453 @font-face454 {font-family:Mistral;455 panose-1:3 9 7 2 3 4 7 2 4 3;}456 @font-face457 {font-family:"Modern No\. 20";458 panose-1:2 7 7 4 7 5 5 2 3 3;}459 @font-face460 {font-family:"Monotype Corsiva";461 panose-1:3 1 1 1 1 2 1 1 1 1;}462 @font-face463 {font-family:"Niagara Engraved";464 panose-1:4 2 5 2 7 7 3 3 2 2;}465 @font-face466 {font-family:"Niagara Solid";467 panose-1:4 2 5 2 7 7 2 2 2 2;}468 @font-face469 {font-family:"OCR A Extended";470 panose-1:2 1 5 9 2 1 2 1 3 3;}471 @font-face472 {font-family:"Old English Text MT";473 panose-1:3 4 9 2 4 5 8 3 8 6;}474 @font-face475 {font-family:Onyx;476 panose-1:4 5 6 2 8 7 2 2 2 3;}477 @font-face478 {font-family:"Palace Script MT";479 panose-1:3 3 3 2 2 6 7 12 11 5;}480 @font-face481 {font-family:Papyrus;482 panose-1:3 7 5 2 6 5 2 3 2 5;}483 @font-face484 {font-family:Parchment;485 panose-1:3 4 6 2 4 7 8 4 8 4;}486 @font-face487 {font-family:Perpetua;488 panose-1:2 2 5 2 6 4 1 2 3 3;}489 @font-face490 {font-family:"Perpetua Titling MT";491 panose-1:2 2 5 2 6 5 5 2 8 4;}492 @font-face493 {font-family:Playbill;494 panose-1:4 5 6 3 10 6 2 2 2 2;}495 @font-face496 {font-family:"Poor Richard";497 panose-1:2 8 5 2 5 5 5 2 7 2;}498 @font-face499 {font-family:Pristina;500 panose-1:3 6 4 2 4 4 6 8 2 4;}501 @font-face502 {font-family:"Rage Italic";503 panose-1:3 7 5 2 4 5 7 7 3 4;}504 @font-face505 {font-family:Ravie;506 panose-1:4 4 8 5 5 8 9 2 6 2;}507 @font-face508 {font-family:Rockwell;509 panose-1:2 6 6 3 2 2 5 2 4 3;}510 @font-face511 {font-family:"Rockwell Condensed";512 panose-1:2 6 6 3 5 4 5 2 1 4;}513 @font-face514 {font-family:"Rockwell Extra Bold";515 panose-1:2 6 9 3 4 5 5 2 4 3;}516 @font-face517 {font-family:"Informal Roman";518 panose-1:3 6 4 2 3 4 6 11 2 4;}519 @font-face520 {font-family:"Script MT Bold";521 panose-1:3 4 6 2 4 6 7 8 9 4;}522 @font-face523 {font-family:"Showcard Gothic";524 panose-1:4 2 9 4 2 1 2 2 6 4;}525 @font-face526 {font-family:"Snap ITC";527 panose-1:4 4 10 7 6 10 2 2 2 2;}528 @font-face529 {font-family:Stencil;530 panose-1:4 4 9 5 13 8 2 2 4 4;}531 @font-face532 {font-family:"Tw Cen MT";533 panose-1:2 11 6 2 2 1 4 2 6 3;}534 @font-face535 {font-family:"Tw Cen MT Condensed";536 panose-1:2 11 6 6 2 1 4 2 2 3;}537 @font-face538 {font-family:"Tempus Sans ITC";539 panose-1:4 2 4 4 3 13 7 2 2 2;}540 @font-face541 {font-family:"Viner Hand ITC";542 panose-1:3 7 5 2 3 5 2 2 2 3;}543 @font-face544 {font-family:Vivaldi;545 panose-1:3 2 6 2 5 5 6 9 8 4;}546 @font-face547 {font-family:"Vladimir Script";548 panose-1:3 5 4 2 4 4 7 7 3 5;}549 @font-face550 {font-family:"Wide Latin";551 panose-1:2 10 10 7 5 5 5 2 4 4;}552 @font-face553 {font-family:"Wingdings 2";554 panose-1:5 2 1 2 1 5 7 7 7 7;}555 @font-face556 {font-family:"Wingdings 3";557 panose-1:5 4 1 2 1 8 7 7 7 7;}558 @font-face559 {font-family:"Berlin Sans FB Demi";560 panose-1:2 14 8 2 2 5 2 2 3 6;}561 @font-face562 {font-family:"Tw Cen MT Condensed Extra Bold";563 panose-1:2 11 8 3 2 2 2 2 2 4;}564 @font-face565 {font-family:"MT Extra";566 panose-1:5 5 1 2 1 2 5 2 2 2;}567 @font-face568 {font-family:"Arial Narrow";569 panose-1:2 11 6 6 2 2 2 3 2 4;}570 @font-face571 {font-family:Kartika;572 panose-1:2 2 5 3 3 4 4 6 2 3;}573 @font-face574 {font-family:"MS Outlook";575 panose-1:5 1 1 0 1 0 0 0 0 0;}576 @font-face577 {font-family:"Bookshelf Symbol 7";578 panose-1:5 1 1 1 1 1 1 1 1 1;}579 @font-face580 {font-family:"MS Reference Sans Serif";581 panose-1:2 11 6 4 3 5 4 4 2 4;}582 @font-face583 {font-family:"MS Reference Specialty";584 panose-1:5 0 5 0 0 0 0 0 0 0;}585 @font-face586 {font-family:Candara;587 panose-1:2 14 5 2 3 3 3 2 2 4;}588 @font-face589 {font-family:Consolas;590 panose-1:2 11 6 9 2 2 4 3 2 4;}591 @font-face592 {font-family:Constantia;593 panose-1:2 3 6 2 5 3 6 3 3 3;}594 @font-face595 {font-family:Corbel;596 panose-1:2 11 5 3 2 2 4 2 2 4;}597 @font-face598 {font-family:"Segoe UI";599 panose-1:2 11 5 2 4 2 4 2 2 3;}600 @font-face601 {font-family:"\@MS Mincho";602 panose-1:2 2 6 9 4 2 5 8 3 4;}603 114 /* Style Definitions */ 604 115 p.MsoNormal, li.MsoNormal, div.MsoNormal … … 652 163 font-size:12.0pt; 653 164 font-family:"Times New Roman","serif";} 654 p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst 655 {margin-top:0in; 165 span.FooterChar 166 {mso-style-name:"Footer Char"; 167 mso-style-link:Footer; 168 font-family:"Times New Roman","serif";} 169 span.BodyTextChar 170 {mso-style-name:"Body Text Char"; 171 mso-style-link:"Body Text"; 172 font-family:"Times New Roman","serif";} 173 span.BalloonTextChar 174 {mso-style-name:"Balloon Text Char"; 175 mso-style-link:"Balloon Text"; 176 font-family:"Tahoma","sans-serif";} 177 p.msolistparagraphcxspfirst, li.msolistparagraphcxspfirst, div.msolistparagraphcxspfirst 178 {mso-style-name:msolistparagraphcxspfirst; 179 margin-top:0in; 656 180 margin-right:0in; 657 181 margin-bottom:0in; … … 660 184 font-size:12.0pt; 661 185 font-family:"Times New Roman","serif";} 662 p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle 663 {margin-top:0in; 186 p.msolistparagraphcxspmiddle, li.msolistparagraphcxspmiddle, div.msolistparagraphcxspmiddle 187 {mso-style-name:msolistparagraphcxspmiddle; 188 margin-top:0in; 664 189 margin-right:0in; 665 190 margin-bottom:0in; … … 668 193 font-size:12.0pt; 669 194 font-family:"Times New Roman","serif";} 670 p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast 671 {margin-top:0in; 195 p.msolistparagraphcxsplast, li.msolistparagraphcxsplast, div.msolistparagraphcxsplast 196 {mso-style-name:msolistparagraphcxsplast; 197 margin-top:0in; 672 198 margin-right:0in; 673 199 margin-bottom:0in; … … 690 216 font-family:"Times New Roman","serif"; 691 217 color:black;} 692 span.BodyTextChar693 {mso-style-name:"Body Text Char";694 mso-style-link:"Body Text";695 font-family:"Times New Roman","serif";}696 span.FooterChar697 {mso-style-name:"Footer Char";698 mso-style-link:Footer;699 font-family:"Times New Roman","serif";}700 218 p.IUCrbodytextnoindent, li.IUCrbodytextnoindent, div.IUCrbodytextnoindent 701 219 {mso-style-name:"IUCr body text \(no indent\)"; … … 718 236 font-size:10.0pt; 719 237 font-family:"Times New Roman","serif";} 720 span.BalloonTextChar 721 {mso-style-name:"Balloon Text Char"; 722 mso-style-link:"Balloon Text"; 723 font-family:"Tahoma","sans-serif";} 238 p.msopapdefault, li.msopapdefault, div.msopapdefault 239 {mso-style-name:msopapdefault; 240 margin-right:0in; 241 margin-bottom:10.0pt; 242 margin-left:0in; 243 line-height:115%; 244 font-size:12.0pt; 245 font-family:"Times New Roman","serif";} 246 p.msochpdefault, li.msochpdefault, div.msochpdefault 247 {mso-style-name:msochpdefault; 248 margin-right:0in; 249 margin-left:0in; 250 font-size:10.0pt; 251 font-family:"Times New Roman","serif";} 724 252 span.msoIns 725 253 {mso-style-name:""; … … 730 258 text-decoration:line-through; 731 259 color:red;} 260 .MsoChpDefault 261 {font-size:10.0pt;} 732 262 .MsoPapDefault 733 263 {margin-bottom:10.0pt; … … 756 286 <p class=MsoNormal> </p> 757 287 758 <ul type=disc>288 <ul style='margin-top:0in' type=disc> 759 289 <li class=MsoNormal style='line-height:115%'><a href="#Introduction"><b>Introduction</b></a> 760 290 </li> 761 291 <li class=MsoNormal style='line-height:115%'><a href="#Shapes"><b>Shapes</b></a>: 762 <a href="#SphereModel">SphereModel</a>, 763 <a href="#CoreShellModel">CoreShellModel</a>, 764 <a href="#VesiclelModel">VesicleModel</a>, 765 <a href="#MultiShellModel">MultiShellModel</a>, 766 <a href="#BinaryHSModel">BinaryHSModel</a>, 767 <a href="#CylinderModel">CylinderModel</a>, 768 <a href="#CoreShellCylinderModel">CoreShellCylinderModel</a>, 769 <a href="#HollowCylinderModel">HollowCylinderModel</a>, 770 <a href="#FlexibleCylinderModel">FlexibleCylinderModel</a>, 771 <a href="#StackedDisksModel">StackedDisksModel</a>, 772 <a href="#ParallelepipedModel">ParallelepipedModel</a>, 773 <a href="#EllipticalCylinderModel">EllipticalCylinderModel</a>, 774 <a href="#EllipsoidModel">EllipsoidModel</a>, 775 <a href="#CoreShellEllipsoidModel">CoreShellEllipsoidModel</a>, 776 <a href="#TriaxialEllipsoidModel">TriaxialEllipsoidModel</a>, 777 <a href="#LamellarModel">LamellarModel</a>, 778 <a href="#LamellarFFHGModel">LamellarFFHGModel</a>, 779 <a href="#LamellarPSModel">LamellarPSModel</a>, 780 <a href="#LamellarPSHGModel">LamellarPSHGModel</a>.</li> 292 <a href="#SphereModel">SphereModel</a>, <a href="#FuzzySphereModel">FuzzySphereModel</a>, 293 <a href="#CoreShellModel">CoreShellModel</a>, <a href="#CoreFourShellModel">CoreFourShellModel</a>, 294 <a href="#VesicleModel">VesicleModel</a>, <a href="#MultiShellModel">MultiShellModel</a>, 295 <a href="#BinaryHSModel">BinaryHSModel</a>, <a href="#CylinderModel">CylinderModel</a>, 296 <a href="#CoreShellCylinderModel">CoreShellCylinderModel</a>, <a 297 href="#HollowCylinderModel">HollowCylinderModel</a>, <a 298 href="#FlexibleCylinderModel">FlexibleCylinderModel</a>, <a 299 href="#FlexCylEllipXModel">FlexCylEllipXModel</a>, <a 300 href="#StackedDisksModel">StackedDisksModel</a>, <a 301 href="#ParallelepipedModel">ParallelepipedModel</a>, <a 302 href="#EllipticalCylinderModel">EllipticalCylinderModel</a>, <a 303 href="#EllipsoidModel">EllipsoidModel</a>, <a 304 href="#CoreShellEllipsoidModel">CoreShellEllipsoidModel</a>, <a 305 href="#TriaxialEllipsoidModel">TriaxialEllipsoidModel</a>, <a 306 href="#LamellarModel">LamellarModel</a>, <a href="#LamellarFFHGModel">LamellarFFHGModel</a>, 307 <a href="#LamellarPSModel">LamellarPSModel</a>, <a 308 href="#LamellarPSHGModel">LamellarPSHGModel</a>.</li> 781 309 <li class=MsoNormal style='line-height:115%'><a href="#Shape-Independent"><b>Shape-Independent</b></a>: 782 <a href="#Debye">Debye</a>, 783 <a href="#Lorentz">Lorentz</a>, 784 <a href="#DAB_Model">DAB_Model</a>, 785 <a href="#Power_Law">Power_Law</a>, 786 <a href="#Teubner Strey">Teubner Strey</a>, 787 <a href="#BEPolyelectrolyte">BEPolyelectrolyte</a>, 788 <a href="#Number Density Fractal">Number Density Fractal</a>, 789 <a href="#Guinier">Guinier</a>, 790 <a href="#PorodModel">PorodModel</a>, 791 <a href="#Peak Gauss Model">Peak Gauss Model</a>, 792 <a href="#Peak Lorentz Model">Peak Lorentz Model</a>, 793 <a href="#LineModel">LineModel</a>.</li> 794 <li class=MsoNormal style='line-height:115%'> 795 <a href="#Customized Models"><b>Customized 796 Models</b></a>: <a href="#A+Bcos(2x)+Csin(2x)">A+Bcos(2x)+Csin(2x)</a>, 797 <a href="#sinpoly_poly">sin(poly)/poly</a>.</li> 798 <li class=MsoNormal style='line-height:115%'> 799 <a href="#Structure Factors"><b>Structure 800 Factors</b></a>: 801 <a href="#HardsphereStructure">HardSphereStructure</a>, 802 <a href="#SquareWellStructure">SquareWellStructure</a>, 803 <a href="#HayterMSAStructure">HayterMSAStructure</a>, 804 <a href="#StickyHSStructure">StickyHSStructure</a>. 805 </li> 806 <li class=MsoNormal style='line-height:115%'> 807 <a href="#References"><b>References</b></a> 310 <a href="#Debye">Debye</a>, <a href="#Lorentz">Lorentz</a>, <a 311 href="#DAB_Model">DAB_Model</a>, <a href="#Absolute Power_Law">Power_Law</a>, <a 312 href="#Teubner Strey">Teubner Strey</a>, <a href="#BEPolyelectrolyte">BEPolyelectrolyte</a>, 313 <a href="#FractalModel">FractalModel</a>, <a href="#Guinier">Guinier</a>, 314 <a href="#PorodModel">PorodModel</a>, <a href="#Poly_GaussCoil">Poly_GaussCoil</a>, 315 <a href="#Peak Gauss Model">Peak Gauss Model</a>, <a 316 href="#Peak Lorentz Model">Peak Lorentz Model</a>, <a href="#LineModel">LineModel</a>.</li> 317 <li class=MsoNormal style='line-height:115%'><a href="#Customized_Models"><b>Customized 318 Models</b></a>: <a href="#A+Bcos(2x)+Csin(2x)">A+Bcos(2x)+Csin(2x)</a>, <a 319 href="#sinpoly_poly">sin(poly)/poly</a>.</li> 320 <li class=MsoNormal style='line-height:115%'><a href="#Structure_Factors"><b>Structure 321 Factors</b></a>: <a href="#HardsphereStructure">HardSphereStructure</a>, <a 322 href="#SquareWellStructure">SquareWellStructure</a>, <a 323 href="#HayterMSAStructure">HayterMSAStructure</a>, <a 324 href="#StickyHSStructure">StickyHSStructure</a>. </li> 325 <li class=MsoNormal style='line-height:115%'><a href="#References"><b>References</b></a> 808 326 </li> 809 327 </ul> … … 812 330 813 331 <p class=MsoNormal style='margin-left:.25in;text-indent:-.25in'><b><span 814 style='font-size:16.0pt'>1.< span style='font:7.0pt "Times New Roman"'> 815 </span></ span></b><b><span style='font-size:16.0pt'><a name="Introduction"> Introduction </a></span></b></p>332 style='font-size:16.0pt'>1.</span></b><b><span style='font-size:7.0pt'> 333 </span></b><a name=Introduction><b><span style='font-size:16.0pt'>Introduction </span></b></a></p> 816 334 817 335 <p class=MsoNormal>The present text documents the modules made available by the … … 836 354 <p class=MsoNormal><b> </b></p> 837 355 838 <p class=MsoNormal>Note that our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research and thus that some contents and figures in this documentation are originated from or shared with the NIST Igor SANS analysis package by permission (S. Kline, NIST, 2006). </p> 839 840 <p class=MsoNormal><b> </b></p> 356 <p class=MsoNormal><b> Note: Our model uses the form factor calculations 357 implemented in a c-library provided by the NIST Center for Neutron Research and 358 thus some content and figures in this document are originated from or shared 359 with the NIST Igor analysis package by permission (S. Kline, NIST, 2006).</b></p> 360 361 <p class=MsoNormal> </p> 841 362 842 363 <p class=MsoNormal style='margin-left:.25in;text-indent:-.25in'><b><span 843 style='font-size:16.0pt'>2.< span style='font:7.0pt "Times New Roman"'> 844 </span></ span></b><b><span style='font-size:16.0pt'><a name="Shapes">Shapes (Scattering Intensity845 Models)</a></span></b></p>364 style='font-size:16.0pt'>2.</span></b><b><span style='font-size:7.0pt'> 365 </span></b><a name=Shapes><b><span style='font-size:16.0pt'>Shapes (Scattering 366 Intensity Models)</span></b></a></p> 846 367 847 368 <p class=MsoNormal> </p> … … 864 385 <p class=MsoNormal> </p> 865 386 866 <p class=MsoNormal align=center style='text-align:center'>< span867 style='position:relative;top:12.0pt'><img border=0 width=192 height=43 868 src="../images/html/image001.png"></span> (1)</p>387 <p class=MsoNormal align=center style='text-align:center'><img border=0 388 width=192 height=43 src="../images/html/image001.png"> 389 </p> 869 390 870 391 <p class=MsoNormal align=center style='text-align:center'> </p> … … 872 393 <p class=MsoNormal>with</p> 873 394 874 <p class=MsoNormal align=center style='text-align:center'><span 875 style='position:relative;top:8.0pt'><img border=0 width=159 height=29 876 src="../images/html/image002.png"></span> (2)</p> 877 878 <p class=MsoNormal align=center style='text-align:center'> </p> 395 <p class=MsoNormal align=center style='text-align:center'><img border=0 396 width=159 height=29 src="../images/html/image002.png"> </p> 879 397 880 398 <p class=MsoNormal align=center style='text-align:center'> </p> … … 889 407 <p class=MsoNormal>For systems without inter-particle interference, the form 890 408 factors we provide can be related to the scattering intensity by the particle 891 volume fraction:< span style='position:relative;top:5.0pt'><img border=0892 width=92 height=21 src="../images/html/image003.png"></span>.</p>409 volume fraction:<img border=0 width=66 height=15 410 src="../images/html/image003.png">.</p> 893 411 894 412 <p class=MsoNormal> </p> … … 913 431 914 432 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 915 style='font-size:14.0pt'>2.1.< span style='font:7.0pt "Times New Roman"'> 916 </span></ span></b><b><span style='font-size:14.0pt'><a name="SphereModel">Sphere Model</a></span></b></p>433 style='font-size:14.0pt'>2.1.</span></b><b><span style='font-size:7.0pt'> 434 </span></b><a name=SphereModel><b><span style='font-size:14.0pt'>Sphere Model</span></b></a></p> 917 435 918 436 <p class=MsoNormal> </p> … … 924 442 <p class=MsoNormal> </p> 925 443 926 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>1.1.< span927 style='font :7.0pt "Times New Roman"'> </span></b><b>Definition</b></p>444 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>1.1.</b><b><span 445 style='font-size:7.0pt'> </span>Definition</b></p> 928 446 929 447 <p class=MsoNormal> </p> … … 934 452 <p class=MsoNormal> </p> 935 453 936 <p class=MsoNormal align=center style='text-align:center'>< span937 style='position:relative;top:16.0pt'><img border=0 width=337 height=53 938 src="../images/html/image004.png"></span> (3)</p>939 940 <p class=MsoNormal align=center style='text-align:center'> </p> 941 942 <p class=MsoNormal align=center style='text-align:center'> </p> 943 944 <p class=MsoNormal>where <i>scale</i> is a scale factor , V is the volume of the945 scatterer, <i>r</i> is the radius of the sphere, <i>bkg</i> is the background 946 level and <i><span style='font-family:"Arial","sans-serif"'>Δ</span>ρ</i>947 (contrast) is the scattering length density difference between the scatterer948 and the solvent it is in.</p>454 <p class=MsoNormal align=center style='text-align:center'><img border=0 455 width=337 height=53 src="../images/html/image004.png"> 456 </p> 457 458 <p class=MsoNormal align=center style='text-align:center'> </p> 459 460 <p class=MsoNormal align=center style='text-align:center'> </p> 461 462 <p class=MsoNormal>where <i>scale</i> is a scale factor* volume fraction, V is 463 the volume of the scatterer, <i>r</i> is the radius of the sphere, <i>bkg</i> 464 is the background level and <i><span style='font-family:"Arial","sans-serif"'>Δ</span>ρ</i> 465 (contrast) is the scattering length density (SLD) difference 466 between the scatterer and the solvent it is in.</p> 949 467 950 468 <p class=MsoNormal> </p> … … 962 480 <div align=center> 963 481 964 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=0965 style='border-collapse:collapse ;border:none'>482 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 483 style='border-collapse:collapse'> 966 484 <tr style='height:13.5pt'> 967 485 <td width=135 valign=top style='width:101.0pt;border:solid windowtext 1.0pt; … … 981 499 <td width=135 valign=top style='width:101.0pt;border:solid windowtext 1.0pt; 982 500 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:12.8pt'> 983 <p class=MsoBodyText> Scale</p>501 <p class=MsoBodyText>scale</p> 984 502 </td> 985 503 <td width=135 valign=top style='width:101.0pt;border-top:none;border-left: … … 991 509 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 992 510 padding:0in 5.4pt 0in 5.4pt;height:12.8pt'> 993 <p class=MsoBodyText>1 .0e-6</p>511 <p class=MsoBodyText>1</p> 994 512 </td> 995 513 </tr> … … 997 515 <td width=135 valign=top style='width:101.0pt;border:solid windowtext 1.0pt; 998 516 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:12.8pt'> 999 <p class=MsoBodyText> Radius</p>517 <p class=MsoBodyText>radius</p> 1000 518 </td> 1001 519 <td width=135 valign=top style='width:101.0pt;border-top:none;border-left: … … 1013 531 <td width=135 valign=top style='width:101.0pt;border:solid windowtext 1.0pt; 1014 532 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:12.8pt'> 1015 <p class=MsoBodyText> Contrast</p>533 <p class=MsoBodyText>sldSph</p> 1016 534 </td> 1017 535 <td width=135 valign=top style='width:101.0pt;border-top:none;border-left: … … 1023 541 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1024 542 padding:0in 5.4pt 0in 5.4pt;height:12.8pt'> 1025 <p class=MsoBodyText> 1</p>543 <p class=MsoBodyText>2.0e-6</p> 1026 544 </td> 1027 545 </tr> … … 1029 547 <td width=135 valign=top style='width:101.0pt;border:solid windowtext 1.0pt; 1030 548 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:12.8pt'> 1031 <p class=MsoBodyText>Background</p> 549 <p class=MsoBodyText>sldSolv</p> 550 </td> 551 <td width=135 valign=top style='width:101.0pt;border-top:none;border-left: 552 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 553 padding:0in 5.4pt 0in 5.4pt;height:12.8pt'> 554 <p class=MsoBodyText>Å<sup> -2</sup></p> 555 </td> 556 <td width=135 valign=top style='width:101.0pt;border-top:none;border-left: 557 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 558 padding:0in 5.4pt 0in 5.4pt;height:12.8pt'> 559 <p class=MsoBodyText>1.0e-6</p> 560 </td> 561 </tr> 562 <tr style='height:12.8pt'> 563 <td width=135 valign=top style='width:101.0pt;border:solid windowtext 1.0pt; 564 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:12.8pt'> 565 <p class=MsoBodyText>background</p> 1032 566 </td> 1033 567 <td width=135 valign=top style='width:101.0pt;border-top:none;border-left: … … 1057 591 <p class=MsoNormal> </p> 1058 592 1059 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>2.1.< span1060 style='font :7.0pt "Times New Roman"'> </span></b><b>Validation1061 of thesphere model</b></p>593 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>2.1.</b><b><span 594 style='font-size:7.0pt'> </span>Validation of the 595 sphere model</b></p> 1062 596 1063 597 <p class=MsoNormal> </p> … … 1071 605 1072 606 <p class=MsoBodyText align=center style='text-align:center;page-break-after: 1073 avoid'><img border=0 width= 521 height=287 id="Picture 5"607 avoid'><img border=0 width=439 height=287 1074 608 src="../images/html/image005.jpg" alt="sphere_1D_validation"></p> 1075 609 … … 1086 620 <p class=MsoNormal><b> </b></p> 1087 621 1088 <p class=MsoNormal><b> </b></p>1089 1090 <p class=MsoNormal><b> </b></p>1091 1092 1093 1094 622 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 1095 style='font-size:14.0pt'>2.2.< span style='font:7.0pt "Times New Roman"'> 1096 </span></ span></b><b><span style='font-size:14.0pt'><a name="CoreShellModel">Core Shell (Sphere) Model</a></span></b></p>1097 1098 <p class=MsoNormal> </p> 1099 1100 <p class=MsoNormal>This model provides the form factor, P(<i>q</i>), for a 1101 spherical particle with a core-shell structure. The form factor is normalized 1102 by the particle volume.</p>1103 1104 <p class=MsoNormal> </p> 1105 1106 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>1.1.< span1107 style='font :7.0pt "Times New Roman"'> </span></b><b>Definition</b></p>623 style='font-size:14.0pt'>2.2.</span></b><b><span style='font-size:7.0pt'> 624 </span></b><a name=StickyHSStructure></a><a name=FuzzySphereModel></a><b><span 625 style='font-size:14.0pt'>FuzzySphereModel</span></b></p> 626 627 <p class=MsoNormal> </p> 628 629 <p class=MsoNormal><b> </b>This model is to calculate the scattering from 630 spherical particles with a "fuzzy" interface. </p> 631 632 <p class=MsoNormal> </p> 633 634 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>1.1.</b><b><span 635 style='font-size:7.0pt'> </span>Definition</b></p> 1108 636 1109 637 <p class=MsoNormal> </p> … … 1112 640 way (Guinier, 1955):</p> 1113 641 642 <p class=MsoNormal>The returned value is scaled to units of [cm-1 sr-1], absolute 643 scale.</p> 644 645 <p class=MsoNormal align=center style='text-align:center'> </p> 646 647 <p class=MsoNormal>The scattering intensity I(q) is calculated as:</p> 648 649 <p class=MsoNormal> </p> 650 1114 651 <p class=MsoNormal align=center style='text-align:center'><span 1115 style='position:relative;top:16.0pt'><img border=0 width=642 height=55 1116 src="../images/html/image006.png"></span> (11)</p> 652 style='position:relative;top:5pt'><img border=0 width=12 height=23 653 src="../images/html/image101.gif"><img border=0 width=233 height=41 654 src="../images/html/image102.gif"></p> 655 656 <p class=MsoNormal> </p> 657 658 <p class=MsoNormal>where the amplitude A(q) is given as the typical sphere 659 scattering convoluted with a Gaussian to get a gradual drop-off in the 660 scattering length density:</p> 661 662 <p class=MsoNormal> </p> 663 664 <p class=MsoNormal> </p> 665 666 <p class=MsoNormal align=center style='text-align:center'><span 667 style='position:relative;top:18pt'><img border=0 width=315 height=56 668 src="../images/html/image103.gif"></p> 669 670 <p class=MsoNormal> </p> 671 672 <p class=MsoNormal> </p> 673 674 <p class=MsoNormal>Here A<sup>2</sup>(q) is the form factor, P(q). The scale 675 is equivalent to the volume fraction of spheres, each of volume, V. Contrast (<i><span 676 style='font-family:"Arial","sans-serif"'>Δ</span>ρ</i> ) is the 677 difference of scattering length densities of the sphere and the surrounding 678 solvent.</p> 679 680 <p class=MsoNormal> </p> 681 682 <p class=MsoNormal>The poly-dispersion in radius and in fuzziness is provided.</p> 683 684 <p class=MsoNormal> </p> 685 686 <p class=MsoNormal>(direct from the reference)</p> 687 688 <p class=MsoNormal>The "fuzziness" of the interface is defined by the 689 parameter (sigma)<sub>fuzzy</sub>. The particle radius R represents the radius 690 of the particle where the scattering length density profile decreased to 1/2 of 691 the core density. The (sigma)<sub>fuzzy</sub> is the width of the smeared 692 particle surface: i.e., the standard deviation from the average height of the 693 fuzzy interface. The inner regions [] that display a higher density are 694 described by the radial box profile extending to a radius of approximately Rbox 695 ~ R - 2(sigma). the profile approaches zero as Rsans ~ R + 2(sigma).</p> 696 697 <p class=MsoNormal>For 2D data: The 2D scattering intensity is calculated in 698 the same way as 1D, where the <i>q</i> vector is defined as<span 699 style='font-size:14.0pt'><img border=0 width=82 height=26 700 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 701 702 <p class=MsoNormal> </p> 703 704 <p class=MsoNormal>REFERENCE</p> 705 706 <p class=MsoNormal>M. Stieger, J. S. Pedersen, P. Lindner, W. Richtering, 707 Langmuir 20 (2004) 7283-7292.</p> 708 709 <p class=MsoNormal> </p> 710 711 <p class=MsoNormal>TEST DATASET</p> 712 713 <p class=MsoNormal>This example dataset is produced by running the 714 FuzzySphereModel, using 200 data points, qmin = 0.001 Å<sup>-1</sup>, 715 qmax = 0.7 A<sup>-1</sup> and the default coef_fuzz values:</p> 716 717 <p class=MsoNormal> </p> 718 719 <div align=center> 720 721 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 722 style='border-collapse:collapse'> 723 <tr style='height:18.8pt'> 724 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 725 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 726 <p class=MsoBodyText>Parameter name</p> 727 </td> 728 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 729 border-left:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 730 <p class=MsoBodyText>Units</p> 731 </td> 732 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 733 border-left:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 734 <p class=MsoBodyText>Default value</p> 735 </td> 736 </tr> 737 <tr style='height:18.8pt'> 738 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 739 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 740 <p class=MsoBodyText>scale</p> 741 </td> 742 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 743 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 744 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 745 <p class=MsoBodyText>None</p> 746 </td> 747 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 748 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 749 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 750 <p class=MsoBodyText>1.0</p> 751 </td> 752 </tr> 753 <tr style='height:18.8pt'> 754 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 755 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 756 <p class=MsoBodyText>radius</p> 757 </td> 758 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 759 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 760 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 761 <p class=MsoBodyText>Å</p> 762 </td> 763 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 764 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 765 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 766 <p class=MsoBodyText>60</p> 767 </td> 768 </tr> 769 <tr style='height:18.8pt'> 770 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 771 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 772 <p class=MsoBodyText>fuzziness</p> 773 </td> 774 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 775 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 776 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 777 <p class=MsoBodyText>Å</p> 778 </td> 779 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 780 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 781 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 782 <p class=MsoBodyText>10</p> 783 </td> 784 </tr> 785 <tr style='height:18.8pt'> 786 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 787 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 788 <p class=MsoBodyText>sldSolv</p> 789 </td> 790 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 791 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 792 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 793 <p class=MsoBodyText>Å<sup> -2</sup></p> 794 </td> 795 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 796 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 797 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 798 <p class=MsoBodyText>3e-6</p> 799 </td> 800 </tr> 801 <tr style='height:18.8pt'> 802 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 803 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 804 <p class=MsoBodyText>sldSph</p> 805 </td> 806 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 807 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 808 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 809 <p class=MsoBodyText>Å<sup> -2</sup></p> 810 </td> 811 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 812 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 813 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 814 <p class=MsoBodyText>1e-6</p> 815 </td> 816 </tr> 817 <tr style='height:18.8pt'> 818 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 819 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 820 <p class=MsoBodyText>background</p> 821 </td> 822 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 823 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 824 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 825 <p class=MsoBodyText>cm<sup>-1</sup></p> 826 </td> 827 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 828 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 829 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 830 <p class=MsoBodyText>0.001</p> 831 </td> 832 </tr> 833 </table> 834 835 </div> 836 837 <p class=MsoNormal> </p> 838 839 <p class=MsoNormal align=center style='text-align:center'><img border=0 840 width=442 height=275 src="../images/html/image104.jpg"></p> 841 842 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. 