Changeset eacf6a8c in sasview


Ignore:
Timestamp:
Apr 4, 2014 11:51:42 AM (11 years ago)
Author:
smk78
Branches:
master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, release_4.0.1, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
Children:
77c13028
Parents:
f7bead2
Message:

Updated by SMK

File:
1 edited

Legend:

Unmodified
Added
Removed
  • src/sans/models/media/model_functions.rst

    r2005bb5 reacf6a8c  
    2525.. |pi| unicode:: U+03C0 
    2626.. |rho| unicode:: U+03C1 
    27 .. |sigma| unicode:: U+03C2 
     27.. |sigma| unicode:: U+03C3 
    2828.. |tau| unicode:: U+03C4 
    2929.. |upsilon| unicode:: U+03C5 
     
    3232.. |psi| unicode:: U+03C8 
    3333.. |omega| unicode:: U+03C9 
     34 
     35.. |bigdelta| unicode:: U+0394 
     36.. |biggamma| unicode:: U+0393 
     37 
     38.. |drho| replace:: |bigdelta|\ |rho| 
    3439 
    3540.. |Ang| unicode:: U+212B 
     
    4348.. |cm^3| replace:: cm\ :sup:`3` 
    4449.. |cm^-3| replace:: cm\ :sup:`-3` 
     50.. |sr^-1| replace:: sr\ :sup:`-1` 
    4551 
    4652.. |P0| replace:: P\ :sub:`0`\ 
     53.. |A2| replace:: A\ :sub:`2`\ 
    4754 
    4855 
     
    140147- SphereModel_ (including magnetic 2D version) 
    141148- BinaryHSModel_ 
    142 - FuzzySphereModel 
    143 - RaspBerryModel 
    144 - CoreShellModel (including magnetic 2D version) 
    145 - CoreMultiShellModel (including magnetic 2D version) 
    146 - Core2ndMomentModel 
    147 - MultiShellModel 
    148 - OnionExpShellModel 
    149 - VesicleModel 
    150 - SphericalSLDModel 
    151 - LinearPearlsModel 
    152 - PearlNecklaceModel 
     149- FuzzySphereModel_ 
     150- RaspBerryModel_ 
     151- CoreShellModel_ (including magnetic 2D version) 
     152- CoreMultiShellModel_ (including magnetic 2D version) 
     153- Core2ndMomentModel_ 
     154- MultiShellModel_ 
     155- OnionExpShellModel_ 
     156- VesicleModel_ 
     157- SphericalSLDModel_ 
     158- LinearPearlsModel_ 
     159- PearlNecklaceModel_ 
    153160 
    154161Cylinder-based 
     
    247254------------------------ 
    248255 
    249 - testmodel 
    250 - testmodel_2 
    251 - sum_p1_p2 
    252 - sum_Ap1_1_Ap2 
    253 - polynomial5 
    254 - sph_bessel_jn 
     256- testmodel_ 
     257- testmodel_2_ 
     258- sum_p1_p2_ 
     259- sum_Ap1_1_Ap2_ 
     260- polynomial5_ 
     261- sph_bessel_jn_ 
    255262 
    256263 
     
    329336The 2D scattering intensity is the same as above, regardless of the orientation of the q vector. 
    330337 
    331 The returned value is scaled to units of |cm^-1| and the parameters of the sphere model are the following: 
     338The returned value is scaled to units of |cm^-1| and the parameters of the SphereModel are the following: 
    332339 
    333340==============  ========  ============= 
     
    344351Research (Kline, 2006). 
    345352 
     353REFERENCE 
     354A. Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955) 
     355 
    346356*2.1.1.2. Validation of the SphereModel* 
    347357 
     
    380390.. image:: img/image008.PNG 
    381391 
    382 The parameters of the binary hard sphere are the following (in the names, *l* (or *ls*\ ) stands for larger spheres 
     392The parameters of the BinaryHSModel are the following (in the names, *l* (or *ls*\ ) stands for larger spheres 
    383393while *s* (or *ss*\ ) for the smaller spheres). 
    384394 
     
    392402solvent_sld     |Ang^-2|  6e-6 
    393403s_radius        |Ang|     25.0 
    394 vol_frac_ls               0.1 
    395 vol_frac_ss               0.2 
     404vol_frac_ls     None      0.1 
     405vol_frac_ss     None      0.2 
    396406==============  ========  ============= 
    397407 
     
    406416 
    407417REFERENCE 
    408 N. W. Ashcroft and D. C. Langreth, Physical Review, v. 156 (1967) 685-692 
    409  
    410 [Errata found in Phys. Rev. 166 (1968) 934.] 
     418N. W. Ashcroft and D. C. Langreth, *Physical Review*, 156 (1967) 685-692 
     419[Errata found in *Phys. Rev.* 166 (1968) 934] 
    411420 
    412421 
     
