Changeset f12d96e in sasview for src/sas/sasgui/perspectives
- Timestamp:
- Sep 18, 2017 7:43:24 AM (7 years ago)
- Branches:
- master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, magnetic_scatt, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
- Children:
- be51cf6
- Parents:
- cfd27dd (diff), 0794ce3 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent. - Location:
- src/sas/sasgui/perspectives
- Files:
-
- 3 added
- 11 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sas/sasgui/perspectives/corfunc/corfunc.py
r463e7ffc r9b90bf8 189 189 # Show the transformation as a curve instead of points 190 190 new_plot.symbol = GUIFRAME_ID.CURVE_SYMBOL_NUM 191 elif label == IDF_LABEL: 192 new_plot.xaxis("{x}", 'A') 193 new_plot.yaxis("{g_1}", '') 194 # Linear scale 195 new_plot.xtransform = 'x' 196 new_plot.ytransform = 'y' 197 group_id = GROUP_ID_IDF 198 # Show IDF as a curve instead of points 199 new_plot.symbol = GUIFRAME_ID.CURVE_SYMBOL_NUM 191 200 new_plot.id = label 192 201 new_plot.name = label -
src/sas/sasgui/perspectives/corfunc/corfunc_panel.py
r7432acb r9b90bf8 55 55 self._data = data # The data to be analysed (corrected fr background) 56 56 self._extrapolated_data = None # The extrapolated data set 57 # Callable object of class CorfuncCalculator._Interpolator representing 58 # the extrapolated and interpolated data 59 self._extrapolated_fn = None 57 60 self._transformed_data = None # Fourier trans. of the extrapolated data 58 61 self._calculator = CorfuncCalculator() … … 218 221 219 222 try: 220 params, self._extrapolated_data = self._calculator.compute_extrapolation() 223 params, self._extrapolated_data, self._extrapolated_fn = \ 224 self._calculator.compute_extrapolation() 221 225 except Exception as e: 222 226 msg = "Error extrapolating data:\n" … … 257 261 StatusEvent(status=msg)) 258 262 259 def transform_complete(self, transform =None):263 def transform_complete(self, transforms=None): 260 264 """ 261 265 Called from FourierThread when calculation has completed 262 266 """ 263 267 self._transform_btn.SetLabel("Transform") 264 if transform is None:268 if transforms is None: 265 269 msg = "Error calculating Transform." 266 270 if self.transform_type == 'hilbert': … … 270 274 self._extract_btn.Disable() 271 275 return 272 self._transformed_data = transform 273 import numpy as np 274 plot_x = transform.x[np.where(transform.x <= 200)] 275 plot_y = transform.y[np.where(transform.x <= 200)] 276 277 self._transformed_data = transforms 278 (transform1, transform3, idf) = transforms 279 plot_x = transform1.x[transform1.x <= 200] 280 plot_y = transform1.y[transform1.x <= 200] 276 281 self._manager.show_data(Data1D(plot_x, plot_y), TRANSFORM_LABEL1) 282 # No need to shorten gamma3 as it's only calculated up to x=200 283 self._manager.show_data(transform3, TRANSFORM_LABEL3) 284 285 plot_x = idf.x[idf.x <= 200] 286 plot_y = idf.y[idf.x <= 200] 287 self._manager.show_data(Data1D(plot_x, plot_y), IDF_LABEL) 288 277 289 # Only enable extract params button if a fourier trans. has been done 278 290 if self.transform_type == 'fourier': … … 286 298 """ 287 299 try: 288 params = self._calculator.extract_parameters(self._transformed_data )300 params = self._calculator.extract_parameters(self._transformed_data[0]) 289 301 except: 290 302 params = None -
src/sas/sasgui/perspectives/corfunc/corfunc_state.py
r7432acb r457f735 59 59 self.q = None 60 60 self.iq = None 61 # TODO: Add extrapolated data and transformed data (when implemented)62 61 63 62 def __str__(self): -
src/sas/sasgui/perspectives/corfunc/media/corfunc_help.rst
r1404cce rd78b5cb 10 10 11 11 This performs a correlation function analysis of one-dimensional 12 SAXS/SANS data, or generates a model-independent volume fraction 12 SAXS/SANS data, or generates a model-independent volume fraction 13 13 profile from the SANS from an adsorbed polymer/surfactant layer. 14 14 15 A correlation function may be interpreted in terms of an imaginary rod moving 16 through the structure of the material. Î\ :sub:`1D`\ (R) is the probability that 17 a rod of length R moving through the material has equal electron/neutron scattering 18 length density at either end. Hence a frequently occurring spacing within a structure 15 A correlation function may be interpreted in terms of an imaginary rod moving 16 through the structure of the material. Î\ :sub:`1D`\ (R) is the probability that 17 a rod of length R moving through the material has equal electron/neutron scattering 18 length density at either end. Hence a frequently occurring spacing within a structure 19 19 manifests itself as a peak. 20 20 … … 30 30 * Fourier / Hilbert Transform of the smoothed data to give the correlation 31 31 function / volume fraction profile, respectively 32 * (Optional) Interpretation of the 1D correlation function based on an ideal 32 * (Optional) Interpretation of the 1D correlation function based on an ideal 33 33 lamellar morphology 34 34 … … 74 74 :align: center 75 75 76 76 77 77 Smoothing 78 78 --------- 79 79 80 The extrapolated data set consists of the Guinier back-extrapolation from Q~0 80 The extrapolated data set consists of the Guinier back-extrapolation from Q~0 81 81 up to the lowest Q value in the original data, then the original scattering data, and the Porod tail-fit beyond this. The joins between the original data and the Guinier/Porod fits are smoothed using the algorithm below to avoid the formation of ripples in the transformed data. 82 82 … … 93 93 h_i = \frac{1}{1 + \frac{(x_i-b)^2}{(x_i-a)^2}} 94 94 95 95 96 96 Transform 97 97 --------- … … 102 102 If "Fourier" is selected for the transform type, the analysis will perform a 103 103 discrete cosine transform on the extrapolated data in order to calculate the 104 correlation function 104 1D correlation function: 105 105 106 106 .. math:: … … 115 115 \left(n + \frac{1}{2} \right) k \right] } \text{ for } k = 0, 1, \ldots, 116 116 N-1, N 117 118 The 3D correlation function is also calculated: 119 120 .. math:: 121 \Gamma _{3D}(R) = \frac{1}{Q^{*}} \int_{0}^{\infty}I(q) q^{2} 122 \frac{sin(qR)}{qR} dq 117 123 118 124 Hilbert … … 165 171 .. figure:: profile1.png 166 172 :align: center 167 173 168 174 .. figure:: profile2.png 169 175 :align: center 170 176 171 177 172 178 References … … 191 197 ----- 192 198 Upon sending data for correlation function analysis, it will be plotted (minus 193 the background value), along with a *red* bar indicating the *upper end of the 199 the background value), along with a *red* bar indicating the *upper end of the 194 200 low-Q range* (used for back-extrapolation), and 2 *purple* bars indicating the range to be used for forward-extrapolation. These bars may be moved my clicking and 195 201 dragging, or by entering appropriate values in the Q range input boxes. … … 221 227 :align: center 222 228 223 229 224 230 .. note:: 225 231 This help document was last changed by Steve King, 08Oct2016 -
src/sas/sasgui/perspectives/corfunc/plot_labels.py
r1dc8ec9 r7dda833 4 4 5 5 GROUP_ID_TRANSFORM = r"$\Gamma(x)$" 6 TRANSFORM_LABEL1 = r"$\Gamma1(x)$" 7 TRANSFORM_LABEL3 = r"$\Gamma3(x)$" 6 TRANSFORM_LABEL1 = r"$\Gamma_1(x)$" 7 TRANSFORM_LABEL3 = r"$\Gamma_3(x)$" 8 9 GROUP_ID_IDF = r"$g_1(x)$" 10 IDF_LABEL = r"$g_1(x)$" -
src/sas/sasgui/perspectives/calculator/model_editor.py
r07ec714 r23359ccb 106 106 self.model2_string = "cylinder" 107 107 self.name = 'Sum' + M_NAME 108 self.factor = 'scale_factor'109 108 self._notes = '' 110 109 self._operator = '+' … … 133 132 self.model2_name = str(self.model2.GetValue()) 134 133 self.good_name = True 135 self.fill_op rator_combox()134 self.fill_operator_combox() 136 135 137 136 def _layout_name(self): … … 491 490 a sum or multiply model then create the appropriate string 492 491 """ 493 494 492 name = '' 495 496 493 if operator == '*': 497 494 name = 'Multi' 498 factor = 'BackGround' 499 f_oper = '+' 495 factor = 'background' 500 496 else: 501 497 name = 'Sum' 502 498 factor = 'scale_factor' 503 f_oper = '*' 504 505 self.factor = factor 499 506 500 self._operator = operator 507 self.explanation = " Plugin Model = %s %s (model1 %s model2)\n" % \508 (self.factor, f_oper, self._operator)501 self.explanation = (" Plugin_model = scale_factor * (model_1 {} " 502 "model_2) + background").format(operator) 509 503 self.explanationctr.SetLabel(self.explanation) 510 504 self.name = name + M_NAME 511 505 512 506 513 def fill_op rator_combox(self):507 def fill_operator_combox(self): 514 508 """ 515 509 fill the current combobox with the operator … … 527 521 return [self.model1_name, self.model2_name] 528 522 529 def write_string(self, fname, name1, name2):523 def write_string(self, fname, model1_name, model2_name): 530 524 """ 531 525 Write and Save file … … 533 527 self.fname = fname 534 528 description = self.desc_tcl.GetValue().lstrip().rstrip() 535 if description == '': 536 description = name1 + self._operator + name2 537 text = self._operator_choice.GetValue() 538 if text.count('+') > 0: 539 factor = 'scale_factor' 540 f_oper = '*' 541 default_val = '1.0' 542 else: 543 factor = 'BackGround' 544 f_oper = '+' 545 default_val = '0.0' 546 path = self.fname 547 try: 548 out_f = open(path, 'w') 549 except: 550 raise 551 lines = SUM_TEMPLATE.split('\n') 