843 1D plot using the default values (w/200 data point).</b></p> 844 845 <p class=MsoNormal align=center style='text-align:center'> </p> 846 847 <p class=MsoNormal> </p> 848 849 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 850 style='font-size:14.0pt'>2.3.</span></b><b><span style='font-size:7.0pt'> 851 </span></b><a name=CoreShellModel><b><span style='font-size:14.0pt'>Core Shell 852 (Sphere) Model</span></b></a></p> 853 854 <p class=MsoNormal> </p> 855 856 <p class=MsoNormal>This model provides the form factor, P(<i>q</i>), for a spherical 857 particle with a core-shell structure. The form factor is normalized by the 858 particle volume.</p> 859 860 <p class=MsoNormal> </p> 861 862 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>1.1.</b><b><span 863 style='font-size:7.0pt'> </span>Definition</b></p> 864 865 <p class=MsoNormal> </p> 866 867 <p class=MsoNormal>The 1D scattering intensity is calculated in the following 868 way (Guinier, 1955):</p> 869 870 <p class=MsoNormal align=center style='text-align:center'><img border=0 871 width=387 height=55 src="../images/html/image006.png"> </p> 1117 872 1118 873 <p class=MsoNormal align=center style='text-align:center'> </p> … … 1150 905 <div align=center> 1151 906 1152 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=01153 style='border-collapse:collapse ;border:none'>907 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 908 style='border-collapse:collapse'> 1154 909 <tr style='height:18.8pt'> 1155 910 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 1185 940 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 1186 941 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1187 <p class=MsoBodyText> radius</p>942 <p class=MsoBodyText>(core) radius</p> 1188 943 </td> 1189 944 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: … … 1287 1042 c-library provided by the NIST Center for Neutron Research (Kline, 2006).</p> 1288 1043 1289 <p class=MsoNormal> </p> 1044 <p class=MsoNormal> 1045 </p> 1290 1046 1291 1047 <p class=MsoNormal>REFERENCE</p> … … 1298 1054 <p class=MsoNormal> </p> 1299 1055 1300 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>2.1.< span1301 style='font :7.0pt "Times New Roman"'> </span></b><b>Validation1302 of thecore-shell sphere model</b></p>1056 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>2.1.</b><b><span 1057 style='font-size:7.0pt'> </span>Validation of the 1058 core-shell sphere model</b></p> 1303 1059 1304 1060 <p class=MsoNormal> </p> … … 1312 1068 1313 1069 <p class=MsoBodyText align=center style='text-align:center;page-break-after: 1314 avoid'><img border=0 width= 526 height=289 id="Picture 19"1070 avoid'><img border=0 width=466 height=289 1315 1071 src="../images/html/image007.jpg" alt="core_shell_sphere_1D_validation"></p> 1316 1072 … … 1324 1080 <p class=MsoNormal> </p> 1325 1081 1082 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 1083 style='font-size:14.0pt'>2.4.</span></b><b><span style='font-size:7.0pt'> 1084 </span></b><a name=CoreFourShellModel><b><span style='font-size:14.0pt'>CoreFourShell(Sphere)Model</span></b></a></p> 1085 1086 <p class=MsoNormal> </p> 1087 1088 <p class=MsoNormal>This model provides the scattering from monodisperse core 4 1089 shell structures. It has a core of a specified radius, with four shells. 1090 The SLDs of the core and each shell are individually specified. </p> 1091 1092 <p class=MsoNormal> </p> 1093 1094 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>1.1.</b><b><span 1095 style='font-size:7.0pt'> </span>Definition</b></p> 1096 1097 <p class=MsoNormal> </p> 1098 1099 <p class=MsoNormal>The returned value is scaled to units of [cm-1sr-1], 1100 absolute scale.</p> 1101 1102 <p class=MsoNormal> </p> 1103 1104 <p class=MsoNormal>This model is a trivial extension of the CoreShell function 1105 to a larger number of shells. See the CoreShell function for a diagram and 1106 documentation.</p> 1107 1108 <p class=MsoNormal> </p> 1109 1110 <p class=MsoNormal>Be careful that the SLDs and scale can be highly correlated. 1111 Hold as many of these fixed as possible.</p> 1112 1113 <p class=MsoNormal> </p> 1114 1115 <p class=MsoNormal>The 2D scattering intensity is the same as P(q) of 1D, 1116 regardless of the orientation of the q vector.</p> 1117 1118 <p class=MsoNormal> </p> 1119 1120 <p class=MsoNormal>For P*S: The outer most radius (= radius + 4 thicknesses) is 1121 used as the effective radius toward S(Q) if P(Q)*S(Q) is applied. </p> 1122 1123 <p class=MsoNormal> </p> 1124 1125 <p class=MsoNormal>The returned value is scaled to units of [cm<sup>-1</sup>] 1126 and the parameters of the CoreFourshell sphere model are the following:</p> 1127 1128 <p class=MsoNormal>Here, rad_core = the radius of the core, thick_shelli 1129 = the thickness of the shell i and sld_shelli = the SLD of the shell i.</p> 1130 1131 <p class=MsoNormal>And the sld_core and the sld_solv are the SLD of the core 1132 and the solvent, respectively.</p> 1133 1134 <p class=MsoNormal> </p> 1135 1136 <div align=center> 1137 1138 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 1139 style='border-collapse:collapse'> 1140 <tr style='height:18.8pt'> 1141 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 1142 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1143 <p class=MsoBodyText>Parameter name</p> 1144 </td> 1145 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 1146 border-left:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1147 <p class=MsoBodyText>Units</p> 1148 </td> 1149 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 1150 border-left:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1151 <p class=MsoBodyText>Default value</p> 1152 </td> 1153 </tr> 1154 <tr style='height:18.8pt'> 1155 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 1156 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1157 <p class=MsoBodyText>scale</p> 1158 </td> 1159 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1160 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1161 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1162 <p class=MsoBodyText>None</p> 1163 </td> 1164 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1165 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1166 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1167 <p class=MsoBodyText>1.0</p> 1168 </td> 1169 </tr> 1170 <tr style='height:18.8pt'> 1171 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 1172 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1173 <p class=MsoBodyText>rad_core</p> 1174 </td> 1175 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1176 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1177 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1178 <p class=MsoBodyText>Å</p> 1179 </td> 1180 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1181 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1182 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1183 <p class=MsoBodyText>60</p> 1184 </td> 1185 </tr> 1186 <tr style='height:18.8pt'> 1187 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 1188 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1189 <p class=MsoBodyText>sld_core</p> 1190 </td> 1191 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1192 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1193 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1194 <p class=MsoBodyText>Å<sup> -2</sup></p> 1195 </td> 1196 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1197 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1198 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1199 <p class=MsoBodyText>6.4e-6</p> 1200 </td> 1201 </tr> 1202 <tr style='height:18.8pt'> 1203 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 1204 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1205 <p class=MsoBodyText>sld_shell1</p> 1206 </td> 1207 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1208 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1209 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1210 <p class=MsoBodyText>Å<sup> -2</sup></p> 1211 </td> 1212 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1213 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1214 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1215 <p class=MsoBodyText>1e-6</p> 1216 </td> 1217 </tr> 1218 <tr style='height:18.8pt'> 1219 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 1220 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1221 <p class=MsoBodyText>sld_shell2</p> 1222 </td> 1223 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1224 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1225 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1226 <p class=MsoBodyText>Å<sup> -2</sup></p> 1227 </td> 1228 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1229 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1230 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1231 <p class=MsoBodyText>2e-6</p> 1232 </td> 1233 </tr> 1234 <tr style='height:18.8pt'> 1235 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 1236 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1237 <p class=MsoBodyText>sld_shell3</p> 1238 </td> 1239 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1240 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1241 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1242 <p class=MsoBodyText>Å<sup> -2</sup></p> 1243 </td> 1244 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1245 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1246 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1247 <p class=MsoBodyText>3e-6</p> 1248 </td> 1249 </tr> 1250 <tr style='height:18.8pt'> 1251 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 1252 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1253 <p class=MsoBodyText>sld_shell4</p> 1254 </td> 1255 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1256 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1257 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1258 <p class=MsoBodyText>Å<sup> -2</sup></p> 1259 </td> 1260 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1261 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1262 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1263 <p class=MsoBodyText>4e-6</p> 1264 </td> 1265 </tr> 1266 <tr style='height:18.8pt'> 1267 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 1268 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1269 <p class=MsoBodyText>sld_solv</p> 1270 </td> 1271 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1272 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1273 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1274 <p class=MsoBodyText>Å<sup> -2</sup></p> 1275 </td> 1276 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1277 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1278 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1279 <p class=MsoBodyText>6.4e-6</p> 1280 </td> 1281 </tr> 1282 <tr style='height:18.8pt'> 1283 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 1284 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1285 <p class=MsoBodyText>thick_shell1</p> 1286 </td> 1287 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1288 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1289 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1290 <p class=MsoBodyText>Å</p> 1291 </td> 1292 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1293 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1294 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1295 <p class=MsoBodyText>10</p> 1296 </td> 1297 </tr> 1298 <tr style='height:18.8pt'> 1299 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 1300 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1301 <p class=MsoBodyText>thick_shell2</p> 1302 </td> 1303 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1304 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1305 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1306 <p class=MsoBodyText>Å</p> 1307 </td> 1308 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1309 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1310 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1311 <p class=MsoBodyText>10</p> 1312 </td> 1313 </tr> 1314 <tr style='height:18.8pt'> 1315 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 1316 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1317 <p class=MsoBodyText>thick_shell3</p> 1318 </td> 1319 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1320 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1321 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1322 <p class=MsoBodyText>Å</p> 1323 </td> 1324 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1325 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1326 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1327 <p class=MsoBodyText>10</p> 1328 </td> 1329 </tr> 1330 <tr style='height:18.8pt'> 1331 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 1332 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1333 <p class=MsoBodyText>thick_shell4</p> 1334 </td> 1335 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1336 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1337 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1338 <p class=MsoBodyText>Å</p> 1339 </td> 1340 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1341 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1342 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 1343 <p class=MsoBodyText>10</p> 1344 </td> 1345 </tr> 1346 <tr style='height:19.5pt'> 1347 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 1348 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.5pt'> 1349 <p class=MsoBodyText>background</p> 1350 </td> 1351 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1352 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1353 padding:0in 5.4pt 0in 5.4pt;height:19.5pt'> 1354 <p class=MsoBodyText>cm<sup>-1</sup></p> 1355 </td> 1356 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 1357 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 1358 padding:0in 5.4pt 0in 5.4pt;height:19.5pt'> 1359 <p class=MsoBodyText>0.001</p> 1360 </td> 1361 </tr> 1362 </table> 1363 1364 </div> 1365 1366 <p class=MsoNormal> </p> 1367 1368 <p class=MsoNormal>Our model uses the form factor calculations implemented in a 1369 c-library provided by the NIST Center for Neutron Research (Kline, 2006).</p> 1370 1371 <p class=MsoNormal> 1372 </p> 1373 1374 <p class=MsoNormal>REFERENCE</p> 1375 1376 <p class=MsoNormal> </p> 1377 1378 <p class=MsoNormal>See the CoreShell documentation. </p> 1379 1380 <p class=MsoNormal> </p> 1381 1382 <p class=MsoNormal>TEST DATASET</p> 1383 1384 <p class=MsoNormal> </p> 1385 1386 <p class=MsoNormal>This example dataset is produced by running the 1387 CoreFourShellModel using 200 data points, qmin = 0.001 Å-1, qmax = 0.7 1388 Å-1 and the above default values.</p> 1389 1390 <p class=MsoNormal> </p> 1391 1392 <p class=MsoNormal align=center style='text-align:center'><img border=0 1393 width=412 height=287 src="../images/html/image105.jpg"></p> 1394 1395 <p class=MsoNormal> </p> 1396 1397 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. 1398 1D plot using the default values (w/200 data point).</b></p> 1399 1400 <p class=MsoNormal> </p> 1401 1402 <p class=MsoNormal> </p> 1403 1404 <p class=MsoNormal> </p> 1405 1326 1406 <p class=MsoNormal><b> </b></p> 1327 1407 1328 1408 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 1329 style='font-size:14.0pt'>2. 3.<span style='font:7.0pt "Times New Roman"'> 1330 </span></ span></b><b><span style='font-size:14.0pt'><a name="VesicleModel">VesicleModel</a></span></b></p>1409 style='font-size:14.0pt'>2.5.</span></b><b><span style='font-size:7.0pt'> 1410 </span></b><a name=VesicleModel><b><span style='font-size:14.0pt'>VesicleModel</span></b></a></p> 1331 1411 1332 1412 <p class=MsoNormal> </p> … … 1340 1420 <p class=MsoNormal> </p> 1341 1421 1342 <p class=MsoNormal align=center style='text-align:center'><span 1343 style='position:relative;top:16.0pt'><img border=0 width=448 height=54 1344 src="../images/html/image008.png"></span> (11)</p> 1422 <p class=MsoNormal align=center style='text-align:center'><img border=0 1423 width=377 height=54 src="../images/html/image008.png"> </p> 1345 1424 1346 1425 <p class=MsoNormal align=center style='text-align:center'> </p> … … 1360 1439 except that the scattering is normalized by the volume that is contributing to 1361 1440 the scattering, namely the volume of the shell alone. Also, the vesicle is best 1362 defined in terms of a core radius (= R1) and a shell thickness, t. 1441 defined in terms of a core radius (= R1) and a shell thickness, t. </p> 1363 1442 1364 1443 <p class=MsoNormal> </p> … … 1367 1446 1368 1447 <p class=MsoNormal align=center style='text-align:center'><img border=0 1369 width=149 height=143 id="Picture 31"src="../images/html/image009.jpg"></p>1448 width=149 height=143 src="../images/html/image009.jpg"></p> 1370 1449 1371 1450 <p class=MsoNormal align=center style='text-align:center'> </p> … … 1374 1453 1375 1454 <p class=MsoNormal>The 2D scattering intensity is the same as <i>P</i>(<i>q</i>) 1376 above, regardless of the orientation of the <i>q</i> vector which is defined 1377 as<span style='font-size:14.0pt;position:relative;top:8.0pt'><img border=0 1378 width=103 height=33 src="../images/html/image010.png"></span><span 1379 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 1455 above, regardless of the orientation of the <i>q</i> vector which is 1456 defined as<span style='font-size:14.0pt'><img border=0 width=69 height=22 1457 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 1380 1458 1381 1459 <p class=MsoNormal>For P*S: The outer most radius (= radius + thickness) is … … 1395 1473 <div align=center> 1396 1474 1397 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=01398 style='border-collapse:collapse ;border:none'>1475 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 1476 style='border-collapse:collapse'> 1399 1477 <tr style='height:18.8pt'> 1400 1478 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 1516 1594 1517 1595 <p class=MsoNormal align=center style='text-align:center'><img border=0 1518 width=454 height= 356 id="Picture 158"src="../images/html/image011.png"></p>1596 width=454 height=275 src="../images/html/image011.png"></p> 1519 1597 1520 1598 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 1547 1625 <p class=MsoNormal><b> </b></p> 1548 1626 1549 1550 1627 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 1551 style='font-size:14.0pt'>2. 4.<span style='font:7.0pt "Times New Roman"'> 1552 </span></ span></b><b><span style='font-size:14.0pt'><a name="MultiShellModel">MultiShellModel</a></span></b></p>1628 style='font-size:14.0pt'>2.6.</span></b><b><span style='font-size:7.0pt'> 1629 </span></b><a name=MultiShellModel><b><span style='font-size:14.0pt'>MultiShellModel</span></b></a></p> 1553 1630 1554 1631 <p class=MsoNormal> </p> 1555 1632 1556 1633 <p class=MsoNormal>This model provides the form factor, P(<i>q</i>), for a 1557 multi-lamellar vesicle with N shells where the core is filled with solvent and 1558 the shells are interleaved with layers of solvent. For N = 1, this return to 1559 thevesicle model (above).</p>1634 multi-lamellar vesicle with N shells where the core is filled with solvent and the 1635 shells are interleaved with layers of solvent. For N = 1, this return to the 1636 vesicle model (above).</p> 1560 1637 1561 1638 <p class=MsoNormal> </p> … … 1564 1641 1565 1642 <p class=MsoNormal align=center style='text-align:center'><img border=0 1566 width=255 height=224 id="Picture 32"src="../images/html/image012.jpg"></p>1643 width=255 height=224 src="../images/html/image012.jpg"></p> 1567 1644 1568 1645 <p class=MsoNormal align=center style='text-align:center'> </p> … … 1572 1649 <p class=MsoNormal>The 2D scattering intensity is the same as 1D, regardless of 1573 1650 the orientation of the <i>q</i> vector which is defined as<span 1574 style='font-size:14.0pt;position:relative;top:8.0pt'><img border=0 width=103 1575 height=33 src="../images/html/image010.png"></span><span 1576 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 1577 1578 <p class=MsoNormal>For P*S: The outer most radius (= core_radius + n_pairs * 1579 s_thickness + (n_pairs -1) * w_thickness) is used as the effective radius 1580 toward S(Q) when P(Q)*S(Q) is applied. </p> 1651 style='font-size:14.0pt'><img border=0 width=59 height=19 1652 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 1653 1654 <p class=MsoNormal>For P*S: The outer most radius (= core_radius + 1655 n_pairs * s_thickness + (n_pairs -1) * w_thickness) is used as the 1656 effective radius toward S(Q) when P(Q)*S(Q) is applied. </p> 1581 1657 1582 1658 <p class=MsoNormal> </p> … … 1595 1671 <div align=center> 1596 1672 1597 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=01598 style='border-collapse:collapse ;border:none'>1673 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 1674 style='border-collapse:collapse'> 1599 1675 <tr style='height:18.8pt'> 1600 1676 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 1748 1824 1749 1825 <p class=MsoNormal align=center style='text-align:center'><img border=0 1750 width=447 height= 340 id="Picture 173"src="../images/html/image013.jpg"></p>1826 width=447 height=289 src="../images/html/image013.jpg"></p> 1751 1827 1752 1828 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 1777 1853 1778 1854 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 1779 style='font-size:14.0pt'>2.5.<span style='font:7.0pt "Times New Roman"'> 1780 </span></span></b><b><span style='font-size:14.0pt'><a name="BinaryHSModel">BinaryHSModel</a></span></b></p> 1781 1782 <p class=MsoNormal> </p> 1783 1784 <p class=MsoNormal>This model (binary hard sphere model) provides the scattering 1785 intensity, for binary mixture of spheres including hard sphere interaction 1786 between those particles. Using Percus-Yevick closure, the calculation is an 1787 exact multi-component solution:</p> 1788 1789 <p class=MsoNormal> </p> 1790 1791 <p class=MsoNormal align=center style='text-align:center'><span 1792 style='position:relative;top:5.0pt'><img border=0 width=479 height=25 1793 src="../images/html/image014.png"></span></p> 1794 1795 <p class=MsoNormal align=center style='text-align:center'><span 1796 style='position:relative;top:16.0pt'> </span></p> 1797 1798 <p class=MsoNormal align=center style='text-align:center'><span 1799 style='position:relative;top:16.0pt'> </span></p> 1800 1801 <p class=MsoNormal><span style='position:relative;top:16.0pt'>where S<sub>ij</sub> 1802 are the partial structure factors and f<sub>i</sub> are the scattering 1803 amplitudes of the particles. And the subscript 1 is for the smaller particle 1804 and 2 is for the larger. The number fraction of the larger particle, (<i>x</i> 1805 = n<sub>2</sub>/(n<sub>1</sub>+n<sub>2</sub>), n = the number density) is 1806 internally calculated based on:</span></p> 1807 1808 <p class=MsoNormal><span style='position:relative;top:16.0pt'> </span></p> 1809 1810 <p class=MsoNormal> </p> 1811 1812 <p class=MsoNormal align=center style='text-align:center'><span 1813 style='position:relative;top:24.0pt'><img border=0 width=248 height=98 1814 src="../images/html/image015.png"></span><span style='position:relative; 1815 top:16.0pt'>.</span></p> 1816 1817 <p class=MsoNormal align=center style='text-align:center'><span 1818 style='position:relative;top:16.0pt'> </span></p> 1819 1820 <p class=MsoNormal align=center style='text-align:center'><span 1821 style='position:relative;top:16.0pt'> </span></p> 1855 style='font-size:14.0pt'>2.7.</span></b><b><span style='font-size:7.0pt'> 1856 </span></b><a name=BinaryHSModel><b><span style='font-size:14.0pt'>BinaryHSModel</span></b></a></p> 1857 1858 <p class=MsoNormal> </p> 1859 1860 <p class=MsoNormal>This model (binary hard sphere model) provides the 1861 scattering intensity, for binary mixture of spheres including hard sphere 1862 interaction between those particles. Using Percus-Yevick closure, the 1863 calculation is an exact multi-component solution:</p> 1864 1865 <p class=MsoNormal> </p> 1866 1867 <p class=MsoNormal align=center style='text-align:center'><img border=0 1868 width=349 height=25 src="../images/html/image014.png"></p> 1869 1870 <p class=MsoNormal align=center style='text-align:center'> </p> 1871 1872 <p class=MsoNormal align=center style='text-align:center'> </p> 1873 1874 <p class=MsoNormal>where S<sub>ij</sub> are the partial structure factors and f<sub>i</sub> 1875 are the scattering amplitudes of the particles. And the subscript 1 is for the 1876 smaller particle and 2 is for the larger. The number fraction of the larger 1877 particle, (<i>x</i> = n<sub>2</sub>/(n<sub>1</sub>+n<sub>2</sub>), n = 1878 the number density) is internally calculated based on:</p> 1879 1880 <p class=MsoNormal> </p> 1881 1882 <p class=MsoNormal> </p> 1883 1884 <p class=MsoNormal align=center style='text-align:center'><img border=0 1885 width=248 height=98 src="../images/html/image015.png">.</p> 1886 1887 <p class=MsoNormal align=center style='text-align:center'> </p> 1888 1889 <p class=MsoNormal align=center style='text-align:center'> </p> 1822 1890 1823 1891 <p class=MsoNormal> </p> … … 1825 1893 <p class=MsoNormal>The 2D scattering intensity is the same as 1D, regardless of 1826 1894 the orientation of the <i>q</i> vector which is defined as<span 1827 style='font-size:14.0pt;position:relative;top:8.0pt'><img border=0 width=103 1828 height=33 src="../images/html/image010.png"></span><span 1829 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 1895 style='font-size:14.0pt'><img border=0 width=69 height=22 1896 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 1830 1897 1831 1898 <p class=MsoNormal> </p> … … 1841 1908 <div align=center> 1842 1909 1843 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=01844 style='border-collapse:collapse ;border:none'>1910 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 1911 style='border-collapse:collapse'> 1845 1912 <tr style='height:18.8pt'> 1846 1913 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 1994 2061 1995 2062 <p class=MsoNormal align=center style='text-align:center'><img border=0 1996 width=4 84 height=361 id="Picture 197"src="../images/html/image016.png"></p>2063 width=447 height=313 src="../images/html/image016.png"></p> 1997 2064 1998 2065 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 2026 2093 2027 2094 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 2028 style='font-size:14.0pt'>2.6.<span style='font:7.0pt "Times New Roman"'> 2029 </span></span></b><b><span style='font-size:14.0pt'><a name="CylinderModel">Cylinder Model</a></span></b></p> 2095 style='font-size:14.0pt'>2.8.</span></b><b><span style='font-size:7.0pt'> 2096 </span></b><a name=CylinderModel><b><span style='font-size:14.0pt'>Cylinder 2097 Model</span></b></a></p> 2030 2098 2031 2099 <p class=MsoNormal> </p> … … 2037 2105 <p class=MsoNormal> </p> 2038 2106 2039 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>1.1.< span2040 style='font :7.0pt "Times New Roman"'> </span></b><b>Definition</b></p>2107 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>1.1.