Changeset eba9885 in sasview for sansmodels/src
- Timestamp:
- Aug 5, 2009 5:39:03 PM (15 years ago)
- Branches:
- master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, release_4.0.1, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
- Children:
- f88624d
- Parents:
- 8344c50
- Location:
- sansmodels/src/sans/models
- Files:
-
- 6 added
- 10 edited
Legend:
- Unmodified
- Added
- Removed
-
sansmodels/src/sans/models/c_extensions/c_models.c
r812b901 reba9885 52 52 addDisperser(m); 53 53 addCGaussian(m); 54 addCSchulz(m); 55 addCLogNormal(m); 54 56 addCLorentzian(m); 55 57 addCHollowCylinderModel(m); -
sansmodels/src/sans/models/c_models/c_models.cpp
r812b901 reba9885 48 48 void addCGaussian(PyObject *module); 49 49 void addCLorentzian(PyObject *module); 50 void addCLogNormal(PyObject *module); 51 void addCSchulz(PyObject *module); 50 52 } 51 53 … … 69 71 70 72 /** 73 * Delete a lognormal dispersion model object 74 */ 75 void del_lognormal_dispersion(void *ptr){ 76 LogNormalDispersion * disp = static_cast<LogNormalDispersion *>(ptr); 77 delete disp; 78 return; 79 } 80 81 /** 82 * Create a lognormal dispersion model as a python object 83 */ 84 PyObject * new_lognormal_dispersion(PyObject *, PyObject *args) { 85 LogNormalDispersion *disp = new LogNormalDispersion(); 86 return PyCObject_FromVoidPtr(disp, del_lognormal_dispersion); 87 } 88 89 /** 71 90 * Delete a gaussian dispersion model object 72 91 */ … … 84 103 return PyCObject_FromVoidPtr(disp, del_gaussian_dispersion); 85 104 } 105 106 /** 107 * Delete a schulz dispersion model object 108 */ 109 void del_schulz_dispersion(void *ptr){ 110 SchulzDispersion * disp = static_cast<SchulzDispersion *>(ptr); 111 delete disp; 112 return; 113 } 114 /** 115 * Create a schulz dispersion model as a python object 116 */ 117 PyObject * new_schulz_dispersion(PyObject *, PyObject *args) { 118 SchulzDispersion *disp = new SchulzDispersion(); 119 return PyCObject_FromVoidPtr(disp, del_schulz_dispersion); 120 } 121 86 122 87 123 /** … … 147 183 {"new_gaussian_model", (PyCFunction)new_gaussian_dispersion, METH_VARARGS, 148 184 "Create a new GaussianDispersion object"}, 185 {"new_lognormal_model", (PyCFunction)new_lognormal_dispersion, METH_VARARGS, 186 "Create a new LogNormalDispersion object"}, 187 {"new_schulz_model", (PyCFunction)new_schulz_dispersion, METH_VARARGS, 188 "Create a new SchulzDispersion object"}, 149 189 {"new_array_model", (PyCFunction)new_array_dispersion , METH_VARARGS, 150 190 "Create a new ArrayDispersion object"}, … … 194 234 addDisperser(m); 195 235 addCGaussian(m); 236 addCSchulz(m); 237 addCLogNormal(m); 196 238 addCLorentzian(m); 197 239 addCVesicleModel(m); 198 240 199 200 } 241 } -
sansmodels/src/sans/models/c_models/dispersion_visitor.cpp
rfca6936 reba9885 25 25 26 26 PyDict_SetItemString(dict, "type", Py_BuildValue("s", "gaussian")); 27 PyDict_SetItemString(dict, "npts", Py_BuildValue("i", disp->npts)); 28 PyDict_SetItemString(dict, "width", Py_BuildValue("d", disp->width)); 29 PyDict_SetItemString(dict, "nsigmas", Py_BuildValue("i", disp->nsigmas)); 30 #endif 31 } 32 33 void DispersionVisitor:: lognormal_to_dict(void* dispersion, void* dictionary) { 34 #ifndef __MODELS_STANDALONE__ 35 LogNormalDispersion * disp = (LogNormalDispersion*)dispersion; 36 PyObject * dict = (PyObject*)dictionary; 37 38 PyDict_SetItemString(dict, "type", Py_BuildValue("s", "lognormal")); 39 PyDict_SetItemString(dict, "npts", Py_BuildValue("i", disp->npts)); 40 PyDict_SetItemString(dict, "width", Py_BuildValue("d", disp->width)); 