    416425**2.1.3. FuzzySphereModel** 
    417426 
    418 **This model is to calculate the scattering from spherical particles 
    419 with a "fuzzy" interface.** 
     427This model is to calculate the scattering from spherical particles with a "fuzzy" interface. 
    420428 
    421429*2.1.3.1. Definition* 
    422430 
     431The scattering intensity *I(q)* is calculated as: 
     432 
     433.. image:: img/image010.PNG 
     434 
     435where the amplitude *A(q)* is given as the typical sphere scattering convoluted with a Gaussian to get a gradual 
     436drop-off in the scattering length density 
     437 
     438.. image:: img/image011.PNG 
     439 
     440Here |A2|\ *(q)* is the form factor, *P(q)*. The scale is equivalent to the volume fraction of spheres, each of 
     441volume, *V*\. Contrast (|drho|) is the difference of scattering length densities of the sphere and the surrounding 
     442solvent. 
     443 
     444Poly-dispersion in radius and in fuzziness is provided for. 
     445 
     446The returned value is scaled to units of |cm^-1|\ |sr^-1|; ie, absolute scale. 
     447 
     448From the reference 
     449 
     450The "fuzziness" of the interface is defined by the parameter |sigma| :sub:`fuzzy`\ . The particle radius *R* 
     451represents the radius of the particle where the scattering length density profile decreased to 1/2 of the core 
     452density. The |sigma| :sub:`fuzzy`\ is the width of the smeared particle surface; i.e., the standard deviation 
     453from the average height of the fuzzy interface. The inner regions of the microgel that display a higher density 
     454are described by the radial box profile extending to a radius of approximately *Rbox* ~ *R* - 2\ |sigma|\ . The 
     455profile approaches zero as *Rsans* ~ *R* + 2\ |sigma|\ . 
     456 
     457For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 
     458 
     459.. image:: img/image008.PNG 
     460 
     461This example dataset is produced by running the FuzzySphereModel, using 200 data points, *qmin* = 0.001 -1, 
     462*qmax* = 0.7 |Ang^-1| and the default values 
     463 
     464==============  ========  ============= 
     465Parameter name  Units     Default value 
     466==============  ========  ============= 
     467scale           None      1.0 
     468radius          |Ang|     60 
     469fuzziness       |Ang|     10 
     470sldSolv         |Ang^-2|  3e-6 
     471sldSph          |Ang^-2|  1e-6 
     472background      |cm^-1|   0.001 
     473==============  ========  ============= 
     474 
     475.. image:: img/image012.JPG 
     476 
     477*Figure. 1D plot using the default values (w/200 data point).* 
     478 
     479REFERENCE 
     480M. Stieger, J. S. Pedersen, P. Lindner, W. Richtering, *Langmuir*, 20 (2004) 7283-7292 
     481 
     482 
     483 
     484.. _RaspBerryModel: 
     485 
     486**2.1.4. RaspBerryModel** 
     487 
     488Calculates the form factor, *P(q)*, for a "Raspberry-like" structure where there are smaller spheres at the surface 
     489of a larger sphere, such as the structure of a Pickering emulsion. 
     490 
     491*2.1.4.1. Definition* 
     492 
     493The structure is: 
     494 
     495.. image:: img/raspberry_pic.JPG 
     496 
     497where *Ro* = the radius of the large sphere, *Rp* = the radius of the smaller sphere on the surface, |delta| = the 
     498fractional penetration depth, and surface coverage = fractional coverage of the large sphere surface (0.9 max). 
     499 
     500The large and small spheres have their own SLD, as well as the solvent. The surface coverage term is a fractional 
     501coverage (maximum of approximately 0.9 for hexagonally-packed spheres on a surface). Since not all of the small 
     502spheres are necessarily attached to the surface, the excess free (small) spheres scattering is also included in the 
     503calculation. The function calculated follows equations (8)-(12) of the reference below, and the equations are not 
     504reproduced here. 
     505 
     506The returned value is scaled to units of |cm^-1|. No inter-particle scattering is included in this model. 
     507 
     508For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 
     509 
     510.. image:: img/image008.PNG 
     511 
     512This example dataset is produced by running the RaspBerryModel, using 2000 data points, *qmin* = 0.0001 |Ang^-1|, 
     513*qmax* = 0.2 |Ang^-1| and the default values below, where *Ssph/Lsph* stands for smaller or larger sphere, respectively, 
     514and *surfrac_Ssph* is the surface fraction of the smaller spheres. 
     515 
     516==============  ========  ============= 
     517Parameter name  Units     Default value 
     518==============  ========  ============= 
     519delta_Ssph      None      0 