</b><b><span 2108 style='font-size:7.0pt'> </span>Definition</b></p> 2041 2109 2042 2110 <p class=MsoNormal> </p> … … 2049 2117 <p class=MsoNormal> </p> 2050 2118 2051 <p class=MsoNormal align=center style='text-align:center'><span 2052 style='position:relative;top:12.0pt'><img border=0 width=184 height=41 2053 src="../images/html/image017.png"></span> (4)</p> 2054 2055 <p class=MsoNormal align=center style='text-align:center'><span 2056 style='position:relative;top:14.0pt'><img border=0 width=373 height=45 2057 src="../images/html/image018.png"></span> (5)</p> 2119 <p class=MsoNormal align=center style='text-align:center'><img border=0 2120 width=184 height=41 src="../images/html/image017.png"> (4)</p> 2121 2122 <p class=MsoNormal align=center style='text-align:center'><img border=0 2123 width=359 height=45 src="../images/html/image018.png"> </p> 2058 2124 2059 2125 <p class=MsoNormal align=center style='text-align:center'> </p> … … 2063 2129 <p class=MsoNormal>where <span style='font-family:"Arial","sans-serif"'>α</span> 2064 2130 is the angle between the axis of the cylinder and the q-vector, V is the volume 2065 of the cylinder, L is the length of the cylinder, r is the radius of the 2066 cylinder,and <i><span style='font-family:"Arial","sans-serif"'>Δ</span>ρ</i>2131 of the cylinder, L is the length of the cylinder, r is the radius of the cylinder, 2132 and <i><span style='font-family:"Arial","sans-serif"'>Δ</span>ρ</i> 2067 2133 (contrast) is the scattering length density difference between the scatterer 2068 2134 and the solvent. J<sub>1</sub> is the first order Bessel function.</p> … … 2077 2143 2078 2144 <p class=MsoNormal align=center style='text-align:center;page-break-after:avoid'><img 2079 border=0 width=478 height=258 id="Picture 14"2080 src="../images/html/image019.jpg"alt=cylinderangles.gif></p>2145 border=0 width=478 height=258 src="../images/html/image019.jpg" 2146 alt=cylinderangles.gif></p> 2081 2147 2082 2148 <p class=MsoCaption align=center style='text-align:center'><a 2083 name="_Ref173306040"></a><a name="_Ref173213915">Figure </a>2a. Definition of the angles for oriented cylinders.</p> 2149 name="_Ref173213915"></a><a name="_Ref173306040"></a>Figure 2a. Definition of 2150 the angles for oriented cylinders.</p> 2084 2151 2085 2152 <p class=MsoNormal> </p> … … 2091 2158 alt=cylinderangles2.gif></p> 2092 2159 2093 <p class=MsoCaption align=center style='text-align:center'>Figure 2b. Examples of the angles for oriented cylinders against the detector plane.</p> 2160 <p class=MsoCaption align=center style='text-align:center'>Figure 2b. Examples 2161 of the angles for oriented cylinders against the detector plane.</p> 2094 2162 2095 2163 <p class=MsoNormal align=center style='text-align:center'> </p> … … 2112 2180 <div align=center> 2113 2181 2114 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=02115 style='border-collapse:collapse ;border:none'>2182 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 2183 style='border-collapse:collapse'> 2116 2184 <tr style='height:19.85pt'> 2117 2185 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 2256 2324 2257 2325 <p class=MsoNormal align=center style='text-align:center'><a 2258 name="_Ref173306 479"></a><a name="_Ref173306528"><span style='position:relative;2259 top:16.0pt'><img border=0 width=253 height=56 2260 src="../images/html/image021.png"></span> (</a>6)</p>2326 name="_Ref173306528"></a><a name="_Ref173306479"></a><img border=0 width=253 2327 height=56 src="../images/html/image021.png"> 2328 </p> 2261 2329 2262 2330 <p class=MsoNormal> </p> … … 2274 2342 <p class=MsoNormal> </p> 2275 2343 2276 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>2.1.< span2277 style='font :7.0pt "Times New Roman"'> </span></b><b>Validation2278 of thecylinder model</b></p>2344 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>2.1.</b><b><span 2345 style='font-size:7.0pt'> </span>Validation of the 2346 cylinder model</b></p> 2279 2347 2280 2348 <p class=MsoNormal> </p> 2281 2349 2282 2350 <p class=MsoNormal>Validation of our code was done by comparing the output of 2283 the 1D model to the output of the software provided by the NIST (Kline, 2006). Figure2284 3 shows a comparison of the 1D output of our model and the output of the NIST 2285 software.</p>2351 the 1D model to the output of the software provided by the NIST (Kline, 2006). 2352 Figure 3 shows a comparison of the 1D output of our model and the output of the 2353 NIST software.</p> 2286 2354 2287 2355 <p class=MsoNormal> </p> … … 2292 2360 <p class=MsoNormal> </p> 2293 2361 2294 <p class=MsoNormal align=center style='text-align:center'>< span2295 style='position:relative;top:16.0pt'><img border=0 width=244 height=51 2296 src="../images/html/image022.png"></span> (7)</p>2362 <p class=MsoNormal align=center style='text-align:center'><img border=0 2363 width=244 height=51 src="../images/html/image022.png"> 2364 </p> 2297 2365 2298 2366 <p class=MsoNormal align=center style='text-align:center'> </p> … … 2306 2374 compare the implementation of the intensity for fully oriented cylinders, we 2307 2375 can compare the result of averaging our 2D output using a uniform distribution <i>p(θ,</i><i><span 2308 style='font-family:"Arial","sans-serif"'>φ</span>)</i> = 1.0. Figure 42309 shows the result of such a cross-check.</p>2376 style='font-family:"Arial","sans-serif"'>φ</span>)</i> = 1.0. Figure 2377 4 shows the result of such a cross-check.</p> 2310 2378 2311 2379 <p class=MsoNormal> </p> … … 2314 2382 2315 2383 <p class=MsoNormal align=center style='text-align:center;page-break-after:avoid'><img 2316 border=0 width=512 height=282 id="Picture 11"2317 src="../images/html/image023.jpg"alt="cylinder_1D_validation"></p>2384 border=0 width=512 height=282 src="../images/html/image023.jpg" 2385 alt="cylinder_1D_validation"></p> 2318 2386 2319 2387 <p class=MsoNormal align=center style='text-align:center;page-break-after:avoid'> </p> 2320 2388 2321 <p class=MsoCaption><a name="_Ref173211049"></a><a name="_Ref173211066">Figure </a>3: Comparison of the DANSE scattering intensity for a cylinder with the output of the 2322 NIST SANS analysis software. The parameters were set to: Scale=1.0, Radius=20 2323 Å, Length=400 Å, Contrast=3e-6 Å<sup> -2</sup>, and Background=0.01 cm<sup> -1</sup>.</p> 2389 <p class=MsoCaption><a name="_Ref173211066"></a><a name="_Ref173211049"></a>Figure 2390 3: Comparison of the DANSE scattering intensity for a cylinder with the output 2391 of the NIST SANS analysis software. The parameters were set to: Scale=1.0, 2392 Radius=20 Å, Length=400 Å, Contrast=3e-6 Å<sup> -2</sup>, and Background=0.01 2393 cm<sup> -1</sup>.</p> 2324 2394 2325 2395 <p class=MsoNormal> </p> … … 2328 2398 2329 2399 <p class=MsoNormal align=center style='text-align:center;page-break-after:avoid'><img 2330 border=0 width= 521 height=287 id="Picture 12"2331 src="../images/html/image024.jpg"alt="cylinder_2D_average"></p>2400 border=0 width=467 height=287 src="../images/html/image024.jpg" 2401 alt="cylinder_2D_average"></p> 2332 2402 2333 2403 <p class=MsoNormal align=center style='text-align:center;page-break-after:avoid'> </p> 2334 2404 2335 <p class=MsoCaption><a name="_Ref173213305">Figure </a>4: Comparison of the 2336 intensity for uniformly distributed cylinders calculated from our 2D model and 2337 theintensity from the NIST SANS analysis software. The parameters used were:2405 <p class=MsoCaption><a name="_Ref173213305">Figure </a>4: Comparison of the intensity 2406 for uniformly distributed cylinders calculated from our 2D model and the 2407 intensity from the NIST SANS analysis software. The parameters used were: 2338 2408 Scale=1.0, Radius=20 Å, Length=400 Å, Contrast=3e-6 Å<sup> -2</sup>, and 2339 2409 Background=0.0 cm<sup> -1</sup>.</p> … … 2346 2416 2347 2417 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 2348 style='font-size:14.0pt'>2.7.<span style='font:7.0pt "Times New Roman"'> 2349 </span></span></b><b><span style='font-size:14.0pt'><a name="CoreShellCylinderModel">Core-Shell Cylinder Model</a></span></b></p> 2418 style='font-size:14.0pt'>2.9.</span></b><b><span style='font-size:7.0pt'> 2419 </span></b><a name=CoreShellCylinderModel><b><span style='font-size:14.0pt'>Core-Shell 2420 Cylinder Model</span></b></a></p> 2350 2421 2351 2422 <p class=MsoNormal> </p> … … 2357 2428 <p class=MsoNormal> </p> 2358 2429 2359 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>1.1.< span2360 style='font :7.0pt "Times New Roman"'> </span></b><b>Definition</b></p>2430 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>1.1.</b><b><span 2431 style='font-size:7.0pt'> </span>Definition</b></p> 2361 2432 2362 2433 <p class=MsoNormal> </p> … … 2369 2440 <p class=MsoNormal> </p> 2370 2441 2371 <p class=MsoNormal align=center style='text-align:center'><span 2372 style='position:relative;top:15.0pt'><img border=0 width=184 height=45 2373 src="../images/html/image025.png"></span> (12)</p> 2374 2375 <p class=MsoNormal align=center style='text-align:center'><span 2376 style='position:relative;top:32.0pt'><img border=0 width=476 height=93 2377 src="../images/html/image026.png"></span> (13)</p> 2378 2379 <p class=MsoNormal align=center style='text-align:center'> </p> 2442 <p class=MsoNormal align=center style='text-align:center'><img border=0 2443 width=184 height=45 src="../images/html/image025.png"> </p> 2444 2445 <p class=MsoNormal align=center style='text-align:center'><img border=0 2446 width=357 height=93 src="../images/html/image026.png"> </p> 2380 2447 2381 2448 <p class=MsoNormal align=center style='text-align:center'> </p> … … 2397 2464 2398 2465 <p class=MsoNormal align=center style='text-align:center'><img border=0 2399 width=384 height=196 id="Picture 34"src="../images/html/image027.jpg"></p>2466 width=384 height=196 src="../images/html/image027.jpg"></p> 2400 2467 2401 2468 <p class=MsoNormal align=center style='text-align:center'> </p> … … 2406 2473 cylinder, we define the axis of the cylinder using two angles θ and <span 2407 2474 style='font-family:"Arial","sans-serif"'>φ</span>. Similarly to the case 2408 of the cylinder, those angles are defined on Figure 2 .</p>2475 of the cylinder, those angles are defined on Figure 2 in Cylinder Model.</p> 2409 2476 2410 2477 <p class=MsoNormal> </p> … … 2426 2493 <div align=center> 2427 2494 2428 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=02429 style='border-collapse:collapse ;border:none'>2495 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 2496 style='border-collapse:collapse'> 2430 2497 <tr style='height:19.25pt'> 2431 2498 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 2608 2675 <p class=MsoNormal> </p> 2609 2676 2610 <p class=MsoNormal>The output of the 1D scattering intensity function for 2611 randomly oriented cylinders is then given by equation 6.</p>2677 <p class=MsoNormal>The output of the 1D scattering intensity function for randomly 2678 oriented cylinders is then given by the equation above.</p> 2612 2679 2613 2680 <p class=MsoNormal> </p> … … 2621 2688 <p class=MsoNormal> </p> 2622 2689 2623 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>2.1.< span2624 style='font :7.0pt "Times New Roman"'> </span></b><b>Validation2625 of thecore-shell cylinder model</b></p>2690 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>2.1.</b><b><span 2691 style='font-size:7.0pt'> </span>Validation of the 2692 core-shell cylinder model</b></p> 2626 2693 2627 2694 <p class=MsoNormal> </p> 2628 2695 2629 2696 <p class=MsoNormal>Validation of our code was done by comparing the output of 2630 the 1D model to the output of the software provided by the NIST (Kline, 2006). Figure2631 8 shows a comparison of the 1D output of our model and the output of the NIST 2632 software.</p>2697 the 1D model to the output of the software provided by the NIST (Kline, 2006). 2698 Figure 8 shows a comparison of the 1D output of our model and the output of the 2699 NIST software.</p> 2633 2700 2634 2701 <p class=MsoNormal> </p> 2635 2702 2636 2703 <p class=MsoNormal>Averaging over a distribution of orientation is done by 2637 evaluating equation 7. Since we have no other software to compare the2704 evaluating the equation above. Since we have no other software to compare the 2638 2705 implementation of the intensity for fully oriented core-shell cylinders, we can 2639 2706 compare the result of averaging our 2D output using a uniform distribution <i>p(θ,</i><i><span 2640 style='font-family:"Arial","sans-serif"'>φ</span>)</i> = 1.0. Figure 9 shows the result of such a cross-check.</p> 2707 style='font-family:"Arial","sans-serif"'>φ</span>)</i> = 1.0. Figure 2708 9 shows the result of such a cross-check.</p> 2641 2709 2642 2710 <p class=MsoNormal align=center style='text-align:center;page-break-after:avoid'><img 2643 border=0 width= 509 height=280 id="Picture 22"2644 src="../images/html/image028.jpg"alt="core_shell_cylinder_1D_validation"></p>2711 border=0 width=454 height=272 src="../images/html/image028.jpg" 2712 alt="core_shell_cylinder_1D_validation"></p> 2645 2713 2646 2714 <p class=MsoNormal align=center style='text-align:center;page-break-after:avoid'> </p> … … 2649 2717 DANSE scattering intensity for a core-shell cylinder with the output of the 2650 2718 NIST SANS analysis software. The parameters were set to: Scale=1.0, Radius=20 2651 Å, Thickness=10 Å, Length=400 Å, Core_sld=1e-6 Å<sup> -2</sup>, Shell_sld=4e-6 Å<sup> 2652 -2</sup>, Solvent_sld=1e-6 Å<sup> -2</sup>, and Background=0.01 cm<sup> -1</sup>.</p> 2719 Å, Thickness=10 Å, Length=400 Å, Core_sld=1e-6 Å<sup> -2</sup>, Shell_sld=4e-6 2720 Å<sup> -2</sup>, Solvent_sld=1e-6 Å<sup> -2</sup>, and Background=0.01 cm<sup> 2721 -1</sup>.</p> 2653 2722 2654 2723 <p class=MsoCaption> </p> … … 2659 2728 2660 2729 <p class=MsoNormal align=center style='text-align:center;page-break-after:avoid'><img 2661 border=0 width= 518 height=285 id="Picture 23"2662 src="../images/html/image029.jpg"alt="core_shell_cylinder_2D_average"></p>2730 border=0 width=458 height=285 src="../images/html/image029.jpg" 2731 alt="core_shell_cylinder_2D_average"></p> 2663 2732 2664 2733 <p class=MsoNormal align=center style='text-align:center;page-break-after:avoid'> </p> … … 2667 2736 intensity for uniformly distributed core-shell cylinders calculated from our 2D 2668 2737 model and the intensity from the NIST SANS analysis software. The parameters 2669 used were: Scale=1.0, Radius=20 Å, Thickness=10 Å, Length=400 Å, Core_sld=1e-6 Å<sup>2670 -2</sup>, Shell_sld=4e-6 Å<sup> -2</sup>, Solvent_sld=1e-6 Å<sup> -2</sup>, and 2671 Background=0.0 cm<sup> -1</sup>.</p>2738 used were: Scale=1.0, Radius=20 Å, Thickness=10 Å, Length=400 Å, Core_sld=1e-6 2739 Å<sup> -2</sup>, Shell_sld=4e-6 Å<sup> -2</sup>, Solvent_sld=1e-6 Å<sup> -2</sup>, 2740 and Background=0.0 cm<sup> -1</sup>.</p> 2672 2741 2673 2742 <p class=MsoNormal> </p> … … 2679 2748 <p class=MsoNormal><b> </b></p> 2680 2749 2681 2682 2750 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 2683 style='font-size:14.0pt'>2. 8.<span style='font:7.0pt "Times New Roman"'> 2684 </span></ span></b><b><span style='font-size:14.0pt'><a name="HollowCylinderModel">HollowCylinderModel</span></b></p>2751 style='font-size:14.0pt'>2.10.</span></b><b><span style='font-size:7.0pt'> 2752 </span></b><a name=HollowCylinderModel><b><span style='font-size:14.0pt'>HollowCylinderModel</span></b></a></p> 2685 2753 2686 2754 <p class=MsoNormal> </p> … … 2691 2759 2692 2760 <p class=MsoNormal>P(q) = scale*<f^2>/V<sub>shell</sub>+background where 2693 the averaging < > id applied only for the 1D calculation. The inside and2694 outside of the hollow cylinder have the same SLD.</p>2761 the averaging < > id applied only for the 1D calculation. The 2762 inside and outside of the hollow cylinder have the same SLD.</p> 2695 2763 2696 2764 <p class=MsoNormal>The 1D scattering intensity is calculated in the following … … 2699 2767 <p class=MsoNormal> </p> 2700 2768 2701 <p class=MsoNormal align=center style='text-align:center'><span 2702 style='position:relative;top:44.0pt'><img border=0 width=514 height=176 2703 src="../images/html/image030.png"></span> (11)</p> 2704 2705 <p class=MsoNormal align=center style='text-align:center'> </p> 2769 <p class=MsoNormal align=center style='text-align:center'><img border=0 2770 width=406 height=176 src="../images/html/image030.png"> </p> 2706 2771 2707 2772 <p class=MsoNormal align=center style='text-align:center'> </p> … … 2716 2781 2717 2782 <p class=MsoNormal align=center style='text-align:center'><img border=0 2718 width=393 height=217 id="Picture 33"src="../images/html/image031.jpg"></p>2783 width=393 height=217 src="../images/html/image031.jpg"></p> 2719 2784 2720 2785 <p class=MsoNormal align=center style='text-align:center'> </p> … … 2729 2794 cylinder, we define the axis of the cylinder using two angles θ and <span 2730 2795 style='font-family:"Arial","sans-serif"'>φ</span>. Similarly to the case 2731 of the cylinder, those angles are defined on Figure 2 of CylinderModel.</p>2796 of the cylinder, those angles are defined on Figure 2 in Cylinder Model.</p> 2732 2797 2733 2798 <p class=MsoNormal> </p> … … 2748 2813 <div align=center> 2749 2814 2750 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=02751 style='border-collapse:collapse ;border:none'>2815 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 2816 style='border-collapse:collapse'> 2752 2817 <tr style='height:18.8pt'> 2753 2818 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 2831 2896 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 2832 2897 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 2833 <p class=MsoBodyText> contrast</p>2898 <p class=MsoBodyText>sldCyl</p> 2834 2899 </td> 2835 2900 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: … … 2841 2906 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 2842 2907 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 2908 <p class=MsoBodyText>6.3e-6</p> 2909 </td> 2910 </tr> 2911 <tr style='height:18.8pt'> 2912 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 2913 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 2914 <p class=MsoBodyText>sldSolv</p> 2915 </td> 2916 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 2917 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 2918 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 2919 <p class=MsoBodyText>Å<sup> -2</sup></p> 2920 </td> 2921 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 2922 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 2923 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 2843 2924 <p class=MsoBodyText>5e-06</p> 2844 2925 </td> … … 2871 2952 2872 2953 <p class=MsoNormal align=center style='text-align:center'><img border=0 2873 width=4 68 height=344 id="Picture 220" src="../images/html/image032.png"></p>2954 width=443 height=259 src="../images/html/image106.jpg"></p> 2874 2955 2875 2956 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 2902 2983 2903 2984 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 2904 style='font-size:14.0pt'>2. 9.<span style='font:7.0pt "Times New Roman"'> 2905 </span></ span></b><b><span style='font-size:14.0pt'><a name="FlexibleCylinderModel">FlexibleCylinderModel</a></span></b></p>2985 style='font-size:14.0pt'>2.11.</span></b><b><span style='font-size:7.0pt'> 2986 </span></b><a name=FlexibleCylinderModel></a><b><span style='font-size:14.0pt'>FlexibleCylinderModel</span></b></p> 2906 2987 2907 2988 <p class=MsoNormal> </p> … … 2910 2991 flexible cylinder where the form factor is normalized by the volume of the 2911 2992 cylinder: Inter-cylinder interactions are NOT included. P(q) = 2912 scale*<f^2>/V+background where the averaging < > is applied over 2913 all orientation for 1D. The 2D scattering intensity is the same as 1D, 2914 regardless of the orientation of the <i>q</i> vector which is defined as<span 2915 style='font-size:14.0pt;position:relative;top:8.0pt'><img border=0 width=103 2916 height=33 src="../images/html/image010.png"></span><span 2917 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 2993 scale*<f^2>/V+background where the averaging < > is applied 2994 over all orientation for 1D. The 2D scattering intensity is the same as 2995 1D, regardless of the orientation of the <i>q</i> vector which is defined as<span 2996 style='font-size:14.0pt'><img border=0 width=71 height=23 2997 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 2918 2998 2919 2999 <p class=MsoNormal> </p> 2920 3000 2921 3001 <p class=MsoNormal align=center style='text-align:center'><img border=0 2922 width=329 height=150 id="Picture 35"src="../images/html/image033.jpg"></p>3002 width=329 height=150 src="../images/html/image033.jpg"></p> 2923 3003 2924 3004 <p class=MsoNormal align=center style='text-align:center'> </p> … … 2931 3011 cylinder can be considered a rigid rod. The Kuhn length (b = 2*lp) is also used 2932 3012 to describe the stiffness of a chain. The returned value is in units of [cm-1], 2933 on absolute scale. In the parameters, the contrast represents SLD (chain) -2934 SLD ( solvent).</p>3013 on absolute scale. In the parameters, the sldCyl and sldSolv represent 3014 SLD (chain/cylinder) and SLD (solvent) respectively.</p> 2935 3015 2936 3016 <p class=MsoNormal><sub> </sub></p> … … 2940 3020 <div align=center> 2941 3021 2942 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=02943 style='border-collapse:collapse ;border:none'>3022 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 3023 style='border-collapse:collapse'> 2944 3024 <tr style='height:18.8pt'> 2945 3025 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 3007 3087 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 3008 3088 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3009 <p class=MsoBodyText> contrast</p>3089 <p class=MsoBodyText>sldCyl</p> 3010 3090 </td> 3011 3091 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: … … 3017 3097 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3018 3098 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3019 <p class=MsoBodyText>5e-06</p> 3099 <p class=MsoBodyText>1e-06</p> 3100 </td> 3101 </tr> 3102 <tr style='height:18.8pt'> 3103 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 3104 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3105 <p class=MsoBodyText>sldSolv</p> 3106 </td> 3107 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3108 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3109 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3110 <p class=MsoBodyText>Å<sup> -2</sup></p> 3111 </td> 3112 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3113 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3114 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3115 <p class=MsoBodyText>6.3e-06</p> 3020 3116 </td> 3021 3117 </tr> … … 3061 3157 3062 3158 <p class=MsoNormal align=center style='text-align:center'><img border=0 3063 width=434 height= 322 id="Picture 228"src="../images/html/image034.jpg"></p>3159 width=434 height=291 src="../images/html/image034.jpg"></p> 3064 3160 3065 3161 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 3078 3174 Volume" is used. The model is a parametrization of simulations of a 3079 3175 discrete representation of the worm-like chain model of Kratky and Porod 3080 applied in the pseudocontinuous limit. See equations (13,26-27) in the3081 originalreference for the details.</p>3176 applied in the pseudocontinuous limit. See equations (13,26-27) in the original 3177 reference for the details.</p> 3082 3178 3083 3179 <p class=MsoNormal> </p> … … 3099 3195 <p class=MsoNormal> </p> 3100 3196 3197 <p class=MsoNormal> </p> 3198 3199 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 3200 style='font-size:14.0pt'>2.12.</span></b><b><span style='font-size:7.0pt'> 3201 </span></b><a name=FlexCylEllipXModel><b><span style='font-size:14.0pt'>FlexCylEllipXModel</span></b></a></p> 3202 3203 <p class=MsoNormal> </p> 3204 3205 <p class=MsoNormal><b>Flexible Cylinder with Elliptical Cross-Section: </b>Calculates 3206 the form factor for a flexible cylinder with an elliptical cross section and a 3207 uniform scattering length density. The non-negligible diameter of the cylinder 3208 is included by accounting for excluded volume interactions within the walk of a 3209 single cylinder. The form factor is normalized by the particle volume such that 3210 P(q) = scale*<f^2>/Vol + bkg, where < > is an average over all 3211 possible orientations of the flexible cylinder. </p> 3212 3213 <p class=MsoNormal> </p> 3214 3215 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>1.1.</b><b><span 3216 style='font-size:7.0pt'> </span>Definition</b></p> 3217 3218 <p class=MsoNormal> </p> 3219 3220 <p class=MsoNormal>The function calculated is from the reference given below. 3221 From that paper, "Method 3 With Excluded Volume" is used. The model 3222 is a parameterization of simulations of a discrete representation of the 3223 worm-like chain model of Kratky and Porod applied in the pseudo-continuous limit. 3224 See equations (13, 26-27) in the original reference for the details.</p> 3225 3226 <p class=MsoNormal> </p> 3227 3228 <p class=MsoNormal>NOTE: there are several typos in the original reference that 3229 have been corrected by WRC. Details of the corrections are in the reference 3230 below.</p> 3231 3232 <p class=MsoNormal> - Equation (13): the term (1-w(QR)) should swap 3233 position with w(QR)</p> 3234 3235 <p class=MsoNormal> - Equations (23) and (24) are incorrect. WRC has 3236 entered these into Mathematica and solved analytically. The results were 3237 converted to code.</p> 3238 3239 <p class=MsoNormal> - Equation (27) should be q0 = max(a3/sqrt(RgSquare),3) 3240 instead of max(a3*b/sqrt(RgSquare),3)</p> 3241 3242 <p class=MsoNormal> - The scattering function is negative for a range of 3243 parameter values and q-values that are experimentally accessible. A correction 3244 function has been added to give the proper behavior.</p> 3245 3246 <p class=MsoNormal> </p> 3247 3248 <p class=MsoNormal align=center style='text-align:center'><img border=0 3249 width=329 height=150 src="../images/html/image033.jpg"></p> 3250 3251 <p class=MsoNormal align=center style='text-align:center'> </p> 3252 3253 <p class=MsoNormal>The chain of contour length, L, (the total length) can be 3254 described a chain of some number of locally stiff segments of length lp. The 3255 persistence length, lp, is the length along the cylinder over which the 3256 flexible cylinder can be considered a rigid rod. The Kuhn length (b) used in 3257 the model is also used to describe the stiffness of a chain, and is simply b = 3258 2*lp.</p> 3259 3260 <p class=MsoNormal> </p> 3261 3262 <p class=MsoNormal>The cross section of the cylinder is elliptical, with minor 3263 radius a. The major radius is larger, so of course, the 'axis_ratio' 3264 must be greater than one. Simple constraints should be applied during curve 3265 fitting to maintain this inequality.</p> 3266 3267 <p class=MsoNormal> </p> 3268 3269 <p class=MsoNormal>The returned value is in units of [cm-1], on absolute scale.</p> 3270 3271 <p class=MsoNormal> </p> 3272 3273 <p class=MsoNormal>The sldCyl = SLD (chain), sldSolv = SLD (solvent). The 3274 scale, and the contrast are both multiplicative factors in the model and are 3275 perfectly correlated. One or both of these parameters must be held fixed during 3276 model fitting.</p> 3277 3278 <p class=MsoNormal> </p> 3279 3280 <p class=MsoNormal>If the scale is set equal to the particle volume fraction, 3281 <span style='font-family:Symbol'>f</span>, the returned value is the scattered 3282 intensity per unit volume, I(q) = <span style='font-family:Symbol'>f</span>*P(q). 3283 However, no inter-particle interference effects are included in this 3284 calculation.</p> 3285 3286 <p class=MsoNormal>For 2D data: The 2D scattering intensity is calculated in 3287 the same way as 1D, where the <i>q</i> vector is defined as<span 3288 style='font-size:14.0pt'><img border=0 width=82 height=26 3289 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 3290 3291 <p class=MsoNormal> </p> 3292 3293 <p class=MsoNormal>REFERENCE</p> 3294 3295 <p class=MsoNormal>Pedersen, J. S. and P. Schurtenberger (1996). Scattering 3296 functions of semiflexible polymers with and without excluded volume effects. 3297 Macromolecules 29: 7602-7612. </p> 3298 3299 <p class=MsoNormal> </p> 3300 3301 <p class=MsoNormal>Corrections are in:</p> 3302 3303 <p class=MsoNormal> </p> 3304 3305 <p class=MsoNormal>Wei-Ren Chen, Paul D. Butler, and Linda J. Magid, 3306 "Incorporating Intermicellar Interactions in the Fitting of SANS Data from 3307 Cationic Wormlike Micelles" Langmuir, August 2006.</p> 3308 3309 <p class=MsoNormal> 3310 </p> 3311 3312 <p class=MsoNormal>TEST DATASET</p> 3313 3314 <p class=MsoNormal>This example dataset is produced by running the Macro FlexCylEllipXModel, 3315 using 200 data points, qmin = 0.001 Å-1, qmax = 0.7 Å-1 and the default 3316 values below.