552 for line in lines: 553 try: 554 if line.count("scale_factor"): 555 line = line.replace('scale_factor', factor) 556 #print "scale_factor", line 557 if line.count("= %s"): 558 out_f.write(line % (default_val) + "\n") 559 elif line.count("import Model as P1"): 560 if self.is_p1_custom: 561 line = line.replace('#', '') 562 out_f.write(line % name1 + "\n") 563 else: 564 out_f.write(line + "\n") 565 elif line.count("import %s as P1"): 566 if not self.is_p1_custom: 567 line = line.replace('#', '') 568 out_f.write(line % (name1) + "\n") 569 else: 570 out_f.write(line + "\n") 571 elif line.count("import Model as P2"): 572 if self.is_p2_custom: 573 line = line.replace('#', '') 574 out_f.write(line % name2 + "\n") 575 else: 576 out_f.write(line + "\n") 577 elif line.count("import %s as P2"): 578 if not self.is_p2_custom: 579 line = line.replace('#', '') 580 out_f.write(line % (name2) + "\n") 581 else: 582 out_f.write(line + "\n") 583 elif line.count("P1 = find_model"): 584 out_f.write(line % (name1) + "\n") 585 elif line.count("P2 = find_model"): 586 out_f.write(line % (name2) + "\n") 587 588 elif line.count("self.description = '%s'"): 589 out_f.write(line % description + "\n") 590 #elif line.count("run") and line.count("%s"): 591 # out_f.write(line % self._operator + "\n") 592 #elif line.count("evalDistribution") and line.count("%s"): 593 # out_f.write(line % self._operator + "\n") 594 elif line.count("return") and line.count("%s") == 2: 595 #print "line return", line 596 out_f.write(line % (f_oper, self._operator) + "\n") 597 elif line.count("out2")and line.count("%s"): 598 out_f.write(line % self._operator + "\n") 599 else: 600 out_f.write(line + "\n") 601 except: 602 raise 603 out_f.close() 604 #else: 605 # msg = "Name exists already." 529 desc_line = '' 530 if description.strip() != '': 531 # Sasmodels generates a description for us. If the user provides 532 # their own description, add a line to overwrite the sasmodels one 533 desc_line = "\nmodel_info.description = '{}'".format(description) 534 name = os.path.splitext(os.path.basename(self.fname))[0] 535 output = SUM_TEMPLATE.format(name=name, model1=model1_name, 536 model2=model2_name, operator=self._operator, desc_line=desc_line) 537 with open(self.fname, 'w') as out_f: 538 out_f.write(output) 606 539 607 540 def compile_file(self, path): … … 1278 1211 """ 1279 1212 SUM_TEMPLATE = """ 1280 # A sample of an experimental model function for Sum/Multiply(Pmodel1,Pmodel2) 1281 import os 1282 import sys 1283 import copy 1284 import collections 1285 1286 import numpy 1287 1288 from sas.sascalc.fit.pluginmodel import Model1DPlugin 1289 from sasmodels.sasview_model import find_model 1290 1291 class Model(Model1DPlugin): 1292 name = os.path.splitext(os.path.basename(__file__))[0] 1293 is_multiplicity_model = False 1294 def __init__(self, multiplicity=1): 1295 Model1DPlugin.__init__(self, name='') 1296 P1 = find_model('%s') 1297 P2 = find_model('%s') 1298 p_model1 = P1() 1299 p_model2 = P2() 1300 ## Setting model name model description 1301 self.description = '%s' 1302 if self.name.rstrip().lstrip() == '': 1303 self.name = self._get_name(p_model1.name, p_model2.name) 1304 if self.description.rstrip().lstrip() == '': 1305 self.description = p_model1.name 1306 self.description += p_model2.name 1307 self.fill_description(p_model1, p_model2) 1308 1309 ## Define parameters 1310 self.params = collections.OrderedDict() 1311 1312 ## Parameter details [units, min, max] 1313 self.details = {} 1314 ## Magnetic Panrameters 1315 self.magnetic_params = [] 1316 # non-fittable parameters 1317 self.non_fittable = p_model1.non_fittable 1318 self.non_fittable += p_model2.non_fittable 1319 1320 ##models 1321 self.p_model1= p_model1 1322 self.p_model2= p_model2 1323 1324 1325 ## dispersion 1326 self._set_dispersion() 1327 ## Define parameters 1328 self._set_params() 1329 ## New parameter:scaling_factor 1330 self.params['scale_factor'] = %s 1331 1332 ## Parameter details [units, min, max] 1333 self._set_details() 1334 self.details['scale_factor'] = ['', 0.0, numpy.inf] 1335 1336 1337 #list of parameter that can be fitted 1338 self._set_fixed_params() 1339 1340 ## parameters with orientation 1341 self.orientation_params = [] 1342 for item in self.p_model1.orientation_params: 1343 new_item = "p1_" + item 1344 if not new_item in self.orientation_params: 1345 self.orientation_params.append(new_item) 1346 1347 for item in self.p_model2.orientation_params: 1348 new_item = "p2_" + item 1349 if not new_item in self.orientation_params: 1350 self.orientation_params.append(new_item) 1351 ## magnetic params 1352 self.magnetic_params = [] 1353 for item in self.p_model1.magnetic_params: 1354 new_item = "p1_" + item 1355 if not new_item in self.magnetic_params: 1356 self.magnetic_params.append(new_item) 1357 1358 for item in self.p_model2.magnetic_params: 1359 new_item = "p2_" + item 1360 if not new_item in self.magnetic_params: 1361 self.magnetic_params.append(new_item) 1362 # get multiplicity if model provide it, else 1. 