41 PyDict_SetItemString(dict, "nsigmas", Py_BuildValue("i", disp->nsigmas)); 42 #endif 43 } 44 45 46 void DispersionVisitor:: schulz_to_dict(void* dispersion, void* dictionary) { 47 #ifndef __MODELS_STANDALONE__ 48 SchulzDispersion * disp = (SchulzDispersion*)dispersion; 49 PyObject * dict = (PyObject*)dictionary; 50 51 PyDict_SetItemString(dict, "type", Py_BuildValue("s", "schulz")); 27 52 PyDict_SetItemString(dict, "npts", Py_BuildValue("i", disp->npts)); 28 53 PyDict_SetItemString(dict, "width", Py_BuildValue("d", disp->width)); … … 61 86 } 62 87 88 void DispersionVisitor:: lognormal_from_dict(void* dispersion, void* dictionary) { 89 #ifndef __MODELS_STANDALONE__ 90 LogNormalDispersion * disp = (LogNormalDispersion*)dispersion; 91 PyObject * dict = (PyObject*)dictionary; 92 93 disp->npts = PyInt_AsLong( PyDict_GetItemString(dict, "npts") ); 94 disp->width = PyFloat_AsDouble( PyDict_GetItemString(dict, "width") ); 95 disp->nsigmas = PyFloat_AsDouble( PyDict_GetItemString(dict, "nsigmas") ); 96 #endif 97 } 98 void DispersionVisitor:: schulz_from_dict(void* dispersion, void* dictionary) { 99 #ifndef __MODELS_STANDALONE__ 100 SchulzDispersion * disp = (SchulzDispersion*)dispersion; 101 PyObject * dict = (PyObject*)dictionary; 102 103 disp->npts = PyInt_AsLong( PyDict_GetItemString(dict, "npts") ); 104 disp->width = PyFloat_AsDouble( PyDict_GetItemString(dict, "width") ); 105 disp->nsigmas = PyFloat_AsDouble( PyDict_GetItemString(dict, "nsigmas") ); 106 #endif 107 } 108 63 109 void DispersionVisitor:: array_from_dict(void* dispersion, void* dictionary) {} -
sansmodels/src/sans/models/c_models/dispersion_visitor.hh
rfca6936 reba9885 19 19 void dispersion_to_dict(void *, void *); 20 20 void gaussian_to_dict(void *, void *); 21 void lognormal_to_dict(void *, void *); 22 void schulz_to_dict(void*, void *); 21 23 void array_to_dict(void *, void *); 22 24 23 25 void dispersion_from_dict(void*, void *); 24 26 void gaussian_from_dict(void*, void *); 27 void lognormal_from_dict(void*, void *); 28 void schulz_from_dict(void*, void *); 25 29 void array_from_dict(void*, void *); 26 30 -
sansmodels/src/sans/models/c_models/parameters.cpp
r07da749 reba9885 136 136 } 137 137 } 138 139 140 /** 141 * LogNormal dispersion 142 */ 143 144 LogNormalDispersion :: LogNormalDispersion() { 145 npts = 1; 146 width = 0.0; 147 nsigmas = 2; 148 }; 149 150 void LogNormalDispersion :: accept_as_source(DispersionVisitor* visitor, void* from, void* to) { 151 visitor->lognormal_to_dict(from, to); 152 } 153 void LogNormalDispersion :: accept_as_destination(DispersionVisitor* visitor, void* from, void* to) { 154 visitor->lognormal_from_dict(from, to); 155 } 156 157 double lognormal_weight(double mean, double sigma, double x) { 158 159 double sigma2 = pow(sigma, 2); 160 return 1/(x*sigma2) * exp( -pow((log(x) -mean), 2) / (2*sigma2)); 161 162 } 163 164 /** 165 * Lognormal dispersion 166 * @param mean: mean value of the LogNormal 167 * @param sigma: standard deviation of the LogNormal 168 * @param x: value at which the LogNormal is evaluated 169 * @return: value of the LogNormal 170 */ 171 void LogNormalDispersion :: operator() (void *param, vector<WeightPoint> &weights){ 172 // Check against zero width 173 if (width<=0) { 174 width = 0.0; 175 npts = 1; 176 nsigmas = 3; 177 } 178 179 Parameter* par = (Parameter*)param; 180 double value = (*par)(); 181 182 if (npts<2) { 183 weights.insert(weights.end(), WeightPoint(value, 1.0)); 184 } else { 185 for(int i=0; i<npts; i++) { 186 // We cover