</p> 3317 3318 <p class=MsoNormal> </p> 3319 3320 <div align=center> 3321 3322 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 3323 style='border-collapse:collapse'> 3324 <tr style='height:18.8pt'> 3325 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 3326 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3327 <p class=MsoBodyText>Parameter name</p> 3328 </td> 3329 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 3330 border-left:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3331 <p class=MsoBodyText>Units</p> 3332 </td> 3333 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 3334 border-left:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3335 <p class=MsoBodyText>Default value</p> 3336 </td> 3337 </tr> 3338 <tr style='height:18.8pt'> 3339 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 3340 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3341 <p class=MsoBodyText>axis_ratio</p> 3342 </td> 3343 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3344 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3345 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'></td> 3346 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3347 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3348 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3349 <p class=MsoBodyText>1.5</p> 3350 </td> 3351 </tr> 3352 <tr style='height:18.8pt'> 3353 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 3354 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3355 <p class=MsoBodyText>background</p> 3356 </td> 3357 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3358 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3359 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3360 <p class=MsoBodyText>cm<sup>-1</sup></p> 3361 </td> 3362 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3363 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3364 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3365 <p class=MsoBodyText>0.0001</p> 3366 </td> 3367 </tr> 3368 <tr style='height:18.8pt'> 3369 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 3370 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3371 <p class=MsoBodyText>Kuhn_length</p> 3372 </td> 3373 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3374 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3375 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3376 <p class=MsoBodyText>Å</p> 3377 </td> 3378 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3379 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3380 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3381 <p class=MsoBodyText>100</p> 3382 </td> 3383 </tr> 3384 <tr style='height:18.8pt'> 3385 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 3386 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3387 <p class=MsoBodyText>(Contour) length</p> 3388 </td> 3389 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3390 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3391 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3392 <p class=MsoBodyText>Å</p> 3393 </td> 3394 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3395 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3396 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3397 <p class=MsoBodyText>1e+3</p> 3398 </td> 3399 </tr> 3400 <tr style='height:18.8pt'> 3401 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 3402 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3403 <p class=MsoBodyText>radius</p> 3404 </td> 3405 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3406 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3407 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3408 <p class=MsoBodyText>Å</p> 3409 </td> 3410 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3411 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3412 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3413 <p class=MsoBodyText>20.0</p> 3414 </td> 3415 </tr> 3416 <tr style='height:18.8pt'> 3417 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 3418 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3419 <p class=MsoBodyText>scale</p> 3420 </td> 3421 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3422 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3423 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'></td> 3424 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3425 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3426 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3427 <p class=MsoBodyText>1.0</p> 3428 </td> 3429 </tr> 3430 <tr style='height:18.8pt'> 3431 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 3432 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3433 <p class=MsoBodyText>sldCyl</p> 3434 </td> 3435 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3436 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3437 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3438 <p class=MsoBodyText>Å<sup> -2</sup></p> 3439 </td> 3440 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3441 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3442 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3443 <p class=MsoBodyText>1e-6</p> 3444 </td> 3445 </tr> 3446 <tr style='height:18.8pt'> 3447 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 3448 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3449 <p class=MsoBodyText>sldSolv</p> 3450 </td> 3451 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3452 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3453 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3454 <p class=MsoBodyText>Å<sup> -2</sup></p> 3455 </td> 3456 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 3457 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 3458 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 3459 <p class=MsoBodyText>6.3e-6</p> 3460 </td> 3461 </tr> 3462 </table> 3463 3464 </div> 3465 3466 <p class=MsoNormal> </p> 3467 3468 <p class=MsoNormal> </p> 3469 3470 <p class=MsoNormal align=center style='text-align:center'><img border=0 3471 width=440 height=300 src="../images/html/image107.jpg"></p> 3472 3473 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. 3474 1D plot using the default values (w/200 data point).</b></p> 3475 3476 <p class=MsoNormal align=center style='text-align:center'> </p> 3477 3478 <p class=MsoNormal> </p> 3479 3101 3480 <p class=MsoNormal><b> </b></p> 3102 3481 3103 3482 <p class=MsoNormal><b> </b></p> 3104 3483 3484 <p class=MsoNormal><b> </b></p> 3105 3485 3106 3486 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 3107 style='font-size:14.0pt'>2.10.<span style='font:7.0pt "Times New Roman"'> 3108 </span></span></b><b><span style='font-size:14.0pt'><a name="StackedDisksModel"> StackedDisksModel </a></span></b></p> 3109 3110 <p class=MsoNormal> </p> 3111 3112 <p class=MsoNormal>This model provides the form factor, P(<i>q</i>), for stacked 3113 discs (tactoids) with a core/layer structure where the form factor is 3114 normalized by the volume of the cylinder. Assuming the next neighbor distance 3115 (d-spacing) in a stack of parallel discs obeys a Gaussian distribution, a 3116 structure factor S(q) proposed by Kratky and Porod in 1949 is used in this 3117 function. Note that the resolution smearing calculation uses 76 Gauss 3118 quadrature points to properly smear the model since the function is HIGHLY 3119 oscillatory, especially around the q-values that correspond to the repeat 3120 distance of the layers.</p> 3487 style='font-size:14.0pt'>2.13.</span></b><b><span style='font-size:7.0pt'> 3488 </span></b><a name=StackedDisksModel><b><span style='font-size:14.0pt'>StackedDisksModel 3489 </span></b></a></p> 3490 3491 <p class=MsoNormal> </p> 3492 3493 <p class=MsoNormal>This model provides the form factor, P(<i>q</i>), for 3494 stacked discs (tactoids) with a core/layer structure where the form factor is 3495 normalized by the volume of the cylinder. Assuming the next neighbor 3496 distance (d-spacing) in a stack of parallel discs obeys a Gaussian 3497 distribution, a structure factor S(q) proposed by Kratky and Porod in 1949 is 3498 used in this function. Note that the resolution smearing calculation uses 76 3499 Gauss quadrature points to properly smear the model since the function is 3500 HIGHLY oscillatory, especially around the q-values that correspond to the 3501 repeat distance of the layers.</p> 3121 3502 3122 3503 <p class=MsoNormal>The 2D scattering intensity is the same as 1D, regardless of 3123 3504 the orientation of the <i>q</i> vector which is defined as<span 3124 style='font-size:14.0pt;position:relative;top:8.0pt'><img border=0 width=103 3125 height=33 src="../images/html/image010.png"></span><span 3126 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 3127 3128 <p class=MsoNormal><span style='font-size:14.0pt;position:relative;top:6.0pt'> </span></p> 3129 3130 <p class=MsoNormal> </p> 3131 3132 <p class=MsoNormal align=center style='text-align:center'> <img 3133 border=0 width=214 height=93 id="Picture 36" 3134 src="../images/html/image035.png"></p> 3505 style='font-size:14.0pt'><img border=0 width=68 height=22 3506 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 3507 3508 <p class=MsoNormal><span style='font-size:14.0pt'> </span></p> 3509 3510 <p class=MsoNormal> </p> 3511 3512 <p class=MsoNormal align=center style='text-align:center'> 3513 <img border=0 width=214 height=93 src="../images/html/image035.png"></p> 3135 3514 3136 3515 <p class=MsoNormal align=center style='text-align:center'> </p> 3137 3516 3138 3517 <p class=MsoNormal align=center style='text-align:center'><img border=0 3139 width=173 height=136 id="Picture 37"src="../images/html/image036.png"></p>3518 width=173 height=136 src="../images/html/image036.png"></p> 3140 3519 3141 3520 <p class=MsoNormal align=center style='text-align:center'> </p> … … 3152 3531 <p class=MsoNormal> </p> 3153 3532 3154 <p class=MsoNormal align=center style='text-align:center'><span 3155 style='position:relative;top:9.0pt'><img border=0 width=514 height=38 3156 src="../images/html/image037.png"></span></p> 3157 3158 <p class=MsoNormal align=center style='text-align:center'><span 3159 style='position:relative;top:16.0pt'> </span></p> 3533 <p class=MsoNormal align=center style='text-align:center'><img border=0 3534 width=325 height=38 src="../images/html/image037.png"></p> 3535 3536 <p class=MsoNormal align=center style='text-align:center'> </p> 3160 3537 3161 3538 <p class=MsoNormal>where the contrast,</p> 3162 3539 3163 <p class=MsoNormal align=center style='text-align:center'><span 3164 style='position:relative;top:6.0pt'><img border=0 width=115 height=24 3165 src="../images/html/image038.png"></span></p> 3166 3167 <p class=MsoNormal align=center style='text-align:center'><span 3168 style='position:relative;top:16.0pt'> </span></p> 3169 3170 <p class=MsoNormal><span style='position:relative;top:16.0pt'> </span></p> 3171 3172 <p class=MsoNormal><span style='position:relative;top:16.0pt'>N is the number 3173 of discs per unit volume, </span><span style='font-family:Symbol;position:relative; 3174 top:16.0pt'>a</span><span style='position:relative;top:16.0pt'> is the angle 3175 between the axis of the disc and q, and Vt and Vc are the total volume and the 3176 core volume of a single disc, respectively.</span></p> 3177 3178 <p class=MsoNormal><span style='position:relative;top:16.0pt'> </span></p> 3179 3180 <p class=MsoNormal><span style='position:relative;top:16.0pt'> </span></p> 3181 3182 <p class=MsoNormal align=center style='text-align:center'><span 3183 style='position:relative;top:39.0pt'><img border=0 width=424 height=113 3184 src="../images/html/image039.png"></span></p> 3185 3186 <p class=MsoNormal align=center style='text-align:center'><span 3187 style='position:relative;top:16.0pt'> </span></p> 3188 3189 <p class=MsoNormal align=center style='text-align:center'><span 3190 style='position:relative;top:16.0pt'> </span></p> 3540 <p class=MsoNormal align=center style='text-align:center'><img border=0 3541 width=115 height=24 src="../images/html/image038.png"></p> 3542 3543 <p class=MsoNormal align=center style='text-align:center'> </p> 3544 3545 <p class=MsoNormal> </p> 3546 3547 <p class=MsoNormal>N is the number of discs per unit volume, <span 3548 style='font-family:Symbol'>a</span> is the angle between the axis of the 3549 disc and q, and Vt and Vc are the total volume and the core volume of a single 3550 disc, respectively.</p> 3551 3552 <p class=MsoNormal> </p> 3553 3554 <p class=MsoNormal> </p> 3555 3556 <p class=MsoNormal align=center style='text-align:center'><img border=0 3557 width=374 height=113 src="../images/html/image039.png"></p> 3558 3559 <p class=MsoNormal align=center style='text-align:center'> </p> 3560 3561 <p class=MsoNormal align=center style='text-align:center'> </p> 3191 3562 3192 3563 <p class=MsoNormal>where d = thickness of the layer (layer_thick), 2h= core 3193 thickness (core_thick), and R = radius of the disc (radius).</p> 3194 3195 <p class=MsoNormal> </p> 3196 3197 <p class=MsoNormal> </p> 3198 3199 <p class=MsoNormal align=center style='text-align:center'><span 3200 style='position:relative;top:14.0pt'><img border=0 width=399 height=46 3201 src="../images/html/image040.png"></span></p> 3202 3203 <p class=MsoNormal align=center style='text-align:center'><span 3204 style='position:relative;top:16.0pt'> </span></p> 3205 3206 <p class=MsoNormal><span style='position:relative;top:16.0pt'> </span></p> 3207 3208 <p class=MsoNormal><span style='position:relative;top:16.0pt'>where n = the 3209 total number of the disc stacked (n_stacking), D=the next neighbor center to 3210 cent distance (d-spacing), and </span><span style='font-family:Symbol; 3211 position:relative;top:16.0pt'>s</span><sub><span style='position:relative; 3212 top:16.0pt'>D</span></sub><span style='position:relative;top:16.0pt'> = the 3213 Gaussian standard deviation of the d-spacing (sigma_d).</span></p> 3214 3215 <p class=MsoNormal><span style='position:relative;top:16.0pt'> </span></p> 3216 3217 <p class=MsoNormal>To provide easy access to the orientation of the stackeddisks, 3218 we define the axis of the cylinder using two angles θ and <span 3564 thickness (core_thick), and R = radius of the disc (radius).</p> 3565 3566 <p class=MsoNormal> </p> 3567 3568 <p class=MsoNormal> </p> 3569 3570 <p class=MsoNormal align=center style='text-align:center'><img border=0 3571 width=348 height=46 src="../images/html/image040.png"></p> 3572 3573 <p class=MsoNormal align=center style='text-align:center'> </p> 3574 3575 <p class=MsoNormal> </p> 3576 3577 <p class=MsoNormal>where n = the total number of the disc stacked (n_stacking), 3578 D=the next neighbor center to cent distance (d-spacing), and <span 3579 style='font-family:Symbol'>s</span><sub>D</sub> = the Gaussian standard 3580 deviation of the d-spacing (sigma_d).</p> 3581 3582 <p class=MsoNormal> </p> 3583 3584 <p class=MsoNormal>To provide easy access to the orientation of the 3585 stackeddisks, we define the axis of the cylinder using two angles θ and <span 3219 3586 style='font-family:"Arial","sans-serif"'>φ</span>. Similarly to the case 3220 3587 of the cylinder, those angles are defined on Figure 2 of CylinderModel.</p> 3221 3588 3222 <p class=MsoNormal> <span style='position:relative;top:16.0pt'> </span></p>3223 3224 <p class=MsoNormal> <span style='position:relative;top:16.0pt'> </span></p>3225 3226 <p class=MsoNormal> <span style='position:relative;top:16.0pt'> </span>For P*S:3227 The 2<sup>nd</sup> virial coefficient of the solid cylinder is calculate based 3228 on the (radius) and length = n_stacking*(core_thick +2*layer_thick) values, and 3229 used as the effective radiustoward S(Q) when P(Q)*S(Q) is applied. </p>3589 <p class=MsoNormal> </p> 3590 3591 <p class=MsoNormal> </p> 3592 3593 <p class=MsoNormal> For P*S: The 2<sup>nd</sup> virial coefficient of the 3594 solid cylinder is calculate based on the (radius) and length = 3595 n_stacking*(core_thick +2*layer_thick) values, and used as the effective radius 3596 toward S(Q) when P(Q)*S(Q) is applied. </p> 3230 3597 3231 3598 <p class=MsoNormal> </p> … … 3237 3604 <div align=center> 3238 3605 3239 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=03240 style='border-collapse:collapse ;border:none'>3606 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 3607 style='border-collapse:collapse'> 3241 3608 <tr style='height:18.8pt'> 3242 3609 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 3422 3789 3423 3790 <p class=MsoNormal align=center style='text-align:center'><img border=0 3424 width=451 height= 334 id="Picture 233"src="../images/html/image041.png"></p>3791 width=451 height=297 src="../images/html/image041.png"></p> 3425 3792 3426 3793 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 3432 3799 3433 3800 <p class=MsoNormal align=center style='text-align:center'><img border=0 3434 width=377 height=215 id="Picture 251"src="../images/html/image042.jpg"3801 width=377 height=215 src="../images/html/image042.jpg" 3435 3802 alt=stackdiskangles.gif></p> 3436 3803 … … 3472 3839 3473 3840 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 3474 style='font-size:14.0pt'>2.1 1.<span style='font:7.0pt "Times New Roman"'> 3475 </span></ span></b><b><span style='font-size:14.0pt'><a name="ParallelepipedModel">ParallelepipedModel</a></span></b></p>3841 style='font-size:14.0pt'>2.14.</span></b><b><span style='font-size:7.0pt'> 3842 </span></b><a name=ParallelepipedModel><b><span style='font-size:14.0pt'>ParallelepipedModel</span></b></a></p> 3476 3843 3477 3844 <p class=MsoNormal> </p> … … 3480 3847 cylinder (below) where the form factor is normalized by the volume of the 3481 3848 cylinder. P(q) = scale*<f^2>/V+background where the volume V= ABC and the 3482 averaging < > is applied over all orientation for 1D.</p>3483 3484 <p class=MsoNormal><span style='font-size:14.0pt ;position:relative;top:6.0pt'> </span></p>3849 averaging < > is applied over all orientation for 1D. </p> 3850 3851 <p class=MsoNormal><span style='font-size:14.0pt'> </span></p> 3485 3852 3486 3853 <p class=MsoNormal align=center style='text-align:center'><img border=0 3487 width= 326 height=247 id="Picture 38"src="../images/html/image043.jpg"></p>3854 width=239 height=181 src="../images/html/image043.jpg"></p> 3488 3855 3489 3856 <p class=MsoNormal align=center style='text-align:center'> </p> … … 3501 3868 <p class=MsoNormal> </p> 3502 3869 3503 <p class=MsoNormal align=center style='text-align:center'><span 3504 style='position:relative;top:48.0pt'><img border=0 width=360 height=145 3505 src="../images/html/image044.png"></span></p> 3506 3507 <p class=MsoNormal align=center style='text-align:center'><span 3508 style='position:relative;top:16.0pt'> </span></p> 3870 <p class=MsoNormal align=center style='text-align:center'><img border=0 3871 width=347 height=145 src="../images/html/image044.png"></p> 3872 3873 <p class=MsoNormal align=center style='text-align:center'> </p> 3509 3874 3510 3875 <p class=MsoNormal>The contrast is defined as</p> … … 3512 3877 <p class=MsoNormal> </p> 3513 3878 3514 <p class=MsoNormal align=center style='text-align:center'><span 3515 style='position:relative;top:6.0pt'><img border=0 width=117 height=24 3516 src="../images/html/image045.png"></span></p> 3517 3518 <p class=MsoNormal align=center style='text-align:center'><span 3519 style='position:relative;top:16.0pt'> </span></p> 3520 3521 <p class=MsoNormal><span style='position:relative;top:16.0pt'> </span></p> 3522 3523 <p class=MsoNormal><span style='position:relative;top:16.0pt'>The scattering 3524 intensity per unit volume is returned in the unit of [cm<sup>-1</sup>]; I(q) = 3525 </span><span style='font-family:Symbol;position:relative;top:16.0pt'>f</span><span 3526 style='position:relative;top:16.0pt'>P(q).</span></p> 3527 3528 <p class=MsoNormal><span style='position:relative;top:16.0pt'> </span></p> 3879 <p class=MsoNormal align=center style='text-align:center'><img border=0 3880 width=117 height=24 src="../images/html/image045.png"></p> 3881 3882 <p class=MsoNormal align=center style='text-align:center'> </p> 3883 3884 <p class=MsoNormal> </p> 3885 3886 <p class=MsoNormal>The scattering intensity per unit volume is returned in the 3887 unit of [cm<sup>-1</sup>]; I(q) = <span style='font-family:Symbol'>f</span>P(q).</p> 3888 3889 <p class=MsoNormal> </p> 3529 3890 3530 3891 <p class=MsoNormal>For P*S: The 2<sup>nd</sup> virial coefficient of the solid … … 3537 3898 <p class=MsoNormal> </p> 3538 3899 3539 <p class=MsoNormal>To provide easy access to the orientation of the parallelepiped,3540 we define the axis of the cylinder using two angles θ , <span3900 <p class=MsoNormal>To provide easy access to the orientation of the 3901 parallelepiped, we define the axis of the cylinder using two angles θ , <span 3541 3902 style='font-family:"Arial","sans-serif"'>φ </span>and<span 3542 3903 style='font-family:"Arial","sans-serif"'> </span><span style='font-family:Symbol'>Y</span><span 3543 3904 style='font-family:"Arial","sans-serif"'> </span>. Similarly to the case of the 3544 cylinder, those angles, θ 3905 cylinder, those angles, θ and <span style='font-family:"Arial","sans-serif"'>φ,</span> 3545 3906 are defined on Figure 2 of CylinderModel. The angle <span style='font-family: 3546 3907 Symbol'>Y </span>is the rotational angle around its own long_c axis against the 3547 q plane. For example, <span style='font-family:Symbol'>Y </span>= 0 when the short_b3548 axis is parallel to the x-axis of the detector.</p>3908 q plane. For example, <span style='font-family:Symbol'>Y </span>= 0 when the 3909 short_b axis is parallel to the x-axis of the detector.</p> 3549 3910 3550 3911 <p class=MsoNormal> </p> 3551 3912 3552 3913 <p class=MsoNormal align=center style='text-align:center'><img border=0 3553 width=352 height=264 id="Picture 243"src="../images/html/image046.jpg"3914 width=352 height=264 src="../images/html/image046.jpg" 3554 3915 alt=pprangles.gif></p> 3555 3916 … … 3576 3937 <div align=center> 3577 3938 3578 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=03579 style='border-collapse:collapse ;border:none'>3939 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 3940 style='border-collapse:collapse'> 3580 3941 <tr style='height:18.8pt'> 3581 3942 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 3697 4058 3698 4059 <p class=MsoNormal align=center style='text-align:center'><img border=0 3699 width=431 height= 332 id="Picture 492"src="../images/html/image048.jpg"></p>4060 width=431 height=298 src="../images/html/image048.jpg"></p> 3700 4061 3701 4062 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 3709 4070 3710 4071 <p class=MsoListParagraph style='margin-left:1.35in;text-indent:-.25in'><span 3711 style='font-family:Symbol'>·< span style='font:7.0pt "Times New Roman"'> 3712 </span>< /span><b>Validation of the parallelepiped 2D model</b></p>4072 style='font-family:Symbol'>·</span><span style='font-size:7.0pt'> 4073 </span><b>Validation of the parallelepiped 2D model</b></p> 3713 4074 3714 4075 <p class=MsoNormal> </p> … … 3717 4078 the 1D calculation to the angular average of the output of 2 D calculation over 3718 4079 all possible angles. The Figure below shows the comparison where the solid dot 3719 refers to averaged 2D while the line represents the result of 1D calculation (for3720 the averaging, 76, 180, 76 points are taken over the angles of theta, phi, and 3721 psi respectively).</p>4080 refers to averaged 2D while the line represents the result of 1D calculation 4081 (for the averaging, 76, 180, 76 points are taken over the angles of theta, phi, 4082 and psi respectively).</p> 3722 4083 3723 4084 <p class=MsoNormal> </p> … … 3726 4087 3727 4088 <p class=MsoNormal align=center style='text-align:center'><img border=0 3728 width=4 81 height=299 id="Picture 693"src="../images/html/image049.png"></p>4089 width=441 height=299 src="../images/html/image049.png"></p> 3729 4090 3730 4091 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 3760 4121 3761 4122 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 3762 style='font-size:14.0pt'>2.12.<span style='font:7.0pt "Times New Roman"'> 3763 </span></span></b><b><span style='font-size:14.0pt'><a name="EllipticalCylinderModel">Elliptical Cylinder Model</a></span></b></p> 4123 style='font-size:14.0pt'>2.15.</span></b><b><span style='font-size:7.0pt'> 4124 </span></b><a name=EllipticalCylinderModel><b><span style='font-size:14.0pt'>Elliptical 4125 Cylinder Model</span></b></a></p> 3764 4126 3765 4127 <p class=MsoNormal> </p> … … 3783 4145 3784 4146 <p class=MsoNormal align=center style='text-align:center'><img border=0 3785 width= 352 height=172 id="Picture 40"src="../images/html/image050.png"></p>4147 width=297 height=145 src="../images/html/image050.png"></p> 3786 4148 3787 4149 <p class=MsoNormal align=center style='text-align:center'> </p> 3788 4150 3789 4151 <p class=MsoNormal align=center style='text-align:center'><b>Figure. a= r_minor 3790 and </b><b><span style='font-family:Symbol'>n</span>= r_ratio (i.e., r_major/r_minor).</b></p> 4152 and </b><b><span style='font-family:Symbol'>n</span>= r_ratio (i.e., 4153 r_major/r_minor).</b></p> 3791 4154 3792 4155 <p class=MsoNormal align=center style='text-align:center'> </p> … … 3796 4159 <p class=MsoNormal> </p> 3797 4160 3798 <p class=MsoNormal align=center style='text-align:center'><span 3799 style='position:relative;top:16.0pt'><img border=0 width=377 height=46 3800 src="../images/html/image051.png"></span> </p> 4161 <p class=MsoNormal align=center style='text-align:center'><img border=0 4162 width=346 height=46 src="../images/html/image051.png"> </p> 3801 4163 3802 4164 <p class=MsoNormal align=center style='text-align:center'> </p> … … 3808 4170 <p class=MsoNormal> </p> 3809 4171 3810 <p class=MsoNormal align=center style='text-align:center'>< span3811 style='position:relative;top:39.0pt'><img border=0 width=297 height=114 3812 src="../images/html/image052.png"></span>(13)</p>4172 <p class=MsoNormal align=center style='text-align:center'><img border=0 4173 width=297 height=114 src="../images/html/image052.png"> 4174 (13)</p> 3813 4175 3814 4176 <p class=MsoNormal align=center style='text-align:center'> </p> … … 3841 4203 style='font-family:"Arial","sans-serif"'> </span><span style='font-family:Symbol'>Y</span><span 3842 4204 style='font-family:"Arial","sans-serif"'> </span>. Similarly to the case of the 3843 cylinder, those angles, θ 4205 cylinder, those angles, θ and <span style='font-family:"Arial","sans-serif"'>φ,</span> 3844 4206 are defined on Figure 2 of CylinderModel. The angle <span style='font-family: 3845 4207 Symbol'>Y </span>is the rotational angle around its own long_c axis against the 3846 q plane. For example, <span style='font-family:Symbol'>Y </span>= 0 when the r_minor3847 axis is parallel to the x-axis of the detector.</p>3848 3849 <p class=MsoNormal> </p> 3850 3851 <p class=MsoNormal>All angle parameters are valid and given only for 2D calculation3852 (Oriented system).</p>4208 q plane. For example, <span style='font-family:Symbol'>Y </span>= 0 when the 4209 r_minor axis is parallel to the x-axis of the detector.</p> 4210 4211 <p class=MsoNormal> </p> 4212 4213 <p class=MsoNormal>All angle parameters are valid and given only for 2D 4214 calculation (Oriented system).</p> 3853 4215 3854 4216 <p class=MsoNormal> </p> … … 3857 4219 3858 4220 <p class=MsoNormal align=center style='text-align:center'><img border=0 3859 width=370 height=277 id="Picture 239"src="../images/html/image053.jpg"4221 width=370 height=277 src="../images/html/image053.jpg" 3860 4222 alt=ellcylinderangles.gif></p> 3861 4223 … … 3869 4231 alt=cylinderangles2.gif></p> 3870 4232 3871 <p class=MsoCaption align=center style='text-align:center'>Figure. Examples of 3872 the angles for oriented elliptical cylinders against the detector plane.</p> 4233 <p class=MsoCaption align=center style='text-align:center'><span 4234 style='font-size:12.0pt'>Figure. Examples of the angles for oriented elliptical 4235 cylinders </span></p> 4236 4237 <p class=MsoCaption align=center style='text-align:center'><span 4238 style='font-size:12.0pt'>against the detector plane.</span></p> 3873 4239 3874 4240 <p class=MsoNormal align=center style='text-align:center'> </p> … … 3878 4244 <p class=MsoNormal><b>For P*S</b>: The 2<sup>nd</sup> virial coefficient of the 3879 4245 solid cylinder is calculate based on the averaged radius 3880 (=sqrt(r_minor^2*r_ratio)) and length values, and used as the effective radius3881 toward S(Q) when P(Q)*S(Q) is applied. </p>4246 (=sqrt(r_minor^2*r_ratio)) and length values, and used as the effective 4247 radius toward S(Q) when P(Q)*S(Q) is applied. </p> 3882 4248 3883 4249 <p class=MsoNormal> </p> … … 3887 4253 <div align=center> 3888 4254 3889 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=03890 style='border-collapse:collapse ;border:none'>4255 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 4256 style='border-collapse:collapse'> 3891 4257 <tr style='height:19.25pt'> 3892 4258 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 4056 4422 4057 4423 <p class=MsoNormal align=center style='text-align:center'><img border=0 4058 width=443 height= 328 id="Picture 503"src="../images/html/image054.jpg"></p>4424 width=443 height=293 src="../images/html/image054.jpg"></p> 4059 4425 4060 4426 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 4066 4432 4067 4433 <p class=MsoListParagraph style='margin-left:1.35in;text-indent:-.25in'><span 4068 style='font-family:Symbol'>·< span style='font:7.0pt "Times New Roman"'> 4069 </span>< /span><b>Validation of the elliptical cylinder 2D model</b></p>4434 style='font-family:Symbol'>·</span><span style='font-size:7.0pt'> 4435 </span><b>Validation of the elliptical cylinder 2D model</b></p> 4070 4436 4071 4437 <p class=MsoNormal> </p> … … 4074 4440 the 1D calculation to the angular average of the output of 2 D calculation over 4075 4441 all possible angles. The Figure below shows the comparison where the solid dot 4076 refers to averaged 2D while the line represents the result of 1D calculation (for4077 2D averaging, 76, 180, 76 points are taken for the angles of theta, phi, and 4078 psi respectively).