1363 try: 1364 multiplicity1 = p_model1.multiplicity 1365 try: 1366 multiplicity2 = p_model2.multiplicity 1367 except: 1368 multiplicity2 = 1 1369 except: 1370 multiplicity1 = 1 1371 multiplicity2 = 1 1372 ## functional multiplicity of the model 1373 self.multiplicity1 = multiplicity1 1374 self.multiplicity2 = multiplicity2 1375 self.multiplicity_info = [] 1376 1377 def _clone(self, obj): 1378 import copy 1379 obj.params = copy.deepcopy(self.params) 1380 obj.description = copy.deepcopy(self.description) 1381 obj.details = copy.deepcopy(self.details) 1382 obj.dispersion = copy.deepcopy(self.dispersion) 1383 obj.p_model1 = self.p_model1.clone() 1384 obj.p_model2 = self.p_model2.clone() 1385 #obj = copy.deepcopy(self) 1386 return obj 1387 1388 def _get_name(self, name1, name2): 1389 p1_name = self._get_upper_name(name1) 1390 if not p1_name: 1391 p1_name = name1 1392 name = p1_name 1393 name += "_and_" 1394 p2_name = self._get_upper_name(name2) 1395 if not p2_name: 1396 p2_name = name2 1397 name += p2_name 1398 return name 1399 1400 def _get_upper_name(self, name=None): 1401 if name is None: 1402 return "" 1403 upper_name = "" 1404 str_name = str(name) 1405 for index in range(len(str_name)): 1406 if str_name[index].isupper(): 1407 upper_name += str_name[index] 1408 return upper_name 1409 1410 def _set_dispersion(self): 1411 self.dispersion = collections.OrderedDict() 1412 ##set dispersion only from p_model 1413 for name , value in self.p_model1.dispersion.iteritems(): 1414 #if name.lower() not in self.p_model1.orientation_params: 1415 new_name = "p1_" + name 1416 self.dispersion[new_name]= value 1417 for name , value in self.p_model2.dispersion.iteritems(): 1418 #if name.lower() not in self.p_model2.orientation_params: 1419 new_name = "p2_" + name 1420 self.dispersion[new_name]= value 1421 1422 def function(self, x=0.0): 1423 return 0 1424 1425 def getProfile(self): 1426 try: 1427 x,y = self.p_model1.getProfile() 1428 except: 1429 x = None 1430 y = None 1431 1432 return x, y 1433 1434 def _set_params(self): 1435 for name , value in self.p_model1.params.iteritems(): 1436 # No 2D-supported 1437 #if name not in self.p_model1.orientation_params: 1438 new_name = "p1_" + name 1439 self.params[new_name]= value 1440 1441 for name , value in self.p_model2.params.iteritems(): 1442 # No 2D-supported 1443 #if name not in self.p_model2.orientation_params: 1444 new_name = "p2_" + name 1445 self.params[new_name]= value 1446 1447 # Set "scale" as initializing 1448 self._set_scale_factor() 1449 1450 1451 def _set_details(self): 1452 for name ,detail in self.p_model1.details.iteritems(): 1453 new_name = "p1_" + name 1454 #if new_name not in self.orientation_params: 1455 self.details[new_name]= detail 1456 1457 for name ,detail in self.p_model2.details.iteritems(): 1458 new_name = "p2_" + name 1459 #if new_name not in self.orientation_params: 1460 self.details[new_name]= detail 1461 1462 def _set_scale_factor(self): 1463 pass 1464 1465 1466 def setParam(self, name, value): 1467 # set param to this (p1, p2) model 1468 self._setParamHelper(name, value) 1469 1470 ## setParam to p model 1471 model_pre = '' 1472 new_name = '' 1473 name_split = name.split('_', 1) 1474 if len(name_split) == 2: 1475 model_pre = name.split('_', 1)[0] 1476 new_name = name.split('_', 1)[1] 1477 if model_pre == "p1": 1478 if new_name in self.p_model1.getParamList(): 1479 self.p_model1.setParam(new_name, value) 1480 elif model_pre == "p2": 1481 if new_name in self.p_model2.getParamList(): 1482 self.p_model2.setParam(new_name, value) 1483 elif name == 'scale_factor': 1484 self.params['scale_factor'] = value 1485 else: 1486 raise ValueError, "Model does not contain parameter %s" % name 1487 1488 def getParam(self, name): 1489 # Look for dispersion parameters 1490 toks = name.split('.') 1491 if len(toks)==2: 1492 for item in self.dispersion.keys(): 1493 # 2D not supported 1494 if item.lower()==toks[0].lower(): 1495 for par in self.dispersion[item]: 1496 if par.lower() == toks[1].lower(): 1497 return self.dispersion[item][par] 1498 else: 1499 # Look for standard parameter 1500 for item in self.params.keys(): 1501 if item.lower()==name.lower(): 1502 return self.params[item] 1503 return 1504 #raise ValueError, "Model does not contain parameter %s" % name 1505 1506 def _setParamHelper(self, name, value): 1507 # Look for dispersion parameters 1508 toks = name.split('.') 