n(nsigmas) times sigmas on each side of the mean 187 double val = value + width * (2.0*nsigmas*i/float(npts-1) - nsigmas); 188 189 if ( ((*par).has_min==false || val>(*par).min) 190 && ((*par).has_max==false || val<(*par).max) ) { 191 double _w = lognormal_weight(value, width, val); 192 weights.insert(weights.end(), WeightPoint(val, _w)); 193 } 194 } 195 } 196 } 197 198 199 200 /** 201 * Schulz dispersion 202 */ 203 204 SchulzDispersion :: SchulzDispersion() { 205 npts = 1; 206 width = 0.0; 207 nsigmas = 2; 208 }; 209 210 void SchulzDispersion :: accept_as_source(DispersionVisitor* visitor, void* from, void* to) { 211 visitor->schulz_to_dict(from, to); 212 } 213 void SchulzDispersion :: accept_as_destination(DispersionVisitor* visitor, void* from, void* to) { 214 visitor->schulz_from_dict(from, to); 215 } 216 217 double schulz_weight(double mean, double sigma, double x) { 218 double vary, expo_value; 219 double z = pow(mean/ sigma, 2)-1; 220 double R= x/mean; 221 double zz= z+1; 222 return pow(zz,zz) * pow(R,z) * exp(-1*R*zz)/((mean) * tgamma(zz)) ; 223 } 224 225 /** 226 * Schulz dispersion 227 * @param mean: mean value of the Schulz 228 * @param sigma: standard deviation of the Schulz 229 * @param x: value at which the Schulz is evaluated 230 * @return: value of the Schulz 231 */ 232 void SchulzDispersion :: operator() (void *param, vector<WeightPoint> &weights){ 233 // Check against zero width 234 if (width<=0) { 235 width = 0.0; 236 npts = 1; 237 nsigmas = 3; 238 } 239 240 Parameter* par = (Parameter*)param; 241 double value = (*par)(); 242 243 if (npts<2) { 244 weights.insert(weights.end(), WeightPoint(value, 1.0)); 245 } else { 246 for(int i=0; i<npts; i++) { 247 // We cover n(nsigmas) times sigmas on each side of the mean 248 double val = value + width * (2.0*nsigmas*i/float(npts-1) - nsigmas); 249 250 if ( ((*par).has_min==false || val>(*par).min) 251 && ((*par).has_max==false || val<(*par).max) ) { 252 double _w = schulz_weight(value, width, val); 253 weights.insert(weights.end(), WeightPoint(val, _w)); 254 } 255 } 256 } 257 } 258 259 260 138 261 139 262 /** -
sansmodels/src/sans/models/c_models/parameters.hh
rfca6936 reba9885 77 77 78 78 /** 79 * Schulz dispersion model 80 */ 81 class SchulzDispersion: public DispersionModel { 82 public: 83 /// Number of sigmas on each side of the mean 84 int nsigmas; 85 86 SchulzDispersion(); 87 void operator()(void *, vector<WeightPoint>&); 88 void accept_as_source(DispersionVisitor*, void*, void*); 89 void accept_as_destination(DispersionVisitor*, void*, void*); 90 }; 91 92 /** 93 * LogNormal dispersion model 94 */ 95 class LogNormalDispersion: public DispersionModel { 96 public: 97 /// Number of sigmas on each side of the mean 98 int nsigmas; 99 100 LogNormalDispersion(); 101 void operator()(void *, vector<WeightPoint>&); 102 void accept_as_source(DispersionVisitor*, void*, void*); 103 void accept_as_destination(DispersionVisitor*, void*, void*); 104 }; 105 106 107 /** 79 108 * Dispersion model based on arrays provided by the user 80 109 */ -
sansmodels/src/sans/models/dispersion_models.py