</p>4442 refers to averaged 2D while the line represents the result of 1D calculation 4443 (for 2D averaging, 76, 180, 76 points are taken for the angles of theta, phi, 4444 and psi respectively).</p> 4079 4445 4080 4446 <p class=MsoNormal> </p> … … 4083 4449 4084 4450 <p class=MsoNormal align=center style='text-align:center'><img border=0 4085 width=448 height=278 id="Picture 692"src="../images/html/image055.png"></p>4451 width=448 height=278 src="../images/html/image055.png"></p> 4086 4452 4087 4453 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 4091 4457 4092 4458 <p class=MsoNormal style='text-autospace:none'>In the 2D average, more binning 4093 in the angle phi is necessary to get the proper result. The following figure 4094 showsthe results of the averaging by varying the number of bin over angles.</p>4459 in the angle phi is necessary to get the proper result. The following figure shows 4460 the results of the averaging by varying the number of bin over angles.</p> 4095 4461 4096 4462 <p class=MsoNormal style='text-autospace:none'> </p> 4097 4463 4098 4464 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><img 4099 border=0 width=409 height=303 id="Picture 690" 4100 src="../images/html/image056.png"></p> 4465 border=0 width=409 height=303 src="../images/html/image056.png"></p> 4101 4466 4102 4467 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. 4103 The intensities averaged from 2D over different number of points of binning of 4104 angles.</b></p> 4468 The intensities averaged from 2D over different number </b></p> 4469 4470 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>of 4471 points of binning of angles.</b></p> 4105 4472 4106 4473 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'> </p> … … 4112 4479 <p class=MsoNormal> </p> 4113 4480 4114 <p class=MsoNormal style='text-indent:.25in'>L. A. Feigin and D. I. Svergun 4115 Structure Analysis by Small-Angle X-Ray and Neutron Scattering, Plenum, New 4116 York,(1987).</p>4481 <p class=MsoNormal style='text-indent:.25in'>L. A. Feigin and D. I. Svergun Structure 4482 Analysis by Small-Angle X-Ray and Neutron Scattering, Plenum, New York, 4483 (1987).</p> 4117 4484 4118 4485 <p class=MsoNormal> </p> … … 4121 4488 4122 4489 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 4123 style='font-size:14.0pt'>2.13.<span style='font:7.0pt "Times New Roman"'> 4124 </span></span></b><b><span style='font-size:14.0pt'><a name="EllipsoidModel">Ellipsoid Model</a></span></b></p> 4490 style='font-size:14.0pt'>2.16.</span></b><b><span style='font-size:7.0pt'> 4491 </span></b><a name=EllipsoidModel><b><span style='font-size:14.0pt'>Ellipsoid 4492 Model</span></b></a></p> 4125 4493 4126 4494 <p class=MsoNormal> </p> … … 4132 4500 <p class=MsoNormal> </p> 4133 4501 4134 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>1.1.< span4135 style='font :7.0pt "Times New Roman"'> </span></b><b>Definition</b></p>4502 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>1.1.</b><b><span 4503 style='font-size:7.0pt'> </span>Definition</b></p> 4136 4504 4137 4505 <p class=MsoNormal> </p> … … 4144 4512 <p class=MsoNormal> </p> 4145 4513 4146 <p class=MsoCaption align=center style='text-align:center'><span 4147 style='position:relative;top:12.0pt'><img border=0 width=184 height=41 4148 src="../images/html/image017.png"></span> <span style='font-size:12.0pt; 4149 font-weight:normal'>(8)</span></p> 4150 4151 <p class=MsoNormal> </p> 4152 4153 <p class=MsoCaption align=center style='text-align:center'><span 4154 style='position:relative;top:15.0pt'><img border=0 width=371 height=47 4155 src="../images/html/image057.png"></span> <span style='font-size: 4156 12.0pt;font-weight:normal'>(9)</span></p> 4157 4158 <p class=MsoNormal> </p> 4159 4160 <p class=MsoCaption align=center style='text-align:center'><span 4161 style='position:relative;top:6.0pt'><img border=0 width=272 height=29 4162 src="../images/html/image058.png"></span> <span style='font-size: 4163 12.0pt;font-weight:normal'>(10)</span></p> 4514 <p class=MsoCaption align=center style='text-align:center'><img border=0 4515 width=184 height=41 src="../images/html/image017.png"> </p> 4516 4517 <p class=MsoNormal> </p> 4518 4519 <p class=MsoCaption align=center style='text-align:center'><img border=0 4520 width=340 height=47 src="../images/html/image057.png"> 4521 </p> 4522 4523 <p class=MsoNormal> </p> 4524 4525 <p class=MsoCaption align=center style='text-align:center'><img border=0 4526 width=272 height=29 src="../images/html/image058.png"> 4527 </p> 4164 4528 4165 4529 <p class=MsoNormal> </p> … … 4202 4566 <div align=center> 4203 4567 4204 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=04205 style='border-collapse:collapse ;border:none'>4568 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 4569 style='border-collapse:collapse'> 4206 4570 <tr style='height:19.85pt'> 4207 4571 <td width=180 valign=top style='width:135.1pt;border:solid windowtext 1.0pt; … … 4269 4633 <td width=180 valign=top style='width:135.1pt;border:solid windowtext 1.0pt; 4270 4634 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.85pt'> 4271 <p class=MsoBodyText> contrast</p>4635 <p class=MsoBodyText>sldEll</p> 4272 4636 </td> 4273 4637 <td width=105 valign=top style='width:78.9pt;border-top:none;border-left: … … 4279 4643 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 4280 4644 padding:0in 5.4pt 0in 5.4pt;height:19.85pt'> 4281 <p class=MsoBodyText>3.0e-6</p> 4645 <p class=MsoBodyText>4.0e-6</p> 4646 </td> 4647 </tr> 4648 <tr style='height:19.85pt'> 4649 <td width=180 valign=top style='width:135.1pt;border:solid windowtext 1.0pt; 4650 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.85pt'> 4651 <p class=MsoBodyText>sldSolv</p> 4652 </td> 4653 <td width=105 valign=top style='width:78.9pt;border-top:none;border-left: 4654 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 4655 padding:0in 5.4pt 0in 5.4pt;height:19.85pt'> 4656 <p class=MsoBodyText>Å<sup> -2</sup></p> 4657 </td> 4658 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 4659 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 4660 padding:0in 5.4pt 0in 5.4pt;height:19.85pt'> 4661 <p class=MsoBodyText>1.0e-6</p> 4282 4662 </td> 4283 4663 </tr> … … 4295 4675 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 4296 4676 padding:0in 5.4pt 0in 5.4pt;height:19.85pt'> 4297 <p class=MsoBodyText>0.0 </p>4677 <p class=MsoBodyText>0.0 </p> 4298 4678 </td> 4299 4679 </tr> … … 4337 4717 4338 4718 <p class=MsoNormal>The output of the 1D scattering intensity function for 4339 randomly oriented ellipsoids is then given by equation 6.</p>4719 randomly oriented ellipsoids is then given by the equation above.</p> 4340 4720 4341 4721 <p class=MsoNormal> </p> … … 4351 4731 alt=ellipsoangles.gif></p> 4352 4732 4353 <p class=MsoCaption align=center style='text-align:center'>Figure. Examples of 4354 the angles for oriented ellipsoid against the detector plane.</p> 4355 4356 <p class=MsoNormal> </p> 4357 4358 <p class=MsoNormal align=center style='text-align:center'> </p> 4359 4360 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>2.1.<span 4361 style='font:7.0pt "Times New Roman"'> </span></b><b>Validation 4362 of the ellipsoid model</b></p> 4733 <p class=MsoCaption align=center style='text-align:center'><span 4734 style='font-size:12.0pt'>Figure. Examples of the angles for oriented ellipsoid </span></p> 4735 4736 <p class=MsoCaption align=center style='text-align:center'><span 4737 style='font-size:12.0pt'>against the detector plane</span>.</p> 4738 4739 <p class=MsoNormal> </p> 4740 4741 <p class=MsoNormal align=center style='text-align:center'> </p> 4742 4743 <p class=MsoNormal style='margin-left:.85in;text-indent:-.35in'><b>2.1.</b><b><span 4744 style='font-size:7.0pt'> </span>Validation of the 4745 ellipsoid model</b></p> 4363 4746 4364 4747 <p class=MsoNormal> </p> 4365 4748 4366 4749 <p class=MsoNormal>Validation of our code was done by comparing the output of 4367 the 1D model to the output of the software provided by the NIST (Kline, 2006). Figure4368 5 shows a comparison of the 1D output of our model and the output of the NIST 4369 software.</p>4750 the 1D model to the output of the software provided by the NIST (Kline, 2006). 4751 Figure 5 shows a comparison of the 1D output of our model and the output of the 4752 NIST software.</p> 4370 4753 4371 4754 <p class=MsoNormal> </p> 4372 4755 4373 4756 <p class=MsoNormal>Averaging over a distribution of orientation is done by 4374 evaluating equation 7. Since we have no other software to compare the4757 evaluating the equation above. Since we have no other software to compare the 4375 4758 implementation of the intensity for fully oriented ellipsoids, we can compare 4376 4759 the result of averaging our 2D output using a uniform distribution <i>p(θ,</i><i><span 4377 style='font-family:"Arial","sans-serif"'>φ</span>)</i> = 1.0. Figure 6 shows the result of such a cross-check.</p> 4760 style='font-family:"Arial","sans-serif"'>φ</span>)</i> = 1.0. Figure 4761 6 shows the result of such a cross-check.</p> 4378 4762 4379 4763 <p class=MsoNormal align=center style='text-align:center'><b><i><span … … 4383 4767 way the form factors are calculated in the c-library provided by NIST. A 4384 4768 numerical integration has to be performed to obtain P(q) for randomly oriented 4385 particles (equation 6). The NIST software performs that integration with a4386 76-point Gaussian quadrature rule, which will become imprecise at high q where4387 the amplitude varies quickly as a function of q. The DANSE result shown has been 4388 obtained by summing over 501 equidistant points in <span style='font-family: 4389 "Arial","sans-serif"'>α</span>. Our result was found to be stable over the 4390 range of q shown for a number ofpoints higher than 500.</p>4769 particles. The NIST software performs that integration with a 76-point Gaussian 4770 quadrature rule, which will become imprecise at high q where the amplitude 4771 varies quickly as a function of q. The DANSE result shown has been obtained by 4772 summing over 501 equidistant points in <span style='font-family:"Arial","sans-serif"'>α</span>. 4773 Our result was found to be stable over the range of q shown for a number of 4774 points higher than 500.</p> 4391 4775 4392 4776 <p class=MsoNormal align=center style='text-align:center;page-break-after:avoid'><b><img 4393 border=0 width=4 69 height=258 id="Picture 16"4394 src="../images/html/image060.jpg"alt="ellipsoid_1D_validation"></b></p>4777 border=0 width=449 height=258 src="../images/html/image060.jpg" 4778 alt="ellipsoid_1D_validation"></b></p> 4395 4779 4396 4780 <p class=MsoCaption><a name="_Ref173222904">Figure </a>5: Comparison of the … … 4407 4791 4408 4792 <p class=MsoNormal align=center style='text-align:center;page-break-after:avoid'><img 4409 border=0 width=4 50 height=247 id="Picture 17"4410 src="../images/html/image061.jpg"alt="ellipsoid_2D_average"></p>4793 border=0 width=426 height=247 src="../images/html/image061.jpg" 4794 alt="ellipsoid_2D_average"></p> 4411 4795 4412 4796 <p class=MsoCaption><a name="_Ref173223004">Figure </a>6: Comparison of the … … 4428 4812 <p class=MsoNormal><b> </b></p> 4429 4813 4430 4431 4432 4814 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 4433 style='font-size:14.0pt'>2.14.<span style='font:7.0pt "Times New Roman"'> 4434 </span></span></b><b><span style='font-size:14.0pt'><a name="CoreShellEllipsoidModel"> CoreShellEllipsoidModel </a></span></b></p> 4815 style='font-size:14.0pt'>2.17.</span></b><b><span style='font-size:7.0pt'> 4816 </span></b><a name=CoreShellEllipsoidModel><b><span style='font-size:14.0pt'>CoreShellEllipsoidModel 4817 </span></b></a></p> 4435 4818 4436 4819 <p class=MsoNormal> </p> … … 4439 4822 shell ellipsoid (below) where the form factor is normalized by the volume of 4440 4823 the cylinder. P(q) = scale*<f^2>/V+background where the volume V= 4pi/3*r<sub>maj</sub>*r<sub>min</sub><sup>2</sup> 4441 and the averaging < > is applied over all orientation for 1D. </p> 4442 4443 <p class=MsoNormal> </p> 4444 4445 <p class=MsoNormal> </p> 4446 4447 <p class=MsoNormal align=center style='text-align:center'> <img border=0 4448 width=246 height=131 id="Picture 41" src="../images/html/image062.png"></p> 4824 and the averaging < > is applied over all orientation for 1D. 4825 </p> 4826 4827 <p class=MsoNormal> </p> 4828 4829 <p class=MsoNormal> </p> 4830 4831 <p class=MsoNormal align=center style='text-align:center'> <img 4832 border=0 width=246 height=131 src="../images/html/image062.png"></p> 4449 4833 4450 4834 <p class=MsoNormal align=center style='text-align:center'> </p> … … 4461 4845 <p class=MsoNormal> </p> 4462 4846 4463 <p class=MsoNormal align=center style='text-align:center'><span 4464 style='position:relative;top:48.0pt'><img border=0 width=334 height=137 4465 src="../images/html/image063.png"></span></p> 4466 4467 <p class=MsoNormal align=center style='text-align:center'><span 4468 style='position:relative;top:16.0pt'> </span></p> 4847 <p class=MsoNormal align=center style='text-align:center'><img border=0 4848 width=334 height=137 src="../images/html/image063.png"></p> 4849 4850 <p class=MsoNormal align=center style='text-align:center'> </p> 4469 4851 4470 4852 <p class=MsoNormal> </p> … … 4475 4857 ellipsoid, we define the axis of the solid ellipsoid using two angles θ , <span 4476 4858 style='font-family:"Arial","sans-serif"'>φ</span>. Similarly to the case 4477 of the cylinder, those angles, θ 4859 of the cylinder, those angles, θ and <span style='font-family:"Arial","sans-serif"'>φ,</span> 4478 4860 are defined on Figure 2 of CylinderModel. </p> 4479 4861 … … 4486 4868 radius of the shell).</p> 4487 4869 4488 <p class=MsoNormal> <span style='position:relative;top:16.0pt'> </span></p>4870 <p class=MsoNormal> </p> 4489 4871 4490 4872 <p class=MsoNormal>For P*S: The 2<sup>nd</sup> virial coefficient of the solid 4491 ellipsoid is calculate based on the radius_a (= polar_shell) and radius_b (= equat_shell)4492 values, and used as the effective radius toward S(Q) when P(Q)*S(Q) is applied. 4493 </p>4873 ellipsoid is calculate based on the radius_a (= polar_shell) and radius_b (= 4874 equat_shell) values, and used as the effective radius toward S(Q) when 4875 P(Q)*S(Q) is applied. </p> 4494 4876 4495 4877 <p class=MsoNormal><sub> </sub></p> … … 4497 4879 <div align=center> 4498 4880 4499 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=04500 style='border-collapse:collapse ;border:none'>4881 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 4882 style='border-collapse:collapse'> 4501 4883 <tr style='height:18.8pt'> 4502 4884 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 4626 5008 </tr> 4627 5009 <tr style='height:18.8pt'> 4628 <td width=143 valign=top style='width:107.0pt;border :solid windowtext 1.0pt;4629 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'>4630 <p class=MsoBodyText>contrast</p>4631 < /td>4632 < td width=143 valign=top style='width:107.0pt;border-top:none;border-left:4633 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;5010 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 5011 solid windowtext 1.0pt;border-bottom:none;border-right:solid windowtext 1.0pt; 5012 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 5013 <p class=MsoBodyText>sld_core</p> 5014 </td> 5015 <td width=143 valign=top style='width:107.0pt;border:none;border-right:solid windowtext 1.0pt; 4634 5016 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 4635 5017 <p class=MsoBodyText>Å<sup> -2</sup></p> 4636 5018 </td> 5019 <td width=143 valign=top style='width:107.0pt;border:none;border-right:solid windowtext 1.0pt; 5020 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 5021 <p class=MsoBodyText>2e-006</p> 5022 </td> 5023 </tr> 5024 <tr style='height:18.8pt'> 5025 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 5026 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 5027 <p class=MsoBodyText>sld_shell</p> 5028 </td> 5029 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 5030 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 5031 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 5032 <p class=MsoBodyText>Å<sup> -2</sup></p> 5033 </td> 4637 5034 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 4638 5035 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; … … 4650 5047 4651 5048 <p class=MsoNormal align=center style='text-align:center'><img border=0 4652 width=42 6 height=333 id="Picture 526" src="../images/html/image064.jpg"></p>5049 width=424 height=243 src="../images/html/image108.jpg"></p> 4653 5050 4654 5051 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 4660 5057 4661 5058 <p class=MsoNormal align=center style='text-align:center'><img border=0 4662 width=396 height=297 id="Picture 245"src="../images/html/image059.jpg"5059 width=396 height=297 src="../images/html/image059.jpg" 4663 5060 alt=ellipsoangles.gif></p> 4664 5061 … … 4678 5075 <p class=MsoNormal>Kotlarchyk, M.; Chen, S.-H. J. Chem. Phys., 1983, 79, 2461.</p> 4679 5076 4680 <p class=MsoNormal>Berr, S. 5077 <p class=MsoNormal>Berr, S. J. Phys. Chem., 1987, 91, 4760.</p> 4681 5078 4682 5079 <p class=MsoNormal> </p> … … 4691 5088 4692 5089 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 4693 style='font-size:14.0pt'>2.1 5.<span style='font:7.0pt "Times New Roman"'> 4694 </span></ span></b><b><span style='font-size:14.0pt'><a name="TriaxialEllipsoidModel">TriaxialEllipsoidModel</a></span></b></p>5090 style='font-size:14.0pt'>2.18.</span></b><b><span style='font-size:7.0pt'> 5091 </span></b><a name=TriaxialEllipsoidModel><b><span style='font-size:14.0pt'>TriaxialEllipsoidModel</span></b></a></p> 4695 5092 4696 5093 <p class=MsoNormal> </p> 4697 5094 4698 5095 <p class=MsoNormal>This model provides the form factor, P(<i>q</i>), for an 4699 ellipsoid (below) where all three axes are of different lengths, i.e., 5096 ellipsoid (below) where all three axes are of different lengths, i.e., R<sub>a</sub> 4700 5097 =< R<sub>b</sub> =< R<sub>c</sub> (Note that users should maintains this 4701 inequality for the all calculations). P(q) = scale*<f^2>/V+background 4702 where the volume V= 4pi/3*R<sub>a</sub>*R<sub>b</sub>*R<sub>c</sub>, and the 4703 averaging < > is applied over all orientation for 1D. </p> 4704 4705 <p class=MsoNormal> </p> 4706 4707 <p class=MsoNormal align=center style='text-align:center'> <img border=0 4708 width=261 height=157 id="Picture 42" src="../images/html/image065.jpg"></p> 4709 4710 <p class=MsoNormal align=center style='text-align:center'> </p> 4711 4712 <p class=MsoNormal align=center style='text-align:center'> </p> 4713 4714 <p class=MsoNormal align=center style='text-align:center'> </p> 5098 inequality for the all calculations). P(q) = 5099 scale*<f^2>/V+background where the volume V= 4pi/3*R<sub>a</sub>*R<sub>b</sub>*R<sub>c</sub>, 5100 and the averaging < > is applied over all orientation for 1D. 5101 </p> 5102 5103 <p class=MsoNormal> </p> 5104 5105 <p class=MsoNormal align=center style='text-align:center'> <img 5106 border=0 width=261 height=157 src="../images/html/image065.jpg"></p> 5107 5108 <p class=MsoNormal align=center style='text-align:center'> </p> 5109 5110 <p class=MsoNormal align=center style='text-align:center'> </p> 4715 5111 4716 5112 <p class=MsoNormal>The returned value is in units of [cm<sup>-1</sup>], on … … 4721 5117 <p class=MsoNormal> </p> 4722 5118 4723 <p class=MsoNormal align=center style='text-align:center'><span 4724 style='position:relative;top:33.0pt'><img border=0 width=472 height=97 4725 src="../images/html/image066.png"></span></p> 4726 4727 <p class=MsoNormal align=center style='text-align:center'><span 4728 style='position:relative;top:16.0pt'> </span></p> 4729 4730 <p class=MsoNormal><span style='position:relative;top:16.0pt'> </span></p> 4731 4732 <p class=MsoNormal> </p> 4733 4734 <p class=MsoNormal> </p> 4735 4736 <p class=MsoNormal>To provide easy access to the orientation of the triaxial 4737 ellipsoid, we define the axis of the cylinder using the angles θ , <span 5119 <p class=MsoNormal align=center style='text-align:center'><img border=0 5120 width=396 height=97 src="../images/html/image066.png"></p> 5121 5122 <p class=MsoNormal align=center style='text-align:center'> </p> 5123 5124 <p class=MsoNormal> </p> 5125 5126 <p class=MsoNormal> </p> 5127 5128 <p class=MsoNormal> </p> 5129 5130 <p class=MsoNormal>To provide easy access to the orientation of the triaxial ellipsoid, 5131 we define the axis of the cylinder using the angles θ , <span 4738 5132 style='font-family:"Arial","sans-serif"'>φ </span>and<span 4739 5133 style='font-family:"Arial","sans-serif"'> </span><span style='font-family:Symbol'>Y</span><span 4740 5134 style='font-family:"Arial","sans-serif"'> </span>. Similarly to the case of the 4741 cylinder, those angles, θ 5135 cylinder, those angles, θ and <span style='font-family:"Arial","sans-serif"'>φ,</span> 4742 5136 are defined on Figure 2 of CylinderModel. The angle <span style='font-family: 4743 5137 Symbol'>Y </span>is the rotational angle around its own semi_axisC axis against 4744 the q plane. For example, <span style='font-family:Symbol'>Y </span>= 0 when the4745 semi_axisA axis is parallel to the x-axis of the detector.</p>5138 the q plane. For example, <span style='font-family:Symbol'>Y </span>= 0 when 5139 the semi_axisA axis is parallel to the x-axis of the detector.</p> 4746 5140 4747 5141 <p class=MsoNormal> </p> 4748 5142 4749 5143 <p class=MsoNormal>The radius of gyration for this system is R<sub>g</sub><sup>2</sup> 4750 = (R<sub>a</sub><sup>2</sup>*R<sub>b</sub><sup>2</sup>*R<sub>c</sub><sup>2</sup>)/5. 4751 The contrast is defined as SLD(ellipsoid) SLD(solvent). In the parameters, semi_axisA4752 = R<sub>a</sub> (or minor equatorial radius), semi_axisB = R<sub>b</sub> (or 4753 major equatorial radius), and semi_axisC = R<sub>c</sub> (or polar radius of 4754 the ellipsoid).</p>4755 4756 <p class=MsoNormal> <span style='position:relative;top:16.0pt'> </span></p>5144 = (R<sub>a</sub><sup>2</sup>*R<sub>b</sub><sup>2</sup>*R<sub>c</sub><sup>2</sup>)/5. 5145 The contrast is defined as SLD(ellipsoid) SLD(solvent). In the parameters, 5146 semi_axisA = R<sub>a</sub> (or minor equatorial radius), semi_axisB = R<sub>b</sub> 5147 (or major equatorial radius), and semi_axisC = R<sub>c</sub> (or polar radius 5148 of the ellipsoid).</p> 5149 5150 <p class=MsoNormal> </p> 4757 5151 4758 5152 <p class=MsoNormal>For P*S: The 2<sup>nd</sup> virial coefficient of the solid 4759 ellipsoid is calculate based on the radius_a (=semi_axisC) and radius_b (=sqrt(semi_axisA*4760 semi_axisB)) values, and used as the effective radius toward S(Q) when 4761 P(Q)*S(Q) is applied. </p>5153 ellipsoid is calculate based on the radius_a (=semi_axisC) and radius_b 5154 (=sqrt(semi_axisA* semi_axisB)) values, and used as the effective radius 5155 toward S(Q) when P(Q)*S(Q) is applied. </p> 4762 5156 4763 5157 <p class=MsoNormal><sub> </sub></p> … … 4767 5161 <div align=center> 4768 5162 4769 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=04770 style='border-collapse:collapse ;border:none'>5163 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 5164 style='border-collapse:collapse'> 4771 5165 <tr style='height:18.8pt'> 4772 5166 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 4864 5258 </tr> 4865 5259 <tr style='height:18.8pt'> 4866 <td width=143 valign=top style='width:107.0pt;border :solid windowtext 1.0pt;4867 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'>4868 <p class=MsoBodyText>contrast</p>4869 < /td>4870 < td width=143 valign=top style='width:107.0pt;border-top:none;border-left:4871 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;5260 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 5261 solid windowtext 1.0pt;border-bottom:none;border-right:solid windowtext 1.0pt; 5262 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 5263 <p class=MsoBodyText>sldEll</p> 5264 </td> 5265 <td width=143 valign=top style='width:107.0pt;border:none;border-right:solid windowtext 1.0pt; 4872 5266 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 4873 5267 <p class=MsoBodyText>Å<sup> -2</sup></p> 4874 5268 </td> 4875 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 4876 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 4877 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 4878 <p class=MsoBodyText>5e-006</p> 5269 <td width=143 valign=top style='width:107.0pt;border:none;border-right:solid windowtext 1.0pt; 5270 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 5271 <p class=MsoBodyText>1.0e-006</p> 5272 </td> 5273 </tr> 5274 <tr style='height:18.8pt'> 5275 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 5276 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 5277 <p class=MsoBodyText>sldSolv</p> 5278 </td> 5279 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 5280 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 5281 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 5282 <p class=MsoBodyText>Å<sup> -2</sup></p> 5283 </td> 5284 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 5285 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 5286 padding:0in 5.4pt 0in 5.4pt;height:18.8pt'> 5287 <p class=MsoBodyText>6.3e-006</p> 4879 5288 </td> 4880 5289 </tr> … … 4888 5297 4889 5298 <p class=MsoNormal align=center style='text-align:center'><img border=0 4890 width=4 39 height=341 id="Picture 545" src="../images/html/image067.png"></p>5299 width=441 height=282 src="../images/html/image109.jpg"></p> 4891 5300 4892 5301 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 4898 5307 4899 5308 <p class=MsoListParagraph style='margin-left:1.35in;text-indent:-.25in'><span 4900 style='font-family:Symbol'>·< span style='font:7.0pt "Times New Roman"'> 4901 </span>< /span><b>Validation of the triaxialellipsoid 2D model</b></p>4902 4903 <p class=MsoNormal> </p> 4904 4905 <p class=MsoNormal>Validation of our code was done by comparing the output of 4906 the 1D calculation to the angular average of the output of 2 D calculation over 4907 allpossible angles. The Figure below shows the comparison where the solid dot4908 refers to averaged 2D while the line represents the result of 1D calculation (for4909 2D averaging, 76, 180, 76 points are taken for the angles of theta, phi, and 4910 psi respectively).</p>5309 style='font-family:Symbol'>·</span><span style='font-size:7.0pt'> 5310 </span><b>Validation of the triaxialellipsoid 2D model</b></p> 5311 5312 <p class=MsoNormal> </p> 5313 5314 <p class=MsoNormal>Validation of our code was done by comparing the output of the 5315 1D calculation to the angular average of the output of 2 D calculation over all 5316 possible angles. The Figure below shows the comparison where the solid dot 5317 refers to averaged 2D while the line represents the result of 1D calculation 5318 (for 2D averaging, 76, 180, 76 points are taken for the angles of theta, phi, 5319 and psi respectively).</p> 4911 5320 4912 5321 <p class=MsoNormal> </p> … … 4915 5324 4916 5325 <p class=MsoNormal align=center style='text-align:center'><img border=0 4917 width=438 height=272 id="Picture 691"src="../images/html/image068.png"></p>5326 width=438 height=272 src="../images/html/image068.png"></p> 4918 5327 4919 5328 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 4925 5334 4926 5335 <p class=MsoNormal align=center style='text-align:center'><img border=0 4927 width=396 height=297 id="Picture 248"src="../images/html/image069.jpg"5336 width=396 height=297 src="../images/html/image069.jpg" 4928 5337 alt=triellrangles.gif></p> 4929 5338 … … 4952 5361 4953 5362 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 4954 style='font-size:14.0pt'>2.1 6.<span style='font:7.0pt "Times New Roman"'> 4955 </span></ span></b><b><span style='font-size:14.0pt'><a name="LamellarModel">LamellarModel</a></span></b></p>5363 style='font-size:14.0pt'>2.19.</span></b><b><span style='font-size:7.0pt'> 5364 </span></b><a name=LamellarModel><b><span style='font-size:14.0pt'>LamellarModel</span></b></a></p> 4956 5365 4957 5366 <p class=MsoNormal> </p> … … 4959 5368 <p class=MsoNormal>This model provides the scattering intensity, I(<i>q</i>), 4960 5369 for a lyotropic lamellar phase where a uniform SLD and random distribution in 4961 solution are assumed. 5370 solution are assumed. The ploydispersion in the bilayer thickness can be 4962 5371 applied from the GUI.