     520radius_Lsph     |Ang|     5000 
     521radius_Ssph     |Ang|     100 
     522sld_Lsph        |Ang^-2|  -4e-07 
     523sld_Ssph        |Ang^-2|  3.5e-6 
     524sld_solv        |Ang^-2|  6.3e-6 
     525surfrac_Ssph    None      0.4 
     526volf_Lsph       None      0.05 
     527volf_Lsph       None      0.005 
     528background      |cm^-1|   0 
     529==============  ========  ============= 
     530 
     531.. image:: img/raspberry_plot.JPG 
     532 
     533*Figure. 1D plot using the values of /2000 data points.* 
     534 
     535REFERENCE 
     536K. Larson-Smith, A. Jackson, and D.C. Pozzo, *Small angle scattering model for Pickering emulsions and raspberry* 
     537*particles*, *Journal of Colloid and Interface Science*, 343(1) (2010) 36-41 
     538 
     539 
     540 
     541.. _CoreShellModel: 
     542 
     543**2.1.5. CoreShellModel** 
     544 
     545This model provides the form factor, *P(q)*, for a spherical particle with a core-shell structure. The form factor is 
     546normalized by the particle volume. 
     547 
     548For information about polarised and magnetic scattering, click here_. 
     549 
     550*2.1.5.1. Definition* 
     551 
     552The 1D scattering intensity is calculated in the following way (Guinier, 1955) 
     553 
     554.. image:: img/image013.PNG 
     555 
     556where *scale* is a scale factor, *Vs* is the volume of the outer shell, *Vc* is the volume of the core, *rs* is the 
     557radius of the shell, *rc* is the radius of the core, *c* is the scattering length density of the core, *s* is the 
     558scattering length density of the shell, *solv* is the scattering length density of the solvent, and *bkg* is the 
     559background level. 
     560 
     561The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector. 
     562 
     563NB: The outer most radius (ie, = *radius* + *thickness*) is used as the effective radius for *S(Q)* when 
     564*P(Q)* \* *S(Q)* is applied. 
     565 
     566The returned value is scaled to units of |cm^-1| and the parameters of the CoreShellModel are the following 
     567 
     568==============  ========  ============= 
     569Parameter name  Units     Default value 
     570==============  ========  ============= 
     571scale           None      1.0 
     572(core) radius   |Ang|     60 
     573thickness       |Ang|     10 
     574core_sld        |Ang^-2|  1e-6 
     575shell_sld       |Ang^-2|  2e-6 
     576solvent_sld     |Ang^-2|  3e-6 
     577background      |cm^-1|   0.001 
     578==============  ========  ============= 
     579 
     580Here, *radius* = the radius of the core and *thickness* = the thickness of the shell. 
     581 
     582Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron 
     583Research (Kline, 2006). 
     584 
     585REFERENCE 
     586A. Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955) 
     587 
     588*2.1.5.2. Validation of the core-shell sphere model* 
     589 
     590Validation of our code was done by comparing the output of the 1D model to the output of the software provided by 
     591NIST (Kline, 2006). Figure 1 shows a comparison of the output of our model and the output of the NIST software. 
     592 
     593.. image:: img/image014.JPG 
     594 
     595Figure 1: Comparison of the SasView scattering intensity for a core-shell sphere with the output of the NIST SANS 
     596analysis software. The parameters were set to: *Scale* = 1.0, *Radius* = 60 , *Contrast* = 1e-6 |Ang^-2|, and 
     597*Background* = 0.001 |cm^-1|. 
     598 
     599 
     600 
     601.. _CoreMultiShellModel: 
     602 
     603**2.1.6. CoreMultiShellModel** 
     604 
     605This model provides the scattering from a spherical core with 1 to 4 concentric shell structures. The SLDs of the core 
     606and each shell are individually specified. 
     607 
     608For information about polarised and magnetic scattering, click here_. 
     609 
     610*2.1.6.1. Definition* 
     611 
     612This model is a trivial extension of the CoreShell function to a larger number of shells. See the CoreShell function 
     613for a diagram and documentation. 
     614 
     615The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale. 
     616 
     617Be careful! The SLDs and scale can be highly correlated. Hold as many of these parameters fixed as possible. 
     618 
     619The 2D scattering intensity is the same as P(q) of 1D, regardless of the orientation of the q vector. 
     620 
     621NB: The outer most radius (ie, = *radius* + 4 *thicknesses*) is used as the effective radius for *S(Q)* when 
     622*P(Q)* \* *S(Q)* is applied. 
     623 
     624The returned value is scaled to units of |cm^-1| and the parameters of the CoreMultiShell model are the following 
     625 