r988130c6 reba9885 74 74 Set the weights of an array dispersion 75 75 """ 76 message = "set_weights is not available for GaussiantDispersion.\n" 76 message = "set_weights is not available for GaussianDispersion.\n" 77 message += " Solution: Use an ArrayDispersion object" 78 raise "RuntimeError", message 79 80 class SchulzDispersion(DispersionModel): 81 """ 82 Python bridge class for a dispersion model based 83 on a Schulz distribution. 84 """ 85 def __init__(self): 86 self.cdisp = c_models.new_schulz_model() 87 88 def set_weights(self, values, weights): 89 """ 90 Set the weights of an array dispersion 91 """ 92 message = "set_weights is not available for SchulzDispersion.\n" 93 message += " Solution: Use an ArrayDispersion object" 94 raise "RuntimeError", message 95 96 class LogNormalDispersion(DispersionModel): 97 """ 98 Python bridge class for a dispersion model based 99 on a Log Normal distribution. 100 """ 101 def __init__(self): 102 self.cdisp = c_models.new_lognormal_model() 103 104 def set_weights(self, values, weights): 105 """ 106 Set the weights of an array dispersion 107 """ 108 message = "set_weights is not available for LogNormalDispersion.\n" 77 109 message += " Solution: Use an ArrayDispersion object" 78 110 raise "RuntimeError", message … … 100 132 c_models.set_dispersion_weights(self.cdisp, values, weights) 101 133 102 models = {GaussianDispersion:"GaussianModel", ArrayDispersion:"MyModel"} 134 models = {GaussianDispersion:"GaussianModel", ArrayDispersion:"MyModel", 135 SchulzDispersion: "Schulz", LogNormalDispersion: "LogNormal"} 103 136 -
sansmodels/src/sans/models/test/utest_dispersity.py
r8809e48 reba9885 57 57 58 58 new_model = self.model.clone() 59 print "gaussian",self.model.run(0.001) 59 60 self.assertAlmostEqual(new_model.run(0.001), 4723.32213339, 3) 60 61 self.assertAlmostEqual(new_model.runXY([0.001,0.001]), 4743.56, 2) 62 63 def test_schulz_zero(self): 64 from sans.models.dispersion_models import SchulzDispersion 65 disp = SchulzDispersion() 66 self.model.set_dispersion('radius', disp) 67 self.model.dispersion['radius']['width'] = 5.0 68 #self.model.dispersion['radius']['width'] = 0.0 69 self.model.dispersion['radius']['npts'] = 100 70 #self.model.setParam('scale', 1.0) 71 self.model.setParam('scale', 10.0) 72 print "schulz",self.model.run(0.001), self.model.dispersion 73 self.assertAlmostEqual(self.model.run(0.001), 450.355, 3) 74 self.assertAlmostEqual(self.model.runXY([0.001,0.001]), 452.299, 3) 75 76 def test_lognormal_zero(self): 77 from sans.models.dispersion_models import LogNormalDispersion 78 disp = LogNormalDispersion() 79 self.model.set_dispersion('radius', disp) 80 self.model.dispersion['radius']['width'] = 5.0 81 #self.model.dispersion['radius']['width'] = 0.0 82 self.model.dispersion['radius']['npts'] = 100 83 #self.model.setParam('scale', 1.0) 84 self.model.setParam('scale', 10.0) 85 print "model dispersion",self.model.dispersion 86 print "lognormal",self.model.run(0.001) 87 self.assertAlmostEqual(self.model.run(0.001), 450.355, 3) 88 self.assertAlmostEqual(self.model.runXY([0.001,0.001]), 452.299, 3) 61 89 62 90 def test_gaussian_zero(self): -
sansmodels/src/sans/models/test/utest_models.py
rae60f86 reba9885 24 24 def test1D(self): 25 25 """ Test 1D model for a sphere """ 26 self.assertAlmostEqual(self.comp.run(1.0), 5 6.3878, 4)26 self.assertAlmostEqual(self.comp.run(1.0), 5.6387e-5, 4) 27 27 28 28 def test1D_2(self): 29 29 """ Test 2D model for a sphere """ 30 self.assertAlmostEqual(self.comp.run([1.0, 1.3]), 5 6.3878, 4)30 self.assertAlmostEqual(self.comp.run([1.0, 1.3]), 5.63878e-5, 4) 31 31 32 32 class TestCyl(unittest.TestCase): -
sansmodels/src/sans/models/test/utest_models_array.py