</p> 4963 5372 … … 4968 5377 <p class=MsoNormal> </p> 4969 5378 4970 <p class=MsoNormal align=center style='text-align:center'><span 4971 style='position:relative;top:15.0pt'><img border=0 width=103 height=46 4972 src="../images/html/image070.png"></span></p> 5379 <p class=MsoNormal align=center style='text-align:center'><img border=0 5380 width=103 height=46 src="../images/html/image070.png"></p> 4973 5381 4974 5382 <p class=MsoNormal>The form factor is,</p> … … 4976 5384 <p class=MsoNormal> </p> 4977 5385 4978 <p class=MsoNormal align=center style='text-align:center'><span 4979 style='position:relative;top:15.0pt'><img border=0 width=174 height=48 4980 src="../images/html/image071.png"></span></p> 4981 4982 <p class=MsoNormal align=center style='text-align:center'><span 4983 style='position:relative;top:16.0pt'> </span></p> 5386 <p class=MsoNormal align=center style='text-align:center'><img border=0 5387 width=174 height=48 src="../images/html/image071.png"></p> 5388 5389 <p class=MsoNormal align=center style='text-align:center'> </p> 4984 5390 4985 5391 <p class=MsoNormal>where <span style='font-family:Symbol'>d</span> = bilayer … … 4987 5393 4988 5394 <p class=MsoNormal>The 2D scattering intensity is calculated in the same way as 4989 1D, where the <i>q</i> vector is defined as<span style='font-size:14.0pt; 4990 position:relative;top:8.0pt'><img border=0 width=103 height=33 4991 src="../images/html/image010.png"></span><span style='font-size:14.0pt; 4992 position:relative;top:6.0pt'>.</span></p> 4993 4994 <p class=MsoNormal><span style='font-size:14.0pt;position:relative;top:6.0pt'> </span></p> 5395 1D, where the <i>q</i> vector is defined as<span style='font-size:14.0pt'><img 5396 border=0 width=69 height=22 src="../images/html/image010.png"></span><span 5397 style='font-size:14.0pt'>.</span></p> 5398 5399 <p class=MsoNormal><span style='font-size:14.0pt'> </span></p> 4995 5400 4996 5401 <p class=MsoNormal>The returned value is in units of [cm<sup>-1</sup>], on … … 5004 5409 <div align=center> 5005 5410 5006 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=05007 style='border-collapse:collapse ;border:none'>5411 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 5412 style='border-collapse:collapse'> 5008 5413 <tr style='height:18.8pt'> 5009 5414 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 5109 5514 5110 5515 <p class=MsoNormal align=center style='text-align:center'><img border=0 5111 width=4 76 height=351 id="Picture 571"src="../images/html/image072.png"></p>5516 width=457 height=275 src="../images/html/image072.png"></p> 5112 5517 5113 5518 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 5128 5533 487-502.</p> 5129 5534 5130 <p class=MsoNormal> also in J. Phys. Chem. B, 105, (2001)5131 11081-11088.</p>5535 <p class=MsoNormal> 5536 also in J. Phys. Chem. B, 105, (2001) 11081-11088.</p> 5132 5537 5133 5538 <p class=MsoNormal> </p> … … 5139 5544 <p class=MsoNormal><b> </b></p> 5140 5545 5141 5142 5143 5546 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 5144 style='font-size:14.0pt'>2. 17.<span style='font:7.0pt "Times New Roman"'> 5145 </span></ span></b><b><span style='font-size:14.0pt'><a name="LamellarFFHGModel">LamellarFFHGModel</a></span></b></p>5547 style='font-size:14.0pt'>2.20.</span></b><b><span style='font-size:7.0pt'> 5548 </span></b><a name=LamellarFFHGModel><b><span style='font-size:14.0pt'>LamellarFFHGModel</span></b></a></p> 5146 5549 5147 5550 <p class=MsoNormal> </p> … … 5149 5552 <p class=MsoNormal>This model provides the scattering intensity, I(<i>q</i>), 5150 5553 for a lyotropic lamellar phase where a random distribution in solution are 5151 assumed. The SLD of the head region is taken to be different from the SLD of5152 the tail region.</p>5554 assumed. The SLD of the head region is taken to be different from the SLD 5555 of the tail region.</p> 5153 5556 5154 5557 <p class=MsoNormal> </p> … … 5160 5563 <p class=MsoNormal> </p> 5161 5564 5162 <p class=MsoNormal align=center style='text-align:center'><span 5163 style='position:relative;top:15.0pt'><img border=0 width=151 height=46 5164 src="../images/html/image073.png"></span></p> 5165 5166 5565 <p class=MsoNormal align=center style='text-align:center'><img border=0 5566 width=151 height=46 src="../images/html/image073.png"></p> 5567 5568 <p class=MsoNormal align=center style='text-align:center'> </p> 5167 5569 5168 5570 <p class=MsoNormal>The form factor is,</p> … … 5170 5572 <p class=MsoNormal> </p> 5171 5573 5172 <p class=MsoNormal align=center style='text-align:center'>< span5173 style='position:relative;top:15.0pt'><img border=0 width=398 height=46 5174 src="../images/html/image078.png"></span></p> 5175 5176 <p class=MsoNormal align=center style='text-align:center'><span 5177 style='position:relative;top:16.0pt'> </span></p>5178 5179 <p class=MsoNormal>where delta<sub>T</sub>5180 = tail length (or t_length), delta<sub>H</sub>5181 = hea d thickness (or h_thickness) , <i><span style='font-family:"Arial","sans-serif"'>Δ</span>ρ</i><sub>H</sub>5182 = SLD (headgroup) - SLD(solvent), and < i><span style='font-family:"Arial","sans-serif"'>Δ</span>ρ</i><sub>T</sub>5574 <p class=MsoNormal align=center style='text-align:center'><img border=0 5575 width=398 height=46 src="../images/html/image078.png"></p> 5576 5577 <p class=MsoNormal align=center style='text-align:center'> </p> 5578 5579 <p class=MsoNormal align=center style='text-align:center'> </p> 5580 5581 <p class=MsoNormal>where <span style='font-family:Symbol'>d<sub>T</sub></span> 5582 = tail length (or t_length), <span style='font-family:Symbol'>d<sub>H</sub></span> 5583 = heasd thickness (or h_thickness) , <span style='font-family:Symbol'>Dr</span><sub>H</sub> 5584 = SLD (headgroup) - SLD(solvent), and <span style='font-family:Symbol'>Dr</span><sub>T</sub> 5183 5585 = SLD (tail) - SLD(headgroup).</p> 5184 5586 5587 <p class=MsoNormal> </p> 5588 5185 5589 <p class=MsoNormal>The 2D scattering intensity is calculated in the same way as 5186 1D, where the <i>q</i> vector is defined as<span style='font-size:14.0pt; 5187 position:relative;top:8.0pt'><img border=0 width=103 height=33 5188 src="../images/html/image010.png"></span><span style='font-size:14.0pt; 5189 position:relative;top:6.0pt'>.</span></p> 5190 5191 <p class=MsoNormal><span style='font-size:14.0pt;position:relative;top:6.0pt'> </span></p> 5590 1D, where the <i>q</i> vector is defined as<span style='font-size:14.0pt'><img 5591 border=0 width=71 height=23 src="../images/html/image010.png"></span><span 5592 style='font-size:14.0pt'>.</span></p> 5593 5594 <p class=MsoNormal><span style='font-size:14.0pt'> </span></p> 5192 5595 5193 5596 <p class=MsoNormal>The returned value is in units of [cm<sup>-1</sup>], on … … 5201 5604 <div align=center> 5202 5605 5203 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=05204 style='border-collapse:collapse ;border:none'>5606 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 5607 style='border-collapse:collapse'> 5205 5608 <tr style='height:18.8pt'> 5206 5609 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 5338 5741 5339 5742 <p class=MsoNormal align=center style='text-align:center'><img border=0 5340 width=444 height= 343src="../images/html/image079.png"></p>5743 width=444 height=279 src="../images/html/image079.png"></p> 5341 5744 5342 5745 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 5357 5760 487-502.</p> 5358 5761 5359 <p class=MsoNormal> also in J. Phys. Chem. B, 105, (2001) 5360 11081-11088.</p> 5361 5362 <p class=MsoNormal> </p> 5363 5364 <p class=MsoNormal> </p> 5762 <p class=MsoNormal> 5763 also in J. Phys. Chem. B, 105, (2001) 11081-11088.</p> 5764 5765 <p class=MsoNormal> </p> 5766 5767 <p class=MsoNormal> </p> 5768 5365 5769 <p class=MsoNormal> </p> 5366 5770 … … 5369 5773 <p class=MsoNormal><b> </b></p> 5370 5774 5371 5372 5775 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 5373 style='font-size:14.0pt'>2. 18.<span style='font:7.0pt "Times New Roman"'> 5374 </span></ span></b><b><span style='font-size:14.0pt'><a name="LamellarPSModel">LamellarPSModel</a></span></b></p>5776 style='font-size:14.0pt'>2.21.</span></b><b><span style='font-size:7.0pt'> 5777 </span></b><a name=LamellarPSModel><b><span style='font-size:14.0pt'>LamellarPSModel</span></b></a></p> 5375 5778 5376 5779 <p class=MsoNormal> </p> 5377 5780 5378 5781 <p class=MsoNormal>This model provides the scattering intensity (<b>form factor</b> 5379 <b>*</b> <b>structure factor</b>), I(<i>q</i>), for a lyotropic lamellar phase where5380 a random distribution in solution are assumed.</p>5782 <b>*</b> <b>structure factor</b>), I(<i>q</i>), for a lyotropic lamellar phase 5783 where a random distribution in solution are assumed.</p> 5381 5784 5382 5785 <p class=MsoNormal> </p> … … 5386 5789 <p class=MsoNormal> </p> 5387 5790 5388 <p class=MsoNormal align=center style='text-align:center'><span 5389 style='position:relative;top:15.0pt'><img border=0 width=133 height=46 5390 src="../images/html/image077.png"></span></p> 5391 5392 <p class=MsoNormal align=center style='text-align:center'><span 5393 style='position:relative;top:16.0pt'> </span></p> 5394 5395 5791 <p class=MsoNormal align=center style='text-align:center'><img border=0 5792 width=133 height=46 src="../images/html/image077.png"></p> 5793 5794 <p class=MsoNormal align=center style='text-align:center'> </p> 5396 5795 5397 5796 <p class=MsoNormal>The form factor is</p> … … 5401 5800 <p class=MsoNormal> </p> 5402 5801 5403 <p class=MsoNormal align=center style='text-align:center'><span 5404 style='position:relative;top:15.0pt'><img border=0 width=174 height=48 5405 src="../images/html/image071.png"></span></p> 5406 5407 <p class=MsoNormal><span style='position:relative;top:16.0pt'>And the structure 5408 is </span></p> 5409 5410 <p class=MsoNormal><span style='position:relative;top:16.0pt'> </span></p> 5411 5412 <p class=MsoNormal><span style='position:relative;top:16.0pt'> </span></p> 5413 5414 <p class=MsoNormal align=center style='text-align:center'><span 5415 style='position:relative;top:16.0pt'><img border=0 width=334 height=51 5416 src="../images/html/image074.png"></span></p> 5417 5418 <p class=MsoNormal align=center style='text-align:center'><span 5419 style='position:relative;top:16.0pt'> </span></p> 5420 5421 <p class=MsoNormal><span style='position:relative;top:16.0pt'>where </span></p> 5422 5423 <p class=MsoNormal><span style='position:relative;top:16.0pt'> </span></p> 5424 5425 <p class=MsoNormal><span style='position:relative;top:16.0pt'> </span></p> 5426 5427 <p class=MsoNormal align=center style='text-align:center'><span 5428 style='position:relative;top:50.0pt'><img border=0 width=252 height=133 5429 src="../images/html/image075.png"></span></p> 5430 5431 <p class=MsoNormal align=center style='text-align:center'><span 5432 style='position:relative;top:16.0pt'> </span></p> 5433 5434 <p class=MsoNormal align=center style='text-align:center'><span 5435 style='position:relative;top:16.0pt'> </span></p> 5436 5437 <p class=MsoNormal>Here d= (repeat) spacing, delta 5438 = bilayer thickness, the contrast <i><span style='font-family:"Arial","sans-serif"'>Δ</span>ρ</i> = 5802 <p class=MsoNormal align=center style='text-align:center'><img border=0 5803 width=174 height=48 src="../images/html/image071.png"></p> 5804 5805 <p class=MsoNormal>and the structure is </p> 5806 5807 <p class=MsoNormal> </p> 5808 5809 <p class=MsoNormal> </p> 5810 5811 <p class=MsoNormal align=center style='text-align:center'><img border=0 5812 width=308 height=51 src="../images/html/image074.png"></p> 5813 5814 <p class=MsoNormal align=center style='text-align:center'> </p> 5815 5816 <p class=MsoNormal>where </p> 5817 5818 <p class=MsoNormal> </p> 5819 5820 <p class=MsoNormal> </p> 5821 5822 <p class=MsoNormal align=center style='text-align:center'><img border=0 5823 width=252 height=133 src="../images/html/image075.png"></p> 5824 5825 <p class=MsoNormal align=center style='text-align:center'> </p> 5826 5827 <p class=MsoNormal align=center style='text-align:center'> </p> 5828 5829 <p class=MsoNormal>Here d= (repeat) spacing, <span style='font-family:Symbol'>d</span> 5830 = bilayer thickness, the contrast <span style='font-family:Symbol'>Dr</span> = 5439 5831 SLD (headgroup) - SLD(solvent), K=smectic bending elasticity, B=compression 5440 5832 modulus, and N = number of lamellar plates (n_plates).</p> … … 5447 5839 5448 5840 <p class=MsoNormal>The 2D scattering intensity is calculated in the same way as 5449 1D, where the <i>q</i> vector is defined as<span style='font-size:14.0pt; 5450 position:relative;top:8.0pt'><img border=0 width=103 height=33 5451 src="../images/html/image010.png"></span><span style='font-size:14.0pt; 5452 position:relative;top:6.0pt'>.</span></p> 5841 1D, where the <i>q</i> vector is defined as<span style='font-size:14.0pt'><img 5842 border=0 width=82 height=26 src="../images/html/image010.png"></span><span 5843 style='font-size:14.0pt'>.</span></p> 5453 5844 5454 5845 <p class=MsoNormal>The returned value is in units of [cm<sup>-1</sup>], on … … 5461 5852 <div align=center> 5462 5853 5463 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=05464 style='border-collapse:collapse ;border:none'>5854 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 5855 style='border-collapse:collapse'> 5465 5856 <tr style='height:18.8pt'> 5466 5857 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 5598 5989 5599 5990 <p class=MsoNormal align=center style='text-align:center'><img border=0 5600 width=439 height= 348 id="Picture 659"src="../images/html/image076.jpg"></p>5991 width=439 height=287 src="../images/html/image076.jpg"></p> 5601 5992 5602 5993 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 5617 6008 487-502.</p> 5618 6009 5619 <p class=MsoNormal> also in J. Phys. Chem. B, 105, (2001) 5620 11081-11088.</p> 5621 5622 <p class=MsoNormal> </p> 5623 5624 <p class=MsoNormal> </p> 5625 5626 6010 <p class=MsoNormal> 6011 also in J. Phys. Chem. B, 105, (2001) 11081-11088.</p> 6012 6013 <p class=MsoNormal> </p> 6014 6015 <p class=MsoNormal> </p> 5627 6016 5628 6017 <p class=MsoNormal> </p> … … 5632 6021 <p class=MsoNormal><b> </b></p> 5633 6022 5634 5635 6023 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 5636 style='font-size:14.0pt'>2. 19.<span style='font:7.0pt "Times New Roman"'> 5637 </span></ span></b><b><span style='font-size:14.0pt'><a name="LamellarPSHGModel">LamellarPSHGModel</a></span></b></p>6024 style='font-size:14.0pt'>2.22.</span></b><b><span style='font-size:7.0pt'> 6025 </span></b><a name=LamellarPSHGModel><b><span style='font-size:14.0pt'>LamellarPSHGModel</span></b></a></p> 5638 6026 5639 6027 <p class=MsoNormal> </p> 5640 6028 5641 6029 <p class=MsoNormal>This model provides the scattering intensity (<b>form factor</b> 5642 <b>*</b> <b>structure factor</b>), I(<i>q</i>), for a lyotropic lamellar phase where5643 a random distribution in solution are assumed. The SLD of the head region is 5644 taken to be different from the SLD of the tail region.</p>6030 <b>*</b> <b>structure factor</b>), I(<i>q</i>), for a lyotropic lamellar phase 6031 where a random distribution in solution are assumed. The SLD of the head 6032 region is taken to be different from the SLD of the tail region.</p> 5645 6033 5646 6034 <p class=MsoNormal> </p> … … 5650 6038 <p class=MsoNormal> </p> 5651 6039 5652 <p class=MsoNormal align=center style='text-align:center'><span 5653 style='position:relative;top:15.0pt'><img border=0 width=133 height=46 5654 src="../images/html/image077.png"></span></p> 5655 5656 <p class=MsoNormal align=center style='text-align:center'><span 5657 style='position:relative;top:16.0pt'> </span></p> 6040 <p class=MsoNormal align=center style='text-align:center'><img border=0 6041 width=133 height=46 src="../images/html/image077.png"></p> 6042 6043 <p class=MsoNormal align=center style='text-align:center'> </p> 5658 6044 5659 6045 <p class=MsoNormal>The form factor is,</p> … … 5661 6047 <p class=MsoNormal> </p> 5662 6048 5663 <p class=MsoNormal align=center style='text-align:center'><span 5664 style='position:relative;top:15.0pt'><img border=0 width=398 height=46 5665 src="../images/html/image078.png"></span></p> 5666 5667 <p class=MsoNormal align=center style='text-align:center'><span 5668 style='position:relative;top:16.0pt'> </span></p> 6049 <p class=MsoNormal align=center style='text-align:center'><img border=0 6050 width=343 height=46 src="../images/html/image078.png"></p> 6051 6052 <p class=MsoNormal align=center style='text-align:center'> </p> 5669 6053 5670 6054 <p class=MsoNormal>The structure factor is</p> … … 5672 6056 <p class=MsoNormal> </p> 5673 6057 5674 <p class=MsoNormal align=center style='text-align:center'><span 5675 style='position:relative;top:16.0pt'><img border=0 width=334 height=51 5676 src="../images/html/image074.png"></span></p> 5677 5678 <p class=MsoNormal align=center style='text-align:center'><span 5679 style='position:relative;top:16.0pt'> </span></p> 5680 5681 <p class=MsoNormal align=center style='text-align:center'> </p> 5682 5683 <p class=MsoNormal><span style='position:relative;top:16.0pt'>where </span></p> 5684 5685 <p class=MsoNormal><span style='position:relative;top:16.0pt'> </span></p> 5686 5687 <p class=MsoNormal align=center style='text-align:center'><span 5688 style='position:relative;top:50.0pt'><img border=0 width=252 height=133 5689 src="../images/html/image075.png"></span></p> 5690 5691 <p class=MsoNormal align=center style='text-align:center'><span 5692 style='position:relative;top:16.0pt'> </span></p> 5693 5694 <p class=MsoNormal align=center style='text-align:center'><span 5695 style='position:relative;top:16.0pt'> </span></p> 5696 5697 <p class=MsoNormal> </p> 5698 5699 <p class=MsoNormal>where delta<sub>T</sub> 5700 = tail length (or t_length), delta<sub>H</sub> 5701 = head thickness (or h_thickness) , <i><span style='font-family:"Arial","sans-serif"'>Δ</span>ρ</i><sub>H</sub> 5702 = SLD (headgroup) - SLD(solvent), and <i><span style='font-family:"Arial","sans-serif"'>Δ</span>ρ</i><sub>T</sub> 6058 <p class=MsoNormal align=center style='text-align:center'><img border=0 6059 width=334 height=51 src="../images/html/image074.png"></p> 6060 6061 <p class=MsoNormal align=center style='text-align:center'> </p> 6062 6063 <p class=MsoNormal align=center style='text-align:center'> </p> 6064 6065 <p class=MsoNormal>where </p> 6066 6067 <p class=MsoNormal> </p> 6068 6069 <p class=MsoNormal align=center style='text-align:center'><img border=0 6070 width=252 height=133 src="../images/html/image075.png"></p> 6071 6072 <p class=MsoNormal align=center style='text-align:center'> </p> 6073 6074 <p class=MsoNormal align=center style='text-align:center'> </p> 6075 6076 <p class=MsoNormal> </p> 6077 6078 <p class=MsoNormal>where <span style='font-family:Symbol'>d<sub>T</sub></span> 6079 = tail length (or t_length), <span style='font-family:Symbol'>d<sub>H</sub></span> 6080 = heasd thickness (or h_thickness) , <span style='font-family:Symbol'>Dr</span><sub>H</sub> 6081 = SLD (headgroup) - SLD(solvent), and <span style='font-family:Symbol'>Dr</span><sub>T</sub> 5703 6082 = SLD (tail) - SLD(headgroup). Here d= (repeat) spacing, K=smectic bending 5704 6083 elasticity, B=compression modulus, and N = number of lamellar plates … … 5714 6093 5715 6094 <p class=MsoNormal>The 2D scattering intensity is calculated in the same way as 5716 1D, where the <i>q</i> vector is defined as<span style='font-size:14.0pt; 5717 position:relative;top:8.0pt'><img border=0 width=103 height=33 5718 src="../images/html/image010.png"></span><span style='font-size:14.0pt; 5719 position:relative;top:6.0pt'>.</span></p> 5720 5721 <p class=MsoNormal><span style='font-size:14.0pt;position:relative;top:6.0pt'> </span></p> 6095 1D, where the <i>q</i> vector is defined as<span style='font-size:14.0pt'><img 6096 border=0 width=70 height=22 src="../images/html/image010.png"></span><span 6097 style='font-size:14.0pt'>.</span></p> 6098 6099 <p class=MsoNormal><span style='font-size:14.0pt'> </span></p> 5722 6100 5723 6101 <p class=MsoNormal>The returned value is in units of [cm<sup>-1</sup>], on … … 5731 6109 <div align=center> 5732 6110 5733 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=05734 style='border-collapse:collapse ;border:none'>6111 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 6112 style='border-collapse:collapse'> 5735 6113 <tr style='height:18.8pt'> 5736 6114 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 5916 6294 5917 6295 <p class=MsoNormal align=center style='text-align:center'><img border=0 5918 width=4 63 height=360 id="Picture 687"src="../images/html/image080.png"></p>6296 width=453 height=298 src="../images/html/image080.png"></p> 5919 6297 5920 6298 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 5935 6313 487-502.</p> 5936 6314 5937 <p class=MsoNormal> also in J. Phys. Chem. B, 105, (2001)5938 11081-11088.</p>6315 <p class=MsoNormal> 6316 also in J. Phys. Chem. B, 105, (2001) 11081-11088.</p> 5939 6317 5940 6318 <p class=MsoNormal> </p> … … 5953 6331 5954 6332 <p class=MsoNormal style='margin-left:.25in;text-indent:-.25in'><b><span 5955 style='font-size:16.0pt'>3.<span style='font:7.0pt "Times New Roman"'> 5956 </span></span></b><b><span style='font-size:16.0pt'><a name="Shape-Independent">Shape-Independent Models </a></span></b></p> 6333 style='font-size:16.0pt'>3.</span></b><b><span style='font-size:7.0pt'> 6334 </span></b><a name=Shape-Independent><b><span style='font-size:16.0pt'>Shape-Independent 6335 Models </span></b></a></p> 5957 6336 5958 6337 <p class=MsoBodyText> </p> … … 5964 6343 5965 6344 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 5966 style='font-size:14.0pt'>3.1.< span style='font:7.0pt "Times New Roman"'> 5967 </span></ span></b><b><span style='font-size:14.0pt'> <a name="Debye">Debye (Model)</a></span></b></p>6345 style='font-size:14.0pt'>3.1.</span></b><b><span style='font-size:7.0pt'> 6346 </span></b><b><span style='font-size:14.0pt'> <a name=Debye>Debye (Model)</a></span></b></p> 5968 6347 5969 6348 <p class=MsoNormal style='text-autospace:none'> </p> … … 5979 6358 5980 6359 <p class=MsoNormal align=center style='text-align:center'><span 5981 style='font-size:14.0pt;position:relative;top:27.0pt'><img border=0 width=188 5982 height=76 src="../images/html/image081.png"></span></p> 5983 5984 <p class=MsoNormal align=center style='text-align:center'><span 5985 style='font-size:14.0pt;position:relative;top:27.0pt'> </span></p> 6360 style='font-size:14.0pt'><img border=0 width=188 height=76 6361 src="../images/html/image081.png"></span></p> 5986 6362 5987 6363 <p class=MsoNormal align=center style='text-align:center'><span 5988 6364 style='font-size:14.0pt'> </span></p> 5989 6365 5990 <p class=MsoNormal style='margin-left:.25in'>For 2D plot, the wave transfer is 5991 defined as <span style='font-size:14.0pt;position:relative;top:8.0pt'><img 5992 border=0 width=103 height=33 src="../images/html/image010.png"></span><span 5993 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 6366 <p class=MsoNormal align=center style='text-align:center'><span 6367 style='font-size:14.0pt'> </span></p> 6368 6369 <p class=MsoNormal style='margin-left:.25in'>For 2D plot, the wave transfer is defined 6370 as <span style='font-size:14.0pt'><img border=0 width=73 height=23 6371 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 5994 6372 5995 6373 <p class=MsoNormal><span style='font-size:14.0pt'> </span></p> … … 5997 6375 <div align=center> 5998 6376 5999 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=06000 style='border-collapse:collapse ;border:none'>6377 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 6378 style='border-collapse:collapse'> 6001 6379 <tr style='height:19.25pt'> 6002 6380 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 6016 6394 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 6017 6395 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 6018 <p class=MsoBodyText> Scale</p>6396 <p class=MsoBodyText>scale</p> 6019 6397 </td> 6020 6398 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: … … 6032 6410 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 6033 6411 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 6034 <p class=MsoBodyText> Rg</p>6412 <p class=MsoBodyText>rg</p> 6035 6413 </td> 6036 6414 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: … … 6048 6426 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 6049 6427 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 6050 <p class=MsoBodyText> Background</p>6428 <p class=MsoBodyText>background</p> 6051 6429 </td> 6052 6430 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: … … 6061 6439 </td> 6062 6440 </tr> 6063 <tr style='height:19.25pt'>6064 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt;6065 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'>6066 <p class=MsoBodyText> </p>6067 </td>6068 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left:6069 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;6070 padding:0in 5.4pt 0in 5.4pt;height:19.25pt'>6071 <p class=MsoBodyText> </p>6072 </td>6073 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left:6074 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;6075 padding:0in 5.4pt 0in 5.4pt;height:19.25pt'>6076 <p class=MsoBodyText> </p>6077 </td>6078 </tr>6079 6441 </table> 6080 6442 … … 6083 6445 <p class=MsoNormal style='margin-left:.25in'> </p> 6084 6446 6447 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><img 6448 border=0 width=423 height=273 src="../images/html/image110.jpg"></p> 6449 6450 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. 6451 1D plot using the default values (w/200 data point).</b></p> 6452 6453 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'> </p> 6454 6455 <p class=MsoNormal style='margin-left:.25in'> </p> 6456 6085 6457 <p class=MsoNormal style='margin-left:.25in'>Reference: Roe, R.-J., 6086 "Methods of X-Ray and Neutron Scattering in Polymer Science", Oxford University Press, New York (2000).</p> 6458 "Methods of X-Ray and Neutron Scattering in Polymer Science", Oxford 6459 University Press, New York (2000).</p> 6087 6460 6088 6461 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> 6089 6462 6090 6463 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 6091 style='font-size:14.0pt'>3.2.< span style='font:7.0pt "Times New Roman"'> 6092 </span></ span></b><b><span style='font-size:14.0pt'> <a name="Lorentz">(Ornstein-Zernicke) Lorentz6093 (Model)</a></span></b></p>6464 style='font-size:14.0pt'>3.2.</span></b><b><span style='font-size:7.0pt'> 6465 </span></b><b><span style='font-size:14.0pt'> <a name=Lorentz>(Ornstein-Zernicke) 6466 Lorentz (Model)</a></span></b></p> 6094 6467 6095 6468 <p class=MsoNormal style='text-autospace:none'> </p> … … 6101 6474 6102 6475 <p class=MsoNormal align=center style='text-align:center'><span 6103 style='font-size:14.0pt ;position:relative;top:5.0pt'><img border=0 width=2126104 height=24src="../images/html/image082.png"></span></p>6476 style='font-size:14.0pt'><img border=0 width=212 height=24 6477 src="../images/html/image082.png"></span></p> 6105 6478 6106 6479 <p class=MsoNormal><span style='font-size:14.0pt'> </span></p> 6107 6480 6108 <p class=MsoNormal style='text-indent:.25in'>The parameter L is referred to as 6109 thescreening length.</p>6481 <p class=MsoNormal style='text-indent:.25in'>The parameter L is referred to as the 6482 screening length.</p> 6110 6483 6111 6484 <p class=MsoNormal style='text-indent:.25in'> </p> 6112 6485 6113 6486 <p class=MsoNormal style='margin-left:.25in'>For 2D plot, the wave transfer is 6114 defined as <span style='font-size:14.0pt;position:relative;top:8.0pt'><img 6115 border=0 width=103 height=33 src="../images/html/image010.png"></span><span 6116 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 6487 defined as <span style='font-size:14.0pt'><img border=0 width=103 height=33 6488 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 6117 6489 6118 6490 <p class=MsoNormal style='text-indent:.25in'> </p> … … 6122 6494 <div align=center> 6123 6495 6124 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=06125 style='border-collapse:collapse ;border:none'>6496 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 6497 style='border-collapse:collapse'> 6126 6498 <tr style='height:19.25pt'> 6127 6499 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 6141 6513 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 6142 6514 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 6143 <p class=MsoBodyText> Scale</p>6515 <p class=MsoBodyText>scale</p> 6144 6516 </td> 6145 6517 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: … … 6157 6529 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 6158 6530 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 6159 <p class=MsoBodyText> Length</p>6531 <p class=MsoBodyText>length</p> 6160 6532 </td> 6161 6533 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: … … 6173 6545 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 6174 6546 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 6175 <p class=MsoBodyText> Background</p>6547 <p class=MsoBodyText>background</p> 6176 6548 </td> 6177 6549 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: … … 6192 6564 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> 6193 6565 6566 <p class=MsoNormal align=center style='text-align:center'><b><span 6567 style='font-size:14.0pt'><img border=0 width=422 height=273 6568 src="../images/html/image111.jpg"></span></b></p> 6569 6570 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b><span 6571 style='font-size:14.0pt'> </span>Figure. 