Changeset ecc58e72 in sasview for sansmodels


Ignore:
Timestamp:
Aug 7, 2009 11:17:18 PM (15 years ago)
Author:
Mathieu Doucet <doucetm@…>
Branches:
master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, release_4.0.1, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
Children:
d9dc518
Parents:
26e4a24
Message:

sansmodels: changed BaseComponent?.evalDistribution to match the C API. Documented the API. Added unit tests to test the output against the existing methods.

Location:
sansmodels/src/sans/models
Files:
1 added
1 edited

Legend:

Unmodified
Added
Removed
  • sansmodels/src/sans/models/BaseComponent.py

    r26e4a24 recc58e72  
    6060        """ 
    6161            Evaluate a distribution of q-values. 
    62             A list of either scale q-values or [qx,qy] doublets 
    63             are assumed. The allowed data types for the doublets are  
    64             the same as for run() and runXY(). 
    65              
    66             Since the difference between scale and vector q-values 
    67             are dealt with in runXY(), we pass along the values 
    68             as-is. 
    69              
    70             @param qdist: list of scalar q-values or list of [qx,qy] doublets  
    71         """ 
    72         q_array = numpy.asarray(qdist) 
    73         iq_array = numpy.zeros(len(q_array)) 
    74         for i in xrange(len(q_array)): 
    75             iq_array[i] = self.runXY(q_array[i]) 
    76              
    77         return iq_array 
     62             
     63            * For 1D, a numpy array is expected as input: 
     64             
     65                evalDistribution(q) 
     66                 
     67            where q is a numpy array. 
     68             
     69             
     70            * For 2D, a list of numpy arrays are expected: [qx_prime,qy_prime]. 
     71             
     72            For the following matrix of q_values [qx,qy], we will have: 
     73                      +--------+--------+--------+ 
     74            qy[2]     |        |        |        |  
     75                      +--------+--------+--------+ 
     76            qy[1]     |        |        |        | 
     77                      +--------+--------+--------+             
     78            qy[0]     |        |        |        |  
     79                      +--------+--------+--------+ 
     80                        qx[0]    qx[1]    qx[2] 
     81 
     82 
     83            The q-values must be stored in numpy arrays. 
     84            The qxprime and qyprime are 2D arrays. From the two lists of q-values  
     85            above, numpy arrays must be created the following way: 
     86 
     87            qx_prime = numpy.reshape(qx, [3,1]) 
     88            qy_prime = numpy.reshape(qy, [1,3]) 
     89             
     90            The method is then called the following way: 
     91             
     92            evalDistribution([qx_prime, qy_prime]) 
     93             
     94            @param qdist: ndarray of scalar q-values or list [qx,qy] where qx,qy are 2D ndarrays  
     95        """ 
     96        if qdist.__class__.__name__ == 'list': 
     97            # Check whether we have a list of ndarrays [qx,qy] 
     98            if len(qdist)!=2 or \ 
     99                qdist[0].__class__.__name__ != 'ndarray' or \ 
     100                qdist[1].__class__.__name__ != 'ndarray': 
     101                    raise RuntimeError, "evalDistribution expects a list of 2 ndarrays" 
     102                 
     103            # Extract qx and qy for code clarity 
     104            qx = qdist[0] 
     105            qy = qdist[1] 
     106             
     107            # Create output array 
     108            iq_array = numpy.zeros([qx.shape[0], qy.shape[1]]) 
     109              
     110            for i in range(qx.shape[0]): 
     111                for j in range(qy.shape[1]): 
     112                    iq_array[i][j] = self.runXY([qx[i][0],qy[0][j]]) 
     113            return iq_array 
     114                 
     115        elif qdist.__class__.__name__ == 'ndarray': 
     116                # We have a simple 1D distribution of q-values 
     117                iq_array = numpy.zeros(len(qdist)) 
     118                for i in range(len(qdist)): 
     119                    iq_array[i] = self.runXY(qdist[i]) 
     120                return iq_array 
     121             
     122        else: 
     123            mesg = "evalDistribution is expecting an ndarray of scalar q-values" 
     124            mesg += " or a list [qx,qy] where qx,qy are 2D ndarrays." 
     125            raise RuntimeError, mesg 
    78126     
    79127    def clone(self): 
Note: See TracChangeset for help on using the changeset viewer.