r812b901 reba9885 8 8 9 9 class TestSphere(unittest.TestCase): 10 """ Unit tests for sphere model """10 """ Unit tests for sphere model using evalDistribution function """ 11 11 12 12 def setUp(self): … … 18 18 def test1D(self): 19 19 """ Test 1D model for a sphere with vector as input""" 20 answer =numpy.array([5.63877831e-05,2.57231782e-06,2.73704050e-07,2.54229069e-08])20 answer = numpy.array([5.63877831e-05,2.57231782e-06,2.73704050e-07,2.54229069e-08]) 21 21 22 testvector= self.comp.run(self.x) 22 23 testvector= self.comp.evalDistribution(self.x) 23 24 24 25 self.assertAlmostEqual(len(testvector),4) … … 33 34 """ Test 2D model for a sphere for 2 scalar """ 34 35 self.assertAlmostEqual(self.comp.run([1.0, 1.3]), 56.3878e-06, 4) 35 36 37 def test1D_3(self): 38 """ Test 2D model for a Shpere for 2 vectors as input """ 39 x= numpy.reshape(self.x, [len(self.x),1]) 40 y= numpy.reshape(self.y, [1,len(self.y)]) 41 vect = self.comp.evalDistribution([x,y]) 42 self.assertAlmostEqual(vect[0][0],9.2985e-07, 4) 43 self.assertAlmostEqual(vect[len(self.x)-1][len(self.y)-1],1.3871e-08, 4) 44 36 45 37 46 class TestCylinder(unittest.TestCase): 38 """ Unit tests for sphere model"""47 """ Unit tests for Cylinder model using evalDistribution function """ 39 48 40 49 def setUp(self): … … 42 51 self.comp = CylinderModel() 43 52 self.x = numpy.array([1.0,2.0,3.0, 4.0]) 44 self.y = numpy.array([1.0,2.0,3.0, 4.0])53 self.y = self.x +1 45 54 46 55 def test1D(self): 47 """ Test 1D model for a Cylinder with vector as input""" 56 """ Test 1D model for a cylinder with vector as input""" 57 48 58 answer = numpy.array([1.98860592e-04,7.03686335e-05,2.89144683e-06,2.04282827e-06]) 49 testvector= self.comp.run(self.x) 50 59 60 testvector= self.comp.evalDistribution(self.x) 51 61 self.assertAlmostEqual(len(testvector),4) 52 62 for i in xrange(len(answer)): … … 54 64 55 65 def test1D_1(self): 56 """ Test 2D model for a Cylinderwith scalar as input"""57 self.assertAlmostEqual(self.comp.run( 1.0),1.9886e-04, 4)66 """ Test 2D model for a cylinder with scalar as input""" 67 self.assertAlmostEqual(self.comp.run(0.2), 0.041761386790780453, 4) 58 68 59 69 def test1D_2(self): 60 """ Test 2D model for a Cylinder for 2 scalar """ 61 self.assertAlmostEqual(self.comp.run([1.0, 1.3]), 56.3878e-06, 4) 70 """ Test 2D model of a cylinder """ 71 self.comp.setParam('cyl_theta', 1.0) 72 self.comp.setParam('cyl_phi', 1.0) 73 self.assertAlmostEqual(self.comp.run([0.2, 2.5]), 74 0.038176446608393366, 4) 62 75 63 76 def test1D_3(self): 64 """ Test 2D model for a Cylinder for 2 vectors as input """ 65 ans_input = numpy.zeros(len(self.x)) 66 temp_x = numpy.zeros(len(self.x)) 67 temp_y = numpy.zeros(len(self.y)) 77 """ Test 2D model for a cylinder for 2 vectors as input """ 78 x= numpy.reshape(self.x, [len(self.x),1]) 79 y= numpy.reshape(self.y, [1,len(self.y)]) 80 vect = self.comp.evalDistribution([x,y]) 81 82 self.assertAlmostEqual(vect[0][0],5.06121018e-08,4) 83 self.assertAlmostEqual(vect[len(self.x)-1][len(self.y)-1],2.5978e-11, 4) 68 84 69 for i in xrange(len(self.x)):70 qx = self.x[i]71 qy = self.y[i]72 73 temp_x[i]= qx*math.cos(qy)74 temp_y[i]= qx*math.sin(qy)75 76 value = math.sqrt(temp_x[i]*temp_x[i]+ temp_y[i]*temp_y[i] )#qx*qx +qy*qy)77 ans_input[i]= value78 79 vect_runXY_qx_qy = self.comp.runXY([temp_x, temp_y])80 vect_run_x_y = self.comp.run([self.x, self.y])81 85 82 for i in xrange(len(vect_runXY_qx_qy)):83 self.assertAlmostEqual(vect_runXY_qx_qy[i], vect_run_x_y[i])84 85 vect_run_x = self.comp.run(self.x)86 vect_run_answer = self.comp.run(ans_input)87 88 for i in xrange(len(vect_run_x )):89 self.assertAlmostEqual(vect_run_x [i], vect_run_answer[i])90 91 92 86 93 87 if __name__ == '__main__':
Note: See TracChangeset
for help on using the changeset viewer.