1509 if len(toks)== 2: 1510 for item in self.dispersion.keys(): 1511 if item.lower()== toks[0].lower(): 1512 for par in self.dispersion[item]: 1513 if par.lower() == toks[1].lower(): 1514 self.dispersion[item][par] = value 1515 return 1516 else: 1517 # Look for standard parameter 1518 for item in self.params.keys(): 1519 if item.lower()== name.lower(): 1520 self.params[item] = value 1521 return 1522 1523 raise ValueError, "Model does not contain parameter %s" % name 1524 1525 1526 def _set_fixed_params(self): 1527 self.fixed = [] 1528 for item in self.p_model1.fixed: 1529 new_item = "p1" + item 1530 self.fixed.append(new_item) 1531 for item in self.p_model2.fixed: 1532 new_item = "p2" + item 1533 self.fixed.append(new_item) 1534 1535 self.fixed.sort() 1536 1537 1538 def run(self, x = 0.0): 1539 self._set_scale_factor() 1540 return self.params['scale_factor'] %s \ 1541 (self.p_model1.run(x) %s self.p_model2.run(x)) 1542 1543 def runXY(self, x = 0.0): 1544 self._set_scale_factor() 1545 return self.params['scale_factor'] %s \ 1546 (self.p_model1.runXY(x) %s self.p_model2.runXY(x)) 1547 1548 ## Now (May27,10) directly uses the model eval function 1549 ## instead of the for-loop in Base Component. 1550 def evalDistribution(self, x = []): 1551 self._set_scale_factor() 1552 return self.params['scale_factor'] %s \ 1553 (self.p_model1.evalDistribution(x) %s \ 1554 self.p_model2.evalDistribution(x)) 1555 1556 def set_dispersion(self, parameter, dispersion): 1557 value= None 1558 new_pre = parameter.split("_", 1)[0] 1559 new_parameter = parameter.split("_", 1)[1] 1560 try: 1561 if new_pre == 'p1' and \ 1562 new_parameter in self.p_model1.dispersion.keys(): 1563 value= self.p_model1.set_dispersion(new_parameter, dispersion) 1564 if new_pre == 'p2' and \ 1565 new_parameter in self.p_model2.dispersion.keys(): 1566 value= self.p_model2.set_dispersion(new_parameter, dispersion) 1567 self._set_dispersion() 1568 return value 1569 except: 1570 raise 1571 1572 def fill_description(self, p_model1, p_model2): 1573 description = "" 1574 description += "This model gives the summation or multiplication of" 1575 description += "%s and %s. "% ( p_model1.name, p_model2.name ) 1576 self.description += description 1577 1578 if __name__ == "__main__": 1579 m1= Model() 1580 #m1.setParam("p1_scale", 25) 1581 #m1.setParam("p1_length", 1000) 1582 #m1.setParam("p2_scale", 100) 1583 #m1.setParam("p2_rg", 100) 1584 out1 = m1.runXY(0.01) 1585 1586 m2= Model() 1587 #m2.p_model1.setParam("scale", 25) 1588 #m2.p_model1.setParam("length", 1000) 1589 #m2.p_model2.setParam("scale", 100) 1590 #m2.p_model2.setParam("rg", 100) 1591 out2 = m2.p_model1.runXY(0.01) %s m2.p_model2.runXY(0.01)\n 1592 print "My name is %s."% m1.name 1593 print out1, " = ", out2 1594 if out1 == out2: 1595 print "===> Simple Test: Passed!" 1596 else: 1597 print "===> Simple Test: Failed!" 1213 from sasmodels.core import load_model_info 1214 from sasmodels.sasview_model import make_model_from_info 1215 1216 model_info = load_model_info('{model1}{operator}{model2}') 1217 model_info.name = '{name}'{desc_line} 1218 Model = make_model_from_info(model_info) 1598 1219 """ 1599 1600 1220 if __name__ == "__main__": 1601 1221 # app = wx.PySimpleApp() -
src/sas/sasgui/perspectives/fitting/fitting.py
r489f53a r2d9526d 1742 1742 @param unsmeared_error: data error, rescaled to unsmeared model 1743 1743 """ 1744 1745 1744 number_finite = np.count_nonzero(np.isfinite(y)) 1746 1745 np.nan_to_num(y) … … 1748 1747 data_description=model.name, 1749 1748 data_id=str(page_id) + " " + data.name) 1749 plots_to_update = [] # List of plottables that have changed since last calculation 1750 # Create the new theories 1750 1751 if unsmeared_model is not None: 1751 self.create_theory_1D(x, unsmeared_model, page_id, model, data, state, 1752 unsmeared_model_plot = self.create_theory_1D(x, unsmeared_model, 1753 page_id, model, data, state, 1752 1754 data_description=model.name + " unsmeared", 1753 1755 data_id=str(page_id) + " " + data.name + " unsmeared") 1756 plots_to_update.append(unsmeared_model_plot) 1754 1757 1755 1758 if unsmeared_data is not None and unsmeared_error is not None: 1756 self.create_theory_1D(x, unsmeared_data, page_id, model, data, state, 1759 unsmeared_data_plot = self.create_theory_1D(x, unsmeared_data, 1760 page_id, model, data, state, 1757 1761 data_description="Data unsmeared", 1758 1762 data_id="Data " + data.name + " unsmeared", 1759 1763 