1D plot using the default values 6572 (w/200 data point).</b></p> 6573 6574 <p class=MsoNormal> </p> 6575 6194 6576 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> 6195 6577 6196 6578 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> 6197 6579 6198 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p>6199 6200 6580 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 6201 style='font-size:14.0pt'>3.3.<span style='font:7.0pt "Times New Roman"'> 6202 </span></span></b><b><span style='font-size:14.0pt'> <a name="DAB_Model">DAB (Debye-Anderson-Brumberger)_Model</a></span></b></p> 6581 style='font-size:14.0pt'>3.3.</span></b><b><span style='font-size:7.0pt'> 6582 </span></b><b><span style='font-size:14.0pt'> <a name="DAB_Model">DAB 6583 (Debye-Anderson-Brumberger)_Model</a></span></b></p> 6203 6584 6204 6585 <p class=MsoNormal style='margin-left:.55in'><b><span style='font-size:14.0pt'> </span></b></p> 6205 6586 6206 6587 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'>Calculates the 6207 scattering from a randomly distributed, two-phase system based on the 6208 Debye-Anderson-Brumberger (DAB) model for such systems. The two-phase system is 6209 characterized by a single length scale, the correlation length, which is a 6210 measure of the average spacing between regions of phase 1 and phase 2. The 6211 model also assumes smooth interfaces between the phases and hence exhibits 6212 Porod behavior (I ~ Q<sup>-4</sup>) at large Q (Q*correlation length >> 6213 1). </p> 6588 scattering from a randomly distributed, two-phase system based on the Debye-Anderson-Brumberger 6589 (DAB) model for such systems. The two-phase system is characterized by a single 6590 length scale, the correlation length, which is a measure of the average spacing 6591 between regions of phase 1 and phase 2. The model also assumes smooth interfaces 6592 between the phases and hence exhibits Porod behavior (I ~ Q<sup>-4</sup>) at 6593 large Q (Q*correlation length >> 1). </p> 6214 6594 6215 6595 <p class=MsoNormal style='text-indent:.25in'> </p> 6216 6596 6217 6597 <p class=MsoNormal align=center style='text-align:center'><span 6218 style='font-size:14.0pt ;position:relative;top:5.0pt'><img border=0 width=2216219 height=28src="../images/html/image083.png"></span></p>6598 style='font-size:14.0pt'><img border=0 width=221 height=28 6599 src="../images/html/image083.png"></span></p> 6220 6600 6221 6601 <p class=MsoNormal align=center style='text-align:center'><span … … 6231 6611 6232 6612 <p class=MsoNormal style='margin-left:.25in'>For 2D plot, the wave transfer is 6233 defined as <span style='font-size:14.0pt;position:relative;top:8.0pt'><img 6234 border=0 width=103 height=33 src="../images/html/image010.png"></span><span 6235 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 6613 defined as <span style='font-size:14.0pt'><img border=0 width=75 height=24 6614 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 6236 6615 6237 6616 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'> </p> … … 6242 6621 <div align=center> 6243 6622 6244 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=06245 style='border-collapse:collapse ;border:none'>6623 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 6624 style='border-collapse:collapse'> 6246 6625 <tr style='height:19.25pt'> 6247 6626 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 6261 6640 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 6262 6641 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 6263 <p class=MsoBodyText> Scale</p>6642 <p class=MsoBodyText>scale</p> 6264 6643 </td> 6265 6644 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: … … 6277 6656 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 6278 6657 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 6279 <p class=MsoBodyText> Length</p>6658 <p class=MsoBodyText>length</p> 6280 6659 </td> 6281 6660 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: … … 6293 6672 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 6294 6673 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 6295 <p class=MsoBodyText> Background</p>6674 <p class=MsoBodyText>background</p> 6296 6675 </td> 6297 6676 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: … … 6311 6690 6312 6691 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> 6692 6693 <p class=MsoNormal align=center style='text-align:center'><b><span 6694 style='font-size:14.0pt'><img border=0 width=450 height=285 6695 src="../images/html/image112.jpg"></span></b></p> 6696 6697 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b><span 6698 style='font-size:14.0pt'> </span>Figure. 1D plot using the default values 6699 (w/200 data point).</b></p> 6700 6701 <p class=MsoNormal align=center style='text-align:center'> </p> 6702 6703 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'> </p> 6313 6704 6314 6705 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'>References: </p> … … 6328 6719 6329 6720 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 6330 style='font-size:14.0pt'>3.4.<span style='font:7.0pt "Times New Roman"'> 6331 </span></span></b><b><span style='font-size:14.0pt'> <a name="Power_Law"> Power_Law </a></span></b></p> 6721 style='font-size:14.0pt'>3.4.</span></b><b><span style='font-size:7.0pt'> 6722 </span></b><b><span style='font-size:14.0pt'> <a name="Absolute Power_Law"> 6723 Power_Law </a></span></b></p> 6332 6724 6333 6725 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> … … 6339 6731 6340 6732 <p class=MsoNormal align=center style='text-align:center'><span 6341 style='font-size:14.0pt ;position:relative;top:5.0pt'><img border=0 width=1496342 height=24src="../images/html/image084.png"></span></p>6733 style='font-size:14.0pt'><img border=0 width=149 height=24 6734 src="../images/html/image084.png"></span></p> 6343 6735 6344 6736 <p class=MsoNormal align=center style='text-align:center'><span … … 6356 6748 <div align=center> 6357 6749 6358 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=06359 style='border-collapse:collapse ;border:none'>6750 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 6751 style='border-collapse:collapse'> 6360 6752 <tr style='height:19.25pt'> 6361 6753 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 6426 6818 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> 6427 6819 6820 <p class=MsoNormal align=center style='text-align:center'><img border=0 6821 width=416 height=259 src="../images/html/image113.jpg"></p> 6822 6823 <p class=MsoNormal align=center style='text-align:center'><b>Figure. 1D plot 6824 using the default values (w/200 data point).</b></p> 6825 6428 6826 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> 6429 6827 … … 6431 6829 6432 6830 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 6433 style='font-size:14.0pt'>3.5.<span style='font:7.0pt "Times New Roman"'> 6434 </span></span></b><b><span style='font-size:14.0pt'> <a name="Teubner Strey">Teubner Strey (Model)</a></span></b></p> 6831 style='font-size:14.0pt'>3.5.</span></b><b><span style='font-size:7.0pt'> 6832 </span></b><b><span style='font-size:14.0pt'> <a name="Teubner Strey">Teubner 6833 Strey (Model)</a></span></b></p> 6435 6834 6436 6835 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> … … 6442 6841 6443 6842 <p class=MsoNormal align=center style='text-align:center'><span 6444 style='font-size:14.0pt ;position:relative;top:15.0pt'><img border=0 width=2136445 height=45src="../images/html/image085.png"></span></p>6843 style='font-size:14.0pt'><img border=0 width=213 height=45 6844 src="../images/html/image085.png"></span></p> 6446 6845 6447 6846 <p class=MsoNormal align=center style='text-align:center'><span … … 6452 6851 6453 6852 <p class=MsoNormal style='margin-left:.25in'>For 2D plot, the wave transfer is 6454 defined as <span style='font-size:14.0pt;position:relative;top:8.0pt'><img 6455 border=0 width=103 height=33 src="../images/html/image010.png"></span><span 6456 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 6853 defined as <span style='font-size:14.0pt'><img border=0 width=73 height=23 6854 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 6457 6855 6458 6856 <p class=MsoNormal><span style='font-size:14.0pt'> </span></p> … … 6460 6858 <div align=center> 6461 6859 6462 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=06463 style='border-collapse:collapse ;border:none'>6860 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 6861 style='border-collapse:collapse'> 6464 6862 <tr style='height:19.25pt'> 6465 6863 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 6479 6877 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 6480 6878 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 6481 <p class=MsoBodyText> A</p>6879 <p class=MsoBodyText>scale</p> 6482 6880 </td> 6483 6881 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: … … 6495 6893 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 6496 6894 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 6497 <p class=MsoBodyText> C1</p>6895 <p class=MsoBodyText>c1</p> 6498 6896 </td> 6499 6897 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: … … 6511 6909 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 6512 6910 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 6513 <p class=MsoBodyText> C2</p>6911 <p class=MsoBodyText>c2</p> 6514 6912 </td> 6515 6913 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: … … 6527 6925 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 6528 6926 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 6529 <p class=MsoBodyText> Background</p>6927 <p class=MsoBodyText>background</p> 6530 6928 </td> 6531 6929 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: … … 6545 6943 6546 6944 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> 6945 6946 <p class=MsoNormal align=center style='text-align:center'><img border=0 6947 width=426 height=275 src="../images/html/image114.jpg"></p> 6948 6949 <p class=MsoNormal align=center style='text-align:center'><b>Figure. 1D plot 6950 using the default values (w/200 data point).</b></p> 6951 6952 <p class=MsoNormal align=center style='text-align:center'> </p> 6547 6953 6548 6954 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'>References: </p> … … 6563 6969 6564 6970 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 6565 style='font-size:14.0pt'>3.6.<span style='font:7.0pt "Times New Roman"'> 6566 </span></span></b><b><span style='font-size:14.0pt'> <a name="Number Density Fractal">Number Density Fractal (Model)</a></span></b></p> 6971 style='font-size:14.0pt'>3.6.</span></b><b><span style='font-size:7.0pt'> 6972 </span></b><b><span style='font-size:14.0pt'> <a 6973 name="Number_Density_Fractal"> </a><a name=FractalModel>FractalModel</a></span></b></p> 6567 6974 6568 6975 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> … … 6577 6984 6578 6985 <p class=MsoNormal align=center style='text-align:center'><span 6579 style='font-size:14.0pt ;position:relative;top:85.0pt'><img border=0 width=3326580 height=188src="../images/html/image086.png"></span></p>6986 style='font-size:14.0pt'><img border=0 width=332 height=188 6987 src="../images/html/image086.png"></span></p> 6581 6988 6582 6989 <p class=MsoNormal align=center style='text-align:center'><span 6583 style='font-size:14.0pt ;position:relative;top:85.0pt'> </span></p>6990 style='font-size:14.0pt'> </span></p> 6584 6991 6585 6992 <p class=MsoNormal align=center style='text-align:center'><span … … 6597 7004 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'> </p> 6598 7005 7006 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'><b>The 7007 polydispersion in radius is provided.</b></p> 7008 6599 7009 <p class=MsoNormal style='margin-left:.25in'>For 2D plot, the wave transfer is 6600 defined as <span style='font-size:14.0pt;position:relative;top:8.0pt'><img 6601 border=0 width=103 height=33 src="../images/html/image010.png"></span><span 6602 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 7010 defined as <span style='font-size:14.0pt'><img border=0 width=73 height=23 7011 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 6603 7012 6604 7013 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'> </p> 6605 6606 <p class=MsoNormal style='text-autospace:none'> </p>6607 7014 6608 7015 <p class=MsoNormal align=center style='text-align:center'><span … … 6611 7018 <div align=center> 6612 7019 6613 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=06614 style='border-collapse:collapse ;border:none'>7020 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 7021 style='border-collapse:collapse'> 6615 7022 <tr style='height:19.25pt'> 6616 7023 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 6630 7037 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 6631 7038 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 6632 <p class=MsoBodyText> Scale</p>7039 <p class=MsoBodyText>scale</p> 6633 7040 </td> 6634 7041 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: … … 6745 7152 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'> </p> 6746 7153 6747 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'> </p> 7154 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center; 7155 text-autospace:none'><img border=0 width=445 height=280 7156 src="../images/html/image115.jpg"></p> 7157 7158 <p class=MsoNormal align=center style='text-align:center'><b>Figure. 1D plot 7159 using the default values (w/200 data point).</b></p> 7160 7161 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center; 7162 text-autospace:none'> </p> 7163 7164 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center; 7165 text-autospace:none'> </p> 6748 7166 6749 7167 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'>References: </p> … … 6757 7175 6758 7176 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 6759 style='font-size:14.0pt'>3.7.<span style='font:7.0pt "Times New Roman"'> 6760 </span></span></b><b><span style='font-size:14.0pt'> <a name="BEPolyelectrolyte"> BEPolyelectrolyte Model</a></span></b></p> 7177 style='font-size:14.0pt'>3.7.</span></b><b><span style='font-size:7.0pt'> 7178 </span></b><b><span style='font-size:14.0pt'> <a name=BEPolyelectrolyte> 7179 BEPolyelectrolyte Model</a></span></b></p> 6761 7180 6762 7181 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> … … 6769 7188 6770 7189 <p class=MsoNormal align=center style='text-align:center'><span 6771 style='font-size:14.0pt;position:relative;top:43.0pt'><img border=0 width=420 6772 height=125 src="../images/html/image087.png"></span></p> 6773 6774 <p class=MsoNormal align=center style='text-align:center'><span 6775 style='font-size:14.0pt;position:relative;top:43.0pt'> </span></p> 7190 style='font-size:14.0pt'><img border=0 width=346 height=125 7191 src="../images/html/image087.png"></span></p> 6776 7192 6777 7193 <p class=MsoNormal align=center style='text-align:center'><span 6778 7194 style='font-size:14.0pt'> </span></p> 6779 7195 7196 <p class=MsoNormal align=center style='text-align:center'><span 7197 style='font-size:14.0pt'> </span></p> 7198 6780 7199 <p class=MsoNormal style='margin-left:.25in'> </p> 6781 7200 6782 <p class=MsoNormal style='margin-left:.25in'>K is a contrast factor of the 6783 polymer, L<sub>b</sub> is the Bjerrum length, h is the virial parameter, b is 6784 the monomer length, C<sub>s</sub> is the concentration of monovalent salt, 6785 α is the ionization degree, C<sub>a</sub> is the polymer molar 6786 concentration, andbackground is the incoherent background.</p>7201 <p class=MsoNormal style='margin-left:.25in'>K is a contrast factor of the polymer, 7202 L<sub>b</sub> is the Bjerrum length, h is the virial parameter, b is the 7203 monomer length, C<sub>s</sub> is the concentration of monovalent salt, α 7204 is the ionization degree, C<sub>a</sub> is the polymer molar concentration, and 7205 background is the incoherent background.</p> 6787 7206 6788 7207 <p class=MsoNormal style='margin-left:.25in'> </p> 6789 7208 6790 7209 <p class=MsoNormal style='margin-left:.25in'>For 2D plot, the wave transfer is 6791 defined as <span style='font-size:14.0pt;position:relative;top:8.0pt'><img 6792 border=0 width=103 height=33 src="../images/html/image010.png"></span><span 6793 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 7210 defined as <span style='font-size:14.0pt'><img border=0 width=75 height=24 7211 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 6794 7212 6795 7213 <p class=MsoNormal style='margin-left:.25in'> </p> … … 6799 7217 <div align=center> 6800 7218 6801 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=06802 style='border-collapse:collapse ;border:none'>7219 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 7220 style='border-collapse:collapse'> 6803 7221 <tr style='height:19.25pt'> 6804 7222 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 6951 7369 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'>References: </p> 6952 7370 6953 <p class=MsoNormal style='margin-left:.5in;text-autospace:none'>Borue, V. Y., 6954 Erukhimovich,I. Y. Macromolecules 21, 3240 (1988).</p>7371 <p class=MsoNormal style='margin-left:.5in;text-autospace:none'>Borue, V. Y., Erukhimovich, 7372 I. Y. Macromolecules 21, 3240 (1988).</p> 6955 7373 6956 7374 <p class=MsoNormal style='margin-left:.5in;text-autospace:none'><span lang=FR>Joanny, … … 6970 7388 6971 7389 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 6972 style='font-size:14.0pt'>3.8.<span style='font:7.0pt "Times New Roman"'> 6973 </span></span></b><b><span style='font-size:14.0pt'> <a name="Guinier">Guinier (Model)</a></span></b></p> 7390 style='font-size:14.0pt'>3.8.</span></b><b><span style='font-size:7.0pt'> 7391 </span></b><b><span style='font-size:14.0pt'> <a name=Guinier>Guinier 7392 (Model)</a></span></b></p> 6974 7393 6975 7394 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> … … 6985 7404 6986 7405 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 6987 style='font-size:14.0pt ;position:relative;top:7.0pt'><img border=0 width=1836988 height=28src="../images/html/image088.png"></span></p>7406 style='font-size:14.0pt'><img border=0 width=183 height=28 7407 src="../images/html/image088.png"></span></p> 6989 7408 6990 7409 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span … … 6995 7414 6996 7415 <p class=MsoNormal style='margin-left:.25in'>For 2D plot, the wave transfer is 6997 defined as <span style='font-size:14.0pt;position:relative;top:8.0pt'><img 6998 border=0 width=103 height=33 src="../images/html/image010.png"></span><span 6999 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 7416 defined as <span style='font-size:14.0pt'><img border=0 width=73 height=23 7417 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 7000 7418 7001 7419 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><b><span … … 7004 7422 <div align=center> 7005 7423 7006 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=07007 style='border-collapse:collapse ;border:none'>7424 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 7425 style='border-collapse:collapse'> 7008 7426 <tr style='height:19.25pt'> 7009 7427 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 7061 7479 7062 7480 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 7063 style='font-size:14.0pt'>3.9.< span style='font:7.0pt "Times New Roman"'> 7064 </span></ span></b><b><span style='font-size:14.0pt'> <a name="PorodModel">PorodModel</a></span></b></p>7481 style='font-size:14.0pt'>3.9.</span></b><b><span style='font-size:7.0pt'> 7482 </span></b><b><span style='font-size:14.0pt'> <a name=PorodModel>PorodModel</a></span></b></p> 7065 7483 7066 7484 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> 7067 7485 7068 <p class=MsoNormal style='margin-left:.25in'>A Porod analysis is done by 7069 linearizing the data at high q by plotting it as log(I) versus log(Q). In the 7070 high q regionwe can fit the following model: </p>7486 <p class=MsoNormal style='margin-left:.25in'>A Porod analysis is done by linearizing 7487 the data at high q by plotting it as log(I) versus log(Q). In the high q region 7488 we can fit the following model: </p> 7071 7489 7072 7490 <p class=MsoNormal style='margin-left:.25in'> </p> 7073 7491 7074 7492 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7075 style='font-size:14.0pt ;position:relative;top:6.0pt'><img border=0 width=3687076 height=25src="../images/html/image089.png"></span></p>7493 style='font-size:14.0pt'><img border=0 width=319 height=25 7494 src="../images/html/image089.png"></span></p> 7077 7495 7078 7496 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span … … 7082 7500 style='font-size:14.0pt'> </span></p> 7083 7501 7084 <p class=MsoNormal style='margin-left:.25in'>C is the scale factor and Sv is7085 the specific surface area of the sample and <span style='font-family:"Arial","sans-serif"'>Δ</span>ρ7502 <p class=MsoNormal style='margin-left:.25in'>C is the scale factor and Sv 7503 is the specific surface area of the sample and <span style='font-family:"Arial","sans-serif"'>Δ</span>ρ 7086 7504 is the contrast factor. </p> 7087 7505 … … 7092 7510 7093 7511 <p class=MsoNormal style='margin-left:.25in'>For 2D plot, the wave transfer is 7094 defined as <span style='font-size:14.0pt;position:relative;top:8.0pt'><img 7095 border=0 width=103 height=33 src="../images/html/image010.png"></span><span 7096 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 7512 defined as <span style='font-size:14.0pt'><img border=0 width=65 height=21 7513 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 7097 7514 7098 7515 <p class=MsoNormal style='margin-left:.25in'> </p> … … 7103 7520 <div align=center> 7104 7521 7105 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=07106 style='border-collapse:collapse ;border:none'>7522 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 7523 style='border-collapse:collapse'> 7107 7524 <tr style='height:19.25pt'> 7108 7525 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 7157 7574 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> 7158 7575 7159 <p class=MsoNormal style='margin-left:.5in;text-autospace:none'> </p> 7576 <p class=MsoNormal> </p> 7577 7578 <p class=MsoBodyText> </p> 7579 7580 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 7581 style='font-size:14.0pt'>3.10 <a 7582 name="Poly_GaussCoil">Poly_GaussCoil</a> (Model)</span></b></p> 7583 7584 <p class=MsoNormal style='text-autospace:none'> </p> 7585 7586 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'>Polydisperse Gaussian 7587 Coil: Calculate an empirical functional form for scattering from a polydisperse 7588 polymer chain ina good solvent. The polymer is polydisperse with a Schulz-Zimm 7589 polydispersity of the molecular weight distribution. </p> 7590 7591 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'>The returned 7592 value is scaled to units of [cm-1sr-1], absolute scale.</p> 7593 7594 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center; 7595 text-autospace:none'><span style='position:relative;top:15pt'><img border=0 7596 width=261 height=48 src="../images/html/image116.gif"></p> 7160 7597 7161 7598 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'> </p> 7162 7599 7600 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'>where the 7601 dimensionless chain dimension is:</p> 7602 7603 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center; 7604 text-autospace:none'><span style='position:relative;top:12pt'><img border=0 7605 width=73 height=47 src="../images/html/image117.gif"></p> 7606 7607 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'> </p> 7608 7609 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'>and the 7610 polydispersion is</p> 7611 7612 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center; 7613 text-autospace:none'><span style='position:relative;top:15pt'><img border=0 7614 width=81 height=47 src="../images/html/image118.gif">.</p> 7615 7616 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'>The scattering 7617 intensity I(q) is calculated as:</p> 7618 7619 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'> </p> 7620 7621 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'>The 7622 polydispersion in rg is provided.</p> 7623 7624 <p class=MsoNormal><span style='font-size:14.0pt'> </span></p> 7625 7626 <p class=MsoNormal style='margin-left:.25in'>For 2D plot, the wave transfer is 7627 defined as <span style='font-size:14.0pt'><img border=0 width=73 height=23 7628 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 7629 7630 <p class=MsoNormal style='margin-left:.25in'> </p> 7631 7632 <p class=MsoNormal style='margin-left:.25in'>TEST DATASET</p> 7633 7634 <p class=MsoNormal style='margin-left:.25in'> This example dataset is 7635 produced by running the Poly_GaussCoil, using 200 data points, qmin = 0.001 7636 Å-1, qmax = 0.7 Å-1 and the default values below.</p> 7637 7638 <p class=MsoNormal style='margin-left:.25in'> </p> 7639 7640 <div align=center> 7641 7642 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 7643 style='border-collapse:collapse'> 7644 <tr style='height:19.25pt'> 7645 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 7646 padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 7647 <p class=MsoBodyText>Parameter name</p> 7648 </td> 7649 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 7650 border-left:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 7651 <p class=MsoBodyText>Units</p> 7652 </td> 7653 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 7654 border-left:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 7655 <p class=MsoBodyText>Default value</p> 7656 </td> 7657 </tr> 7658 <tr style='height:19.25pt'> 7659 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 7660 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 7661 <p class=MsoBodyText>Scale</p> 7662 </td> 7663 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 7664 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 7665 padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 7666 <p class=MsoBodyText>None</p> 7667 </td> 7668 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 7669 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 7670 padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 7671 <p class=MsoBodyText>1.0</p> 7672 </td> 7673 </tr> 7674 <tr style='height:19.25pt'> 7675 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 7676 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 7677 <p class=MsoBodyText>rg</p> 7678 </td> 7679 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 7680 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 7681 padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 7682 <p class=MsoBodyText>Å</p> 7683 </td> 7684 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 7685 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 7686 padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 7687 <p class=MsoBodyText>60.0</p> 7688 </td> 7689 </tr> 7690 <tr style='height:19.25pt'> 7691 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 7692 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 7693 <p class=MsoBodyText>poly_m</p> 7694 </td> 7695 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 7696 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 7697 padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 7698 <p class=MsoBodyText>Mw/Mn</p> 7699 </td> 7700 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 7701 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 7702 padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 7703 <p class=MsoBodyText>2</p> 7704 </td> 7705 </tr> 7706 <tr style='height:19.25pt'> 7707 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; 7708 border-top:none;padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 7709 <p class=MsoBodyText>background</p> 7710 </td> 7711 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 7712 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 7713 padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 7714 <p class=MsoBodyText>cm<sup>-1</sup></p> 7715 </td> 7716 <td width=143 valign=top style='width:107.0pt;border-top:none;border-left: 7717 none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt; 7718 padding:0in 5.4pt 0in 5.4pt;height:19.25pt'> 7719 <p class=MsoBodyText>0.001</p> 7720 </td> 7721 </tr> 7722 </table> 7723 7724 </div> 7725 7726 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'> </p> 7727 7728 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><img 7729 border=0 width=431 height=268 src="../images/html/image119.jpg"></p> 7730 7731 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. 7732 1D plot using the default values (w/200 data point).</b></p> 7733 7734 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'> </p> 7735 7736 <p class=MsoNormal style='margin-left:.25in'>Reference: </p> 7737 7738 <p class=MsoNormal style='margin-left:.25in'>Glatter & Kratky - pg.404.