 Timestamp:
 Mar 19, 2016 10:42:09 AM (4 years ago)
 Branches:
 master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release4.1.1, release4.1.2, release4.2.2, release_4.0.1, ticket1009, ticket1094headless, ticket12422dresolution, ticket1243, ticket1249, ticket885, unittestsaveload
 Children:
 66f21cd
 Parents:
 05fb3d6b
 Location:
 test
 Files:

 76 deleted
 2 edited
Legend:
 Unmodified
 Added
 Removed

test/sascalculator/test/utest_sas_gen.py
rb699768 ref908db 7 7 import unittest 8 8 from sas.sascalc.calculator import sas_gen 9 from sas.models.SphereModel import SphereModel10 9 11 10 import numpy … … 18 17 self.sldloader = sas_gen.SLDReader() 19 18 self.pdbloader = sas_gen.PDBReader() 20 self.omfloader = sas_gen.OMFReader() 21 self.comp = SphereModel() 19 self.omfloader = sas_gen.OMFReader() 22 20 23 21 def test_sldreader(self): … … 53 51 self.assertEqual(output.pos_z[0], 0.0) 54 52 55 """56 def test_slda_and_run(self): # Works when sld reader uses loadtxt57 sld_data = self.sldloader.read("sphere697_r30.sld")58 # Generic computation59 model = sas_gen.GenSAS()60 model.setParam('background', 0.0)61 model.setParam('scale', 1.0)62 model.setParam('Up_frac_in', 0.5)63 model.setParam('Up_frac_out', 0.5)64 model.setParam('Up_theta', 0.0)65 x = numpy.array([0.01])66 y = numpy.array([0.01])67 model.set_sld_data(sld_data)68 out_gen = model.runXY([x, y])69 # Analytic computation70 analy_model = self.comp71 analy_model.setParam('background', 0.0)72 analy_model.setParam('scale', 1.0)73 analy_model.setParam('radius', 30.0)74 analy_model.setParam('sldSolv', 0.0)75 analy_model.setParam('sldSph', 6.97e06)76 out_analy = analy_model.runXY([0.01, 0.01])77 # Comparison78 self.assertAlmostEqual(out_gen[0], out_analy, 1)79 """80 53 if __name__ == '__main__': 81 54 unittest.main() 
test/sasdataloader/test/utest_smearing.py
rfc18690 ref908db 10 10 #from DataLoader.qsmearing import SlitSmearer, QSmearer, smear_selection 11 11 from sas.sascalc.data_util.qsmearing import SlitSmearer, QSmearer, smear_selection 12 from sas.models.SphereModel import SphereModel13 12 import os.path 14 13 from time import time … … 92 91 for i in range(len(input)): 93 92 self.assertAlmostEqual(answer[i], output[i], 2) 94 95 class smear_test_1Dpinhole(unittest.TestCase):96 97 def setUp(self):98 # NIST sample data99 self.data = Loader().load("CMSphere5.txt")100 # NIST smeared sphere w/ param values below101 self.answer = Loader().load("CMSphere5smearsphere.txt")102 # call spheremodel103 self.model = SphereModel()104 # setparams consistent with Igor default105 self.model.setParam('scale', 1.0)106 self.model.setParam('background', 0.01)107 self.model.setParam('radius', 60.0)108 self.model.setParam('sldSolv', 6.3e06)109 self.model.setParam('sldSph', 1.0e06)110 111 def test_q(self):112 """113 Compare Pinhole resolution smearing with NIST114 """115 # x values116 input = numpy.zeros(len(self.data.x))117 # set time118 st1 = time()119 # cal I w/o smear120 input = self.model.evalDistribution(self.data.x)121 # Cal_smear (first call)122 for i in range(1000):123 s = QSmearer(self.data, self.model)124 # stop and record time taken125 first_call_time = time()st1126 # set new time127 st = time()128 # cal I w/o smear (this is not neccessary to call but just to be fare129 input = self.model.evalDistribution(self.data.x)130 # smear cal (after first call done above)131 for i in range(1000):132 output = s(input)133 134 # record time taken135 last_call_time = time()st136 # compare the ratio of ((NIST_answerSsanView_answer)/NIST_answer)137 # If the ratio less than 1%, pass the test138 for i in range(len(self.data.x)):139 ratio = math.fabs((self.answer.y[i]output[i])/self.answer.y[i])140 if ratio > 0.006:141 ratio = 0.006142 self.assertEqual(math.fabs((self.answer.y[i]output[i])/ \143 self.answer.y[i]), ratio)144 # print145 print "\n NIST_time = 10sec:"146 print "Cal_time(1000 times of first_calls; ) = ", first_call_time147 print "Cal_time(1000 times of calls) = ", last_call_time148 93 149 94 if __name__ == '__main__':
Note: See TracChangeset
for help on using the changeset viewer.