dy=unsmeared_error) 1760 # Comment this out until we can get P*S models with correctly populated parameters 1761 #if sq_model is not None and pq_model is not None: 1762 # self.create_theory_1D(x, sq_model, page_id, model, data, state, 1763 # data_description=model.name + " S(q)", 1764 # data_id=str(page_id) + " " + data.name + " S(q)") 1765 # self.create_theory_1D(x, pq_model, page_id, model, data, state, 1766 # data_description=model.name + " P(q)", 1767 # data_id=str(page_id) + " " + data.name + " P(q)") 1764 plots_to_update.append(unsmeared_data_plot) 1765 if sq_model is not None and pq_model is not None: 1766 sq_id = str(page_id) + " " + data.name + " S(q)" 1767 sq_plot = self.create_theory_1D(x, sq_model, page_id, model, data, state, 1768 data_description=model.name + " S(q)", 1769 data_id=sq_id) 1770 plots_to_update.append(sq_plot) 1771 pq_id = str(page_id) + " " + data.name + " P(q)" 1772 pq_plot = self.create_theory_1D(x, pq_model, page_id, model, data, state, 1773 data_description=model.name + " P(q)", 1774 data_id=pq_id) 1775 plots_to_update.append(pq_plot) 1776 # Update the P(Q), S(Q) and unsmeared theory plots if they exist 1777 wx.PostEvent(self.parent, NewPlotEvent(plots=plots_to_update, 1778 action='update')) 1768 1779 1769 1780 current_pg = self.fit_panel.get_page_by_id(page_id) -
src/sas/sasgui/perspectives/fitting/media/fitting_help.rst
r5295cf5 rca383a0 195 195 the :ref:`Advanced_Plugin_Editor` . 196 196 197 **SasView version 4.2** made it possible to specify whether a plugin created with 198 the *New Plugin Model* dialog is actually a form factor P(Q) or a structure factor 199 S(Q). To do this, simply add one or other of the following lines under the *import* 200 statements. 201 202 For a form factor:: 203 204 form_factor = True 205 206 or for a structure factor:: 207 208 structure_factor = True 209 210 If the plugin is a structure factor it is *also* necessary to add two variables to 211 the parameter list:: 212 213 parameters = [ 214 ['radius_effective', '', 1, [0.0, numpy.inf], 'volume', ''], 215 ['volfraction', '', 1, [0.0, 1.0], '', ''], 216 [...], 217 218 and to the declarations of the functions Iq and Iqxy::: 219 220 def Iq(x , radius_effective, volfraction, ...): 221 222 def Iqxy(x, y, radius_effective, volfraction, ...): 223 224 Such a plugin should then be available in the S(Q) drop-down box on a FitPage (once 225 a P(Q) model has been selected). 226 197 227 Sum|Multi(p1,p2) 198 228 ^^^^^^^^^^^^^^^^ … … 206 236 or:: 207 237 208 Plugin Model = scale_factor * model_1 /* model_2+ background238 Plugin Model = scale_factor * (model1 * model2) + background 209 239 210 240 In the *Easy Sum/Multi Editor* give the new model a function name and brief 211 241 description (to appear under the *Details* button on the *FitPage*). Then select 212 242 two existing models, as p1 and p2, and the required operator, '+' or '*' between 213 them. Finally, click the *Apply* button to generate the model and then click *Close*. 214 215 Any changes to a plugin model generated in this way only become effective *after* it is re-selected from the model drop-down menu on the FitPage. 243 them. Finally, click the *Apply* button to generate and test the model and then click *Close*. 244 245 Any changes to a plugin model generated in this way only become effective *after* it is re-selected 246 from the plugin models drop-down menu on the FitPage. If the model is not listed you can force a 247 recompilation of the plugins by selecting *Fitting* > *Plugin Model Operations* > *Load Plugin Models*. 248 249 **SasView version 4.2** introduced a much simplified and more extensible structure for plugin models 250 generated through the Easy Sum/Multi Editor. For example, the code for a combination of a sphere model 251 with a power law model now looks like this:: 252 253 from sasmodels.core import load_model_info 254 from sasmodels.sasview_model import make_model_from_info 255 256 model_info = load_model_info('sphere+power_law') 257 model_info.name = 'MyPluginModel' 258 model_info.description = 'sphere + power_law' 259 Model = make_model_from_info(model_info) 260 261 To change the models or operators contributing to this plugin it is only necessary to edit the string 262 in the brackets after *load_model_info*, though it would also be a good idea to update the model name 263 and description too!!! 264 265 The model specification string can handle multiple models and combinations of operators (+ or *) which 266 are processed according to normal conventions. Thus 'model1+model2*model3' would be valid and would 267 multiply model2 by model3 before adding model1. In this example, parameters in the *FitPage* would be 268 prefixed A (for model2), B (for model3) and C (for model1). Whilst this might appear a little 269 confusing, unless you were creating a plugin model from multiple instances of the same model the parameter 270 assignments ought to be obvious when you load the plugin. 