</p> 7739 7740 <p class=MsoNormal style='margin-left:.25in'>J.S. Higgins, and H.C. Benoit, Polymers 7741 and Neutron Scattering, Oxford Science</p> 7742 7743 <p class=MsoNormal style='margin-left:.25in'>Publications (1996).</p> 7744 7745 <p class=MsoNormal style='text-autospace:none'> </p> 7746 7747 <p class=MsoNormal style='margin-left:.25in;text-autospace:none'> </p> 7748 7163 7749 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> 7164 7750 7165 7166 7167 7751 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 7168 style='font-size:14.0pt'>3.10.<span style='font:7.0pt "Times New Roman"'> 7169 </span></span></b><b><span style='font-size:14.0pt'><a name="Peak Gauss Model"> Peak Gauss Model</a></span></b></p> 7752 style='font-size:14.0pt'>3.11.</span></b><b><span style='font-size:7.0pt'> 7753 </span></b><a name="Peak Gauss Model"><b><span style='font-size:14.0pt'> Peak 7754 Gauss Model</span></b></a></p> 7170 7755 7171 7756 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> … … 7177 7762 7178 7763 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7179 style='font-size:14.0pt ;position:relative;top:6.0pt'><img border=0 width=3347180 height=25src="../images/html/image090.png"></span></p>7764 style='font-size:14.0pt'><img border=0 width=334 height=25 7765 src="../images/html/image090.png"></span></p> 7181 7766 7182 7767 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7183 style='font-size:14.0pt ;position:relative;top:7.0pt'> </span></p>7768 style='font-size:14.0pt'> </span></p> 7184 7769 7185 7770 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7186 style='font-size:14.0pt;position:relative;top:7.0pt'> </span></p> 7187 7188 <p class=MsoNormal style='margin-left:.25in'><span style='position:relative; 7189 top:7.0pt'>where scale is the peak height centered at q<sub>0</sub>, and B 7190 refers to the standard deviation of the function (equivalently, the FWHM is 7191 2.54*B).</span></p> 7771 style='font-size:14.0pt'> </span></p> 7772 7773 <p class=MsoNormal style='margin-left:.25in'>where scale is the peak height centered 7774 at q<sub>0</sub>, and B refers to the standard deviation of the function 7775 (equivalently, the FWHM is 2.54*B).</p> 7192 7776 7193 7777 <p class=MsoNormal style='margin-left:.25in'>The background term is added for … … 7197 7781 7198 7782 <p class=MsoNormal style='margin-left:.25in'>For 2D plot, the wave transfer is 7199 defined as <span style='font-size:14.0pt;position:relative;top:8.0pt'><img 7200 border=0 width=103 height=33 src="../images/html/image010.png"></span><span 7201 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 7783 defined as <span style='font-size:14.0pt'><img border=0 width=71 height=23 7784 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 7202 7785 7203 7786 <p class=MsoNormal style='margin-left:.25in'> </p> … … 7210 7793 <div align=center> 7211 7794 7212 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=07213 style='border-collapse:collapse ;border:none'>7795 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 7796 style='border-collapse:collapse'> 7214 7797 <tr style='height:19.25pt'> 7215 7798 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 7303 7886 7304 7887 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 7305 style='font-size:14.0pt'>3.11.<span style='font:7.0pt "Times New Roman"'> 7306 </span></span></b><b><span style='font-size:14.0pt'> <a name="Peak Lorentz Model">Peak Lorentz Model</a></span></b></p> 7888 style='font-size:14.0pt'>3.12.</span></b><b><span style='font-size:7.0pt'> 7889 </span></b><b><span style='font-size:14.0pt'> <a name="Peak Lorentz Model">Peak 7890 Lorentz Model</a></span></b></p> 7307 7891 7308 7892 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> … … 7314 7898 7315 7899 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7316 style='font-size:14.0pt;position:relative;top:34.0pt'><img border=0 width=241 7317 height=70 src="../images/html/image091.png"></span></p> 7318 7319 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7320 style='font-size:14.0pt;position:relative;top:6.0pt'> </span></p> 7321 7322 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7323 style='font-size:14.0pt;position:relative;top:6.0pt'> </span></p> 7900 style='font-size:14.0pt'><img border=0 width=241 height=70 7901 src="../images/html/image091.png"></span></p> 7324 7902 7325 7903 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7326 7904 style='font-size:14.0pt'> </span></p> 7327 7905 7328 <p class=MsoNormal style='margin-left:.25in'><span style='position:relative; 7329 top:7.0pt'>where scale is the peak height centered at q<sub>0</sub>, and B 7330 refers to the standard deviation of the function.</span></p> 7906 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7907 style='font-size:14.0pt'> </span></p> 7908 7909 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7910 style='font-size:14.0pt'> </span></p> 7911 7912 <p class=MsoNormal style='margin-left:.25in'>where scale is the peak height 7913 centered at q<sub>0</sub>, and B refers to the standard deviation of the 7914 function.</p> 7331 7915 7332 7916 <p class=MsoNormal style='margin-left:.25in'>The background term is added for … … 7336 7920 7337 7921 <p class=MsoNormal style='margin-left:.25in'>For 2D plot, the wave transfer is 7338 defined as<span style='font-size:14.0pt;position:relative;top:8.0pt'><img 7339 border=0 width=103 height=33 src="../images/html/image010.png"></span><span 7340 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 7922 defined as<span style='font-size:14.0pt'><img border=0 width=77 height=25 7923 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 7341 7924 7342 7925 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><b><span … … 7345 7928 <div align=center> 7346 7929 7347 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=07348 style='border-collapse:collapse ;border:none'>7930 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 7931 style='border-collapse:collapse'> 7349 7932 <tr style='height:19.25pt'> 7350 7933 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 7436 8019 7437 8020 <p class=MsoNormal style='margin-left:.55in;text-indent:-.3in'><b><span 7438 style='font-size:14.0pt'>3.1 2.<span style='font:7.0pt "Times New Roman"'> 7439 </span></ span></b><b><span style='font-size:14.0pt'> <a name="LineModel"> LineModel</a></span></b></p>8021 style='font-size:14.0pt'>3.13.</span></b><b><span style='font-size:7.0pt'> 8022 </span></b><b><span style='font-size:14.0pt'> <a name=LineModel> LineModel</a></span></b></p> 7440 8023 7441 8024 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> … … 7447 8030 7448 8031 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7449 style='font-size:14.0pt;position:relative;top:5.0pt'><img border=0 width=92 7450 height=21 src="../images/html/image092.png"></span></p> 7451 7452 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7453 style='font-size:14.0pt;position:relative;top:7.0pt'> </span></p> 8032 style='font-size:14.0pt'><img border=0 width=92 height=21 8033 src="../images/html/image092.png"></span></p> 7454 8034 7455 8035 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7456 8036 style='font-size:14.0pt'> </span></p> 7457 8037 8038 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 8039 style='font-size:14.0pt'> </span></p> 8040 7458 8041 <p class=MsoNormal style='margin-left:.25in'>where A and B are the coefficients 7459 8042 of the first and second order terms.</p> 7460 8043 7461 <p class=MsoNormal style='margin-left:.25in'>Note: For 2D plot, I(q) = I(q<sub>x</sub>)*I(q<sub>y</sub>)7462 which is defined differently from other shape independent models.</p>7463 7464 8044 <p class=MsoNormal style='margin-left:.25in'> </p> 7465 8045 8046 <p class=MsoNormal style='margin-left:.25in'><b>Note:</b> For 2D plot, I(q) = 8047 I(q<sub>x</sub>)*I(q<sub>y</sub>) which is defined differently from other 8048 shape independent models.</p> 8049 8050 <p class=MsoNormal style='margin-left:.25in'> </p> 8051 7466 8052 <div align=center> 7467 8053 7468 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=07469 style='border-collapse:collapse ;border:none'>8054 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 8055 style='border-collapse:collapse'> 7470 8056 <tr style='height:19.25pt'> 7471 8057 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 7525 8111 7526 8112 <p class=MsoNormal style='margin-left:.25in;text-indent:-.25in'><b><span 7527 style='font-size:16.0pt'>4.<span style='font:7.0pt "Times New Roman"'> 7528 </span></span></b><b><span style='font-size:16.0pt'><a name="Customized Models">Customized Models </a></span></b></p> 8113 style='font-size:16.0pt'>4.</span></b><b><span style='font-size:7.0pt'> 8114 </span></b><a name="Customized_Models"><b><span style='font-size:16.0pt'>Customized 8115 Models </span></b></a></p> 7529 8116 7530 8117 <p class=MsoNormal style='margin-left:.25in'><b><span style='font-size:14.0pt'> </span></b></p> 7531 8118 7532 <p class=MsoBodyText style='margin-left:.25in'>These model functions can be redefined7533 by users (See SansView tutorial for details). </p>8119 <p class=MsoBodyText style='margin-left:.25in'>These model functions can be 8120 redefined by users (See SansView tutorial for details). </p> 7534 8121 7535 8122 <p class=MsoBodyText style='margin-left:.25in'> </p> 7536 8123 7537 <p class=MsoListParagraph CxSpFirststyle='margin-left:.55in;text-indent:-.3in'><b><span7538 style='font-size:14.0pt'>4.1.< span style='font:7.0pt "Times New Roman"'> 7539 </span></ span></b><b><span style='font-size:14.0pt'><a name="A+Bcos(2x)+Csin(2x)"> A+Bcos(2x)+Csin(2x)</a></span></b></p>7540 7541 <p class=MsoListParagraph CxSpLast style='margin-left:.55in'><b><span7542 style='font-size:14.0pt'> </span></b></p>7543 7544 <p class=MsoNormal>This function, as a sample function, calculates the intensity7545 = A + Bcos(2q) + Csin(2q).</p>7546 7547 <p class=MsoNormal> </p> 7548 7549 <p class=MsoNormal> </p> 7550 7551 7552 <p class=MsoListParagraphCxSpLast style='margin-left:.55in;text-indent:-.3in'><b><span 7553 style='font-size:14.0pt'>4.2.<span style='font:7.0pt "Times New Roman"'> 7554 </span></ span></b><b><span style='font-size:14.0pt'><a name ="sinpoly_poly"> sin(poly)/poly </a></span></b></p>8124 <p class=MsoListParagraph style='margin-left:.55in;text-indent:-.3in'><b><span 8125 style='font-size:14.0pt'>4.1.</span></b><b><span style='font-size:7.0pt'> 8126 </span></b><a name="A+Bcos(2x)+Csin(2x)"><b><span style='font-size:14.0pt'>A+Bcos(2x)+Csin(2x)</span></b></a></p> 8127 8128 <p class=MsoListParagraph style='margin-left:.55in'><b><span style='font-size: 8129 14.0pt'> </span></b></p> 8130 8131 <p class=MsoNormal>This function, as a sample function, calculates the 8132 intensity = A + Bcos(2q) + Csin(2q).</p> 8133 8134 <p class=MsoNormal> </p> 8135 8136 <p class=MsoNormal> </p> 8137 8138 <p class=MsoListParagraph style='margin-left:.55in;text-indent:-.3in'><b><span 8139 style='font-size:14.0pt'>4.2.</span></b><b><span style='font-size:7.0pt'> 8140 </span></b><a name="sinpoly_poly"><b><span style='font-size:14.0pt'>sin(poly)/poly 8141 </span></b></a></p> 7555 8142 7556 8143 <p class=MsoNormal><b> </b></p> 7557 8144 7558 <p class=MsoNormal>This function calculates the intensity = scale * sin(f)/f, 7559 where f = A + Bq + Cq<sup>2</sup> + Dq<sup>3 </sup>+ Eq<sup>4</sup> + Fq<sup>5</sup>.</p> 7560 7561 <p class=MsoNormal> </p> 7562 7563 <p class=MsoNormal> </p> 7564 7565 <p class=MsoNormal> </p> 7566 7567 <p class=MsoListParagraphCxSpFirst style='margin-left:.25in;text-indent:-.25in'><b><span 7568 style='font-size:16.0pt'>5.<span style='font:7.0pt "Times New Roman"'> 7569 </span></span></b><b><span style='font-size:16.0pt'><a name="Structure Factors"> Structure Factors</a></span></b></p> 7570 7571 <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> </p> 7572 7573 <p class=MsoListParagraphCxSpLast style='margin-left:.25in'>The information in 7574 this section is originated from NIST SANS IgorPro package.</p> 8145 <p class=MsoNormal>This function calculates the intensity = scale * 8146 sin(f)/f, where f = A + Bq + Cq<sup>2</sup> + Dq<sup>3 </sup>+ Eq<sup>4</sup> + 8147 Fq<sup>5</sup>.</p> 8148 8149 <p class=MsoNormal> </p> 8150 8151 <p class=MsoNormal> </p> 8152 8153 <p class=MsoNormal> </p> 8154 8155 <p class=MsoListParagraph style='margin-left:.25in;text-indent:-.25in'><b><span 8156 style='font-size:16.0pt'>5.</span></b><b><span style='font-size:7.0pt'> 8157 </span></b><a name="Structure_Factors"><b><span style='font-size:16.0pt'>Structure 8158 Factors</span></b></a></p> 8159 8160 <p class=MsoListParagraph style='margin-left:.25in'> </p> 8161 8162 <p class=MsoListParagraph style='margin-left:.25in'>The information in this 8163 section is originated from NIST SANS IgorPro package.</p> 7575 8164 7576 8165 <p class=MsoBodyText> </p> … … 7578 8167 <p class=MsoBodyText> </p> 7579 8168 7580 <p class=MsoListParagraph style='margin-left:.55in;text-indent:-.3in'><b> 7581 <span style='font-size:14.0pt'>5.1.<span style='font:7.0pt "Times New Roman"'> 7582 </span></span></b><b><span style='font-size:14.0pt'><a name="HardsphereStructure"> HardSphere Structure </a></span></b></p> 7583 7584 <p class=MsoNormal> </p> 7585 7586 <p class=MsoNormal>This calculates the interparticle structure factor for 7587 monodisperse spherical particles interacting through hard sphere (excluded 7588 volume) interactions. The calculation uses the Percus-Yevick closure where the 8169 <p class=MsoListParagraph style='margin-left:.55in;text-indent:-.3in'><b><span 8170 style='font-size:14.0pt'>5.1.</span></b><b><span style='font-size:7.0pt'> 8171 </span></b><a name=HardsphereStructure><b><span style='font-size:14.0pt'>HardSphere 8172 Structure </span></b></a></p> 8173 8174 <p class=MsoNormal> </p> 8175 8176 <p class=MsoNormal>This calculates the interparticle structure factor for monodisperse 8177 spherical particles interacting through hard sphere (excluded volume) 8178 interactions. The calculation uses the Percus-Yevick closure where the 7589 8179 interparticle potential is: </p> 7590 8180 … … 7594 8184 7595 8185 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7596 style='font-size:14.0pt ;position:relative;top:15.0pt'><img border=0 width=1227597 height=48src="../images/html/image093.png"></span></p>8186 style='font-size:14.0pt'><img border=0 width=122 height=48 8187 src="../images/html/image093.png"></span></p> 7598 8188 7599 8189 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7600 style='font-size:14.0pt ;position:relative;top:7.0pt'> </span></p>8190 style='font-size:14.0pt'> </span></p> 7601 8191 7602 8192 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7603 style='font-size:14.0pt ;position:relative;top:7.0pt'> </span></p>7604 7605 <p class=MsoNormal> <span style='position:relative;top:7.0pt'>where r is the7606 distance from the center of the sphere of a radius R.</span></p>7607 7608 <p class=MsoNormal> <span style='position:relative;top:7.0pt'> </span></p>8193 style='font-size:14.0pt'> </span></p> 8194 8195 <p class=MsoNormal>where r is the distance from the center of the sphere of a 8196 radius R.</p> 8197 8198 <p class=MsoNormal> </p> 7609 8199 7610 8200 <p class=MsoNormal style='margin-left:.25in'>For 2D plot, the wave transfer is 7611 defined as<span style='font-size:14.0pt;position:relative;top:8.0pt'><img 7612 border=0 width=103 height=33 src="../images/html/image010.png"></span><span 7613 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 7614 7615 <p class=MsoNormal><span style='position:relative;top:7.0pt'> </span></p> 8201 defined as<span style='font-size:14.0pt'><img border=0 width=72 height=23 8202 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 8203 8204 <p class=MsoNormal> </p> 7616 8205 7617 8206 <p class=MsoNormal> </p> … … 7621 8210 <div align=center> 7622 8211 7623 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=07624 style='border-collapse:collapse ;border:none'>8212 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 8213 style='border-collapse:collapse'> 7625 8214 <tr style='height:19.25pt'> 7626 8215 <td width=143 valign=top style='width:107.0pt;border:solid windowtext 1.0pt; … … 7692 8281 7693 8282 <p class=MsoNormal align=center style='text-align:center'><img border=0 7694 width=4 84 height=331 id="Picture 111"src="../images/html/image094.png"></p>8283 width=454 height=295 src="../images/html/image094.png"></p> 7695 8284 7696 8285 <p class=MsoNormal style='text-autospace:none'> </p> … … 7713 8302 7714 8303 <p class=MsoListParagraph style='margin-left:.55in;text-indent:-.3in'><b><span 7715 style='font-size:14.0pt'>5.2.<span style='font:7.0pt "Times New Roman"'> 7716 </span></span></b><b><span style='font-size:14.0pt'><a name="SquareWellStructure"> SquareWell Structure </a></span></b></p> 8304 style='font-size:14.0pt'>5.2.</span></b><b><span style='font-size:7.0pt'> 8305 </span></b><a name=SquareWellStructure><b><span style='font-size:14.0pt'> SquareWell 8306 Structure </span></b></a></p> 7717 8307 7718 8308 <p class=MsoNormal> </p> … … 7746 8336 7747 8337 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7748 style='font-size:14.0pt ;position:relative;top:22.0pt'><img border=0 width=1747749 height=67src="../images/html/image095.png"></span></p>8338 style='font-size:14.0pt'><img border=0 width=174 height=67 8339 src="../images/html/image095.png"></span></p> 7750 8340 7751 8341 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7752 style='font-size:14.0pt ;position:relative;top:7.0pt'> </span></p>8342 style='font-size:14.0pt'> </span></p> 7753 8343 7754 8344 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7755 style='font-size:14.0pt ;position:relative;top:7.0pt'> </span></p>8345 style='font-size:14.0pt'> </span></p> 7756 8346 7757 8347 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 7758 style='font-size:14.0pt ;position:relative;top:7.0pt'> </span></p>7759 7760 <p class=MsoNormal> <span style='position:relative;top:7.0pt'>where r is the7761 distance from the center of the sphere of a radius R.</span></p>7762 7763 <p class=MsoNormal> <span style='position:relative;top:7.0pt'> </span></p>8348 style='font-size:14.0pt'> </span></p> 8349 8350 <p class=MsoNormal>where r is the distance from the center of the sphere of a 8351 radius R.</p> 8352 8353 <p class=MsoNormal> </p> 7764 8354 7765 8355 <p class=MsoNormal style='margin-left:.25in'>For 2D plot, the wave transfer is 7766 defined as<span style='font-size:14.0pt;position:relative;top:8.0pt'><img 7767 border=0 width=103 height=33 src="../images/html/image010.png"></span><span 7768 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 8356 defined as<span style='font-size:14.0pt'><img border=0 width=71 height=23 8357 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 7769 8358 7770 8359 <p class=MsoNormal> </p> … … 7774 8363 <div align=center> 7775 8364 7776 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=07777 style='margin-left:-1.5pt;border-collapse:collapse ;border:none'>8365 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 8366 style='margin-left:-1.5pt;border-collapse:collapse'> 7778 8367 <tr style='height:19.25pt'> 7779 8368 <td width=145 valign=top style='width:108.5pt;border:solid windowtext 1.0pt; … … 7861 8450 7862 8451 <p class=MsoNormal align=center style='text-align:center'><img border=0 7863 width= 510 height=346 id="Picture 110"src="../images/html/image096.png"></p>8452 width=453 height=286 src="../images/html/image096.png"></p> 7864 8453 7865 8454 <p class=MsoNormal style='text-autospace:none'> </p> … … 7880 8469 7881 8470 <p class=MsoListParagraph style='margin-left:.55in;text-indent:-.3in'><b><span 7882 style='font-size:14.0pt'>5.3.<span style='font:7.0pt "Times New Roman"'> 7883 </span></span></b><b><span style='font-size:14.0pt'><a name="HayterMSAStructure"> HayterMSA Structure </a></span></b></p> 8471 style='font-size:14.0pt'>5.3.</span></b><b><span style='font-size:7.0pt'> 8472 </span></b><a name=HayterMSAStructure><b><span style='font-size:14.0pt'> HayterMSA 8473 Structure </span></b></a></p> 7884 8474 7885 8475 <p class=MsoNormal> </p> … … 7887 8477 <p class=MsoNormal>This calculates the Structure factor (the Fourier transform 7888 8478 of the pair correlation function g(r)) for a system of charged, spheroidal 7889 objects in a dielectric medium. When combined with an appropriate form factor7890 (such as sphere, core+shell, ellipsoid etc7891 ), this allows for inclusion of the7892 interparticle interference effects due to screened coulomb repulsion between7893 charged particles. This routine only works for charged particles. If the 7894 charge is set to zero the routine will self destruct. For non-charged 7895 particles use a hard sphere potential.</p>8479 objects in a dielectric medium. When combined with an appropriate form 8480 factor (such as sphere, core+shell, ellipsoid etc 8481 ), this allows for inclusion 8482 of the interparticle interference effects due to screened coulomb repulsion 8483 between charged particles. This routine only works for charged particles. 8484 If the charge is set to zero the routine will self destruct. For 8485 non-charged particles use a hard sphere potential.</p> 7896 8486 7897 8487 <p class=MsoNormal> </p> 7898 8488 7899 8489 <p class=MsoNormal>The salt concentration is used to compute the ionic strength 7900 of the solution which in turn is used to compute the Debye screening length.7901 At present there is no provision for entering the ionic strength directly nor 7902 for use of any multivalent salts. The counterions are also assumed to be 7903 monovalent.</p>8490 of the solution which in turn is used to compute the Debye screening 8491 length. At present there is no provision for entering the ionic strength 8492 directly nor for use of any multivalent salts. The counterions are also 8493 assumed to be monovalent.</p> 7904 8494 7905 8495 <p class=MsoNormal> </p> 7906 8496 7907 8497 <p class=MsoNormal style='margin-left:.25in'>For 2D plot, the wave transfer is 7908 defined as<span style='font-size:14.0pt;position:relative;top:8.0pt'><img 7909 border=0 width=103 height=33 src="../images/html/image010.png"></span><span 7910 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 8498 defined as<span style='font-size:14.0pt'><img border=0 width=71 height=23 8499 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 7911 8500 7912 8501 <p class=MsoNormal> </p> … … 7916 8505 <div align=center> 7917 8506 7918 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=07919 style='margin-left:-1.5pt;border-collapse:collapse ;border:none'>8507 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 8508 style='margin-left:-1.5pt;border-collapse:collapse'> 7920 8509 <tr style='height:19.25pt'> 7921 8510 <td width=145 valign=top style='width:108.5pt;border:solid windowtext 1.0pt; … … 8035 8624 8036 8625 <p class=MsoNormal align=center style='text-align:center'><img border=0 8037 width=4 98 height=333 id="Picture 112"src="../images/html/image097.png"></p>8626 width=451 height=273 src="../images/html/image097.png"></p> 8038 8627 8039 8628 <p class=MsoNormal style='text-autospace:none'> </p> … … 8049 8638 JB Hayter, Molecular Physics 46, 651-656 (1982).</p> 8050 8639 8051 <p class=MsoNormal style='text-autospace:none'> JB Hayter and J8052 Penfold, Molecular Physics 42, 109-118 (1981).</p>8640 <p class=MsoNormal style='text-autospace:none'> 8641 JB Hayter and J Penfold, Molecular Physics 42, 109-118 (1981).</p> 8053 8642 8054 8643 <p class=MsoNormal style='text-autospace:none'> </p> … … 8059 8648 8060 8649 <p class=MsoListParagraph style='margin-left:.55in;text-indent:-.3in'><b><span 8061 style='font-size:14.0pt'>5.4.< span style='font:7.0pt "Times New Roman"'> 8062 </span></ span></b><b><span style='font-size:14.0pt'> <a name="StickyHSStructure">StickyHS Structure </a></span></b></p>8650 style='font-size:14.0pt'>5.4.</span></b><b><span style='font-size:7.0pt'> 8651 </span></b><b><span style='font-size:14.0pt'> StickyHS Structure </span></b></p> 8063 8652 8064 8653 <p class=MsoNormal> </p> … … 8075 8664 held between 0.01 and 0.1. It is best to hold the perturbation parameter fixed 8076 8665 and let the "stickiness" vary to adjust the interaction strength. The 8077 stickiness, tau, is defined in equation 21and is a function of both the8666 stickiness, tau, is defined in the equation below and is a function of both the 8078 8667 perturbation parameter and the interaction strength. Tau and epsilon are 8079 8668 defined in terms of the hard sphere diameter (sigma = 2R), the width of the … … 8087 8676 8088 8677 <p class=MsoNormal align=center style='text-align:center'><span 8089 style='font-size:14.0pt ;position:relative;top:22.0pt'><img border=0 width=1358090 height=67src="../images/html/image098.png"></span></p>8678 style='font-size:14.0pt'><img border=0 width=135 height=67 8679 src="../images/html/image098.png"></span></p> 8091 8680 8092 8681 <p class=MsoNormal align=center style='text-align:center'><span 8093 style='font-size:14.0pt ;position:relative;top:27.0pt'> </span></p>8682 style='font-size:14.0pt'> </span></p> 8094 8683 8095 8684 <p class=MsoNormal align=center style='text-align:center'><span 8096 style='font-size:14.0pt ;position:relative;top:27.0pt'> </span></p>8685 style='font-size:14.0pt'> </span></p> 8097 8686 8098 8687 <p class=MsoNormal>where the interaction potential is</p> … … 8103 8692 8104 8693 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 8105 style='font-size:14.0pt ;position:relative;top:23.0pt'><img border=0 width=1868106 height=69src="../images/html/image099.png"></span></p>8694 style='font-size:14.0pt'><img border=0 width=186 height=69 8695 src="../images/html/image099.png"></span></p> 8107 8696 8108 8697 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 8109 style='font-size:14.0pt ;position:relative;top:7.0pt'> </span></p>8698 style='font-size:14.0pt'> </span></p> 8110 8699 8111 8700 <p class=MsoNormal align=center style='margin-left:.25in;text-align:center'><span 8112 style='font-size:14.0pt ;position:relative;top:7.0pt'> </span></p>8701 style='font-size:14.0pt'> </span></p> 8113 8702 8114 8703 <p class=MsoNormal>The Percus-Yevick (PY) closure was used for this … … 8121 8710 <p class=MsoNormal>The true particle volume fraction, f, is not equal to h, 8122 8711 which appears in most of the reference. The two are related in equation (24) of 8123 the reference. The reference also describes the relationship between this 8124 perturbation solution and the original sticky hard sphere (or adhesive sphere) 8125 model byBaxter.</p>8712 the reference. The reference also describes the relationship between this perturbation 8713 solution and the original sticky hard sphere (or adhesive sphere) model by 8714 Baxter.</p> 8126 8715 8127 8716 <p class=MsoNormal> </p> … … 8137 8726 8138 8727 <p class=MsoNormal style='margin-left:.25in'>For 2D plot, the wave transfer is 8139 defined as<span style='font-size:14.0pt;position:relative;top:8.0pt'><img 8140 border=0 width=103 height=33 src="../images/html/image010.png"></span><span 8141 style='font-size:14.0pt;position:relative;top:6.0pt'>.</span></p> 8728 defined as<span style='font-size:14.0pt'><img border=0 width=73 height=23 8729 src="../images/html/image010.png"></span><span style='font-size:14.0pt'>.</span></p> 8142 8730 8143 8731 <p class=MsoNormal> </p> … … 8147 8735 <div align=center> 8148 8736 8149 <table class=Mso TableGrid border=1cellspacing=0 cellpadding=08150 style='margin-left:-1.5pt;border-collapse:collapse ;border:none'>8737 <table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 8738 style='margin-left:-1.5pt;border-collapse:collapse'> 8151 8739 <tr style='height:19.25pt'> 8152 8740 <td width=145 valign=top style='width:108.5pt;border:solid windowtext 1.0pt; … … 8234 8822 8235 8823 <p class=MsoNormal align=center style='text-align:center'><img border=0 8236 width= 502 height=328 id="Picture 113"src="../images/html/image100.png"></p>8824 width=463 height=273 src="../images/html/image100.png"></p> 8237 8825 8238 8826 <p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b>Figure. … … 8252 8840 <p class=MsoNormal><b><span style='font-size:14.0pt'> </span></b></p> 8253 8841 8254 <p class=MsoBodyText>< b><span style='font-size:14.0pt'><a name="References">References</a></span></b></p>8842 <p class=MsoBodyText><a name=References><b><span style='font-size:14.0pt'>References</span></b></a></p> 8255 8843 8256 8844 <p class=MsoBodyText>Feigin, L. A, and D. I. Svergun (1987) "Structure … … 8272 8860 411-417.</p> 8273 8861 8274 <p class=MsoBodyText>McAlister, B.C. and Grady, B.P., (1998) J. Appl. Cryst. 31,8275 594-599.</p>8862 <p class=MsoBodyText>McAlister, B.C. and Grady, B.P., (1998) J. Appl. Cryst. 8863 31, 594-599.</p> 8276 8864 8277 8865 <p class=MsoBodyText>Porod, G. (1982) in Small Angle X-ray Scattering, editors 8278 8866 Glatter, O. and Kratky, O., Academic Press.</p> 8279 8867 8868 <p class=MsoBodyText>*Also, see the references in the each model function 8869 descriptions.</p> 8870 8280 8871 <p class=MsoBodyText> </p> 8281 8872
Note: See TracChangeset
for help on using the changeset viewer.