271 272 If you need to include another plugin model in the model specification string, just prefix the name of 273 that model with *custom*. For instance:: 274 275 sphere+custom.MyPluginModel 276 277 To create a P(Q)*\S(Q) model use the @ symbol instead of * like this:: 278 279 sphere@hardsphere 280 281 This streamlined approach to building complex plugin models from existing library models, or models 282 available on the *Model Marketplace*, also permits the creation of P(Q)*\S(Q) plugin models, something 283 that was not possible in earlier versions of SasView. 216 284 217 285 .. _Advanced_Plugin_Editor: … … 484 552 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 485 553 554 .. _Batch_Fit_Mode: 555 486 556 Batch Fit Mode 487 557 -------------- … … 636 706 637 707 Example: radius [2 : 5] , radius [10 : 25] 638 639 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 640 641 .. note:: This help document was last changed by Steve King, 10Oct2016 708 709 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 710 711 Combined Batch Fit Mode 712 ----------------------- 713 714 The purpose of the Combined Batch Fit is to allow running two or more batch 715 fits in sequence without overwriting the output table of results. This may be 716 of interest for example if one is fitting a series of data sets where there is 717 a shape change occurring in the series that requires changing the model part 718 way through the series; for example a sphere to rod transition. Indeed the 719 regular batch mode does not allow for multiple models and requires all the 720 files in the series to be fit with single model and set of parameters. While 721 it is of course possible to just run part of the series as a batch fit using 722 model one followed by running another batch fit on the rest of the series with 723 model two (and/or model three etc), doing so will overwrite the table of 724 outputs from the previous batch fit(s). This may not be desirable if one is 725 interested in comparing the parameters: for example the sphere radius of set 726 one and the cylinder radius of set two. 727 728 Method 729 ^^^^^^ 730 731 In order to use the *Combined Batch Fit*, first load all the data needed as 732 described in :ref:`Loading_data`. Next start up two or more *BatchPage* fits 733 following the instructions in :ref:`Batch_Fit_Mode` but **DO NOT PRESS FIT**. 734 At this point the *Combine Batch Fit* menu item under the *Fitting menu* should 735 be active (if there is one or no *BatchPage* the menu item will be greyed out 736 and inactive). Clicking on *Combine Batch Fit* will bring up a new panel, 737 similar to the *Const & Simult Fit* panel. In this case there will be a 738 checkbox for each *BatchPage* instead of each *FitPage* that should be included 739 in the fit. Once all are selected, click the Fit button on 740 the *BatchPage* to run each batch fit in *sequence* 741 742 .. image:: combine_batch_page.png 743 744 The batch table will then pop up at the end as for the case of the simple Batch 745 Fitting with the following caveats: 746 747 .. note:: 748 The order matters. The parameters in the table will be taken from the model 749 used in the first *BatchPage* of the list. Any parameters from the 750 second and later *BatchPage* s that have the same name as a parameter in the 751 first will show up allowing for plotting of that parameter across the 752 models. The other parameters will not be available in the grid. 753 .. note:: 754 a corralary of the above is that currently models created as a sum|multiply 755 model will not work as desired because the generated model parameters have a 756 p#_ appended to the beginning and thus radius and p1_radius will not be 757 recognized as the same parameter. 758 759 .. image:: combine_batch_grid.png 760 761 In the example shown above the data is a time series with a shifting peak. 762 The first part of the series was fitted using the *broad_peak* model, while 763 the rest of the data were fit using the *gaussian_peak* model. Unfortunately the 764 time is not listed in the file but the file name contains the information. As 765 described in :ref:`Grid_Window`, a column can be added manually, in this case 766 called time, and the peak position plotted against time. 767 768 .. image:: combine_batch_plot.png 769 770 Note the discontinuity in the peak position. This reflects the fact that the 771 Gaussian fit is a rather poor model for the data and is not actually 772 finding the peak. 773 774 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 775 776 .. note:: This help document was last changed by Paul Butler, 10 September 777 2017 -
src/sas/sasgui/perspectives/fitting/media/plugin.rst
r72100ee re081946 18 18 * By writing a model from scratch outside of SasView (only recommended for 19 19 code monkeys!) 20 21 **What follows below is quite technical. If you just want a helping hand to get 22 started creating your own models see** :ref:`Adding_your_own_models`. 20 23 21 24 Overview -
src/sas/sasgui/perspectives/fitting/model_thread.py
r7432acb r0f9ea1c 71 71 (self.data.qy_data * self.data.qy_data)) 72 72 73 # For theory, qmax is based on 1d qmax 73 # For theory, qmax is based on 1d qmax 74 74 # so that must be mulitified by sqrt(2) to get actual max for 2d 75 75 index_model = (self.qmin <= radius) & (radius <= self.qmax) … … 91 91 self.data.qy_data[index_model] 92 92 ]) 93 output = np.zeros(len(self.data.qx_data)) 93 # Initialize output to NaN so masked elements do not get plotted. 94 output = np.empty_like(self.data.qx_data) 94 95 # output default is None 95 96 # This method is to distinguish between masked 96 97 #point(nan) and data point = 0. 97 output = output / output98 output[:] = np.NaN 98 99 # set value for self.mask==True, else still None to Plottools 99 100 output[index_model] = value … … 198 199 output[index] = self.model.evalDistribution(self.data.x[index]) 199 200 201 x=self.data.x[index] 202 y=output[index] 200 203 sq_values = None 201 204 pq_values = None 202 s_model = None203 p_model = None204 205 if isinstance(self.model, MultiplicationModel): 205 206 s_model = self.model.s_model 206 207 p_model = self.model.p_model 207 elif hasattr(self.model, "get_composition_models"): 208 p_model, s_model = self.model.get_composition_models() 209 210 if p_model is not None and s_model is not None: 211 sq_values = np.zeros((len(self.data.x))) 212 pq_values = np.zeros((len(self.data.x))) 213 sq_values[index] = s_model.evalDistribution(self.data.x[index]) 214 pq_values[index] = p_model.evalDistribution(self.data.x[index]) 208 sq_values = s_model.evalDistribution(x) 209 pq_values = p_model.evalDistribution(x) 210 elif hasattr(self.model, "calc_composition_models"): 211 results = self.model.calc_composition_models(x) 212 if results is not None: 213 pq_values, sq_values = results 214 215 215 216 216 elapsed = time.time() - self.starttime 217 217 218 self.complete(x= self.data.x[index], y=output[index],218 self.complete(x=x, y=y, 219 219 page_id=self.page_id, 220 220 state=self.state, -
src/sas/sasgui/perspectives/fitting/simfitpage.py
r959eb01 ra9f9ca4 1 1 """ 2 Simultaneous fit page2 Simultaneous or Batch fit page 3 3 """ 4 # Note that this is used for both Simultaneous/Constrained fit AND for 5 # combined batch fit. This is done through setting of the batch_on parameter. 6 # There are the a half dozen or so places where an if statement is used as in 7 # if not batch_on: 8 # xxxx 9 # else: 10 # xxxx 11 # This is just wrong but dont have time to fix this go. Proper approach would be 12 # to strip all parts of the code that depend on batch_on and create the top 13 # level class from which a contrained/simultaneous fit page and a combined 14 # batch page inherit. 15 # 16 # 04/09/2017 --PDB 17 4 18 import sys 5 19 from collections import namedtuple … … 400 414 # General Help button 401 415 self.btHelp = wx.Button(self, wx.ID_HELP, 'HELP') 402 self.btHelp.SetToolTipString("Simultaneous/Constrained Fitting help.") 416 if self.batch_on: 417 self.btHelp.SetToolTipString("Combined Batch Fitting help.") 418 else: 419 self.btHelp.SetToolTipString("Simultaneous/Constrained Fitting help.") 403 420 self.btHelp.Bind(wx.EVT_BUTTON, self._on_help) 404 421 … … 527 544 """ 528 545 _TreeLocation = "user/sasgui/perspectives/fitting/fitting_help.html" 529 _PageAnchor = "#simultaneous-fit-mode" 530 _doc_viewer = DocumentationWindow(self, self.ID_DOC, _TreeLocation, 546 if not self.batch_on: 547 _PageAnchor = "#simultaneous-fit-mode" 548 _doc_viewer = DocumentationWindow(self, self.ID_DOC, _TreeLocation, 531 549 _PageAnchor, 532 550 "Simultaneous/Constrained Fitting Help") 551 else: 552 _PageAnchor = "#combined-batch-fit-mode" 553 _doc_viewer = DocumentationWindow(self, self.ID_DOC, _TreeLocation, 554 _PageAnchor, 555 "Combined Batch Fit Help") 533 556 534 557 def set_manager(self, manager):
Note: See TracChangeset
for help on using the changeset viewer.