     626==============  ========  ============= 
     627Parameter name  Units     Default value 
     628==============  ========  ============= 
     629scale           None      1.0 
     630rad_core        |Ang|     60 
     631sld_core        |Ang^-2|  6.4e-6 
     632sld_shell1      |Ang^-2|  1e-6 
     633sld_shell2      |Ang^-2|  2e-6 
     634sld_shell3      |Ang^-2|  3e-6 
     635sld_shell4      |Ang^-2|  4e-6 
     636sld_solv        |Ang^-2|  6.4e-6 
     637thick_shell1    |Ang|     10 
     638thick_shell2    |Ang|     10 
     639thick_shell3    |Ang|     10 
     640thick_shell4    |Ang|     10 
     641background      |cm^-1|   0.001 
     642==============  ========  ============= 
     643 
     644NB: Here, *rad_core* = the radius of the core, *thick_shelli* = the thickness of the shell *i* and 
     645*sld_shelli* = the SLD of the shell *i*. *sld_core* and the *sld_solv* are the SLD of the core and the solvent, 
     646respectively. 
     647 
     648Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron 
     649Research (Kline, 2006). 
     650 
     651This example dataset is produced by running the CoreMultiShellModel using 200 data points, *qmin* = 0.001 -1, 
     652*qmax* = 0.7 -1 and the above default values. 
     653 
     654.. image:: img/image015.JPG 
     655 
     656*Figure: 1D plot using the default values (w/200 data point).* 
     657 
     658The scattering length density profile for the default sld values (w/ 4 shells). 
     659 
     660.. image:: img/image016.JPG 
     661 
     662*Figure: SLD profile against the radius of the sphere for default SLDs.* 
     663 
     664REFERENCE 
     665See the CoreShell documentation. 
     666 
     667 
     668 
     669.. _Core2ndMomentModel: 
     670 
     671**2.1.7. Core2ndMomentModel** 
     672 
     673This model describes the scattering from a layer of surfactant or polymer adsorbed on spherical particles under the 
     674conditions that (i) the particles (cores) are contrast-matched to the dispersion medium, (ii) *S(Q)* ~ 1 (ie, the 
     675particle volume fraction is dilute), (iii) the particle radius is >> layer thickness (ie, the interface is locally 
     676flat), and (iv) scattering from excess unadsorbed adsorbate in the bulk medium is absent or has been corrected for. 
     677 
     678Unlike a core-shell model, this model does not assume any form for the density distribution of the adsorbed species 
     679normal to the interface (cf, a core-shell model which assumes the density distribution to be a homogeneous 
     680step-function). For comparison, if the thickness of a (core-shell like) step function distribution is *t*, the second 
     681moment, |sigma| = sqrt((*t* :sup:`2` )/12). The |sigma| is the second moment about the mean of the density distribution 
     682(ie, the distance of the centre-of-mass of the distribution from the interface). 
     683 
     684*2.1.7.1. Definition* 
     685 
     686The *I* :sub:`0` is calculated in the following way (King, 2002) 
     687 
     688.. image:: img/secondmeq1.JPG 
     689 
     690where *scale* is a scale factor, *poly* is the sld of the polymer (or surfactant) layer, *solv* is the sld of the 
     691solvent/medium and cores, |phi|\ :sub:`cores` is the volume fraction of the core paraticles, and |biggamma| and 
     692|delta| are the adsorbed amount and the bulk density of the polymers respectively. The |sigma| is the second moment 
     693of the thickness distribution. 
     694 
     695Note that all parameters except the |sigma| are correlated for fitting so that fitting those with more than one 
     696parameter will generally fail. Also note that unlike other shape models, no volume normalization is applied to this 
     697model (the calculation is exact). 
     698 
     699The returned value is scaled to units of |cm^-1| and the parameters are the following 
     700 
     701==============  ========  ============= 
     702Parameter name  Units     Default value 
     703==============  ========  ============= 
     704scale           None      1.0 
     705density_poly    g/cm2     0.7 
     706radius_core     |Ang|     500 
     707ads_amount      mg/m 2    1.9 
     708second_moment   |Ang|     23.0 
     709volf_cores      None      0.14 
     710sld_poly        |Ang^-2|  1.5e-6 
     711sld_solv        |Ang^-2|  6.3e-6 
     712background      |cm^-1|   0.0 
     713==============  ========  ============= 
     714 
     715.. image:: img/secongm_fig1.JPG 
     716 
     717REFERENCE 
     718S. King, P. Griffiths, J. Hone, and T. Cosgrove, *SANS from Adsorbed Polymer Layers*, 
     719*Macromol. Symp.*, 190 (2002) 33-42 
     720 
     721 
     722 
     723.. _MultiShellModel: 
     724 
     725**2.1.8. MultiShellModel** 
     726 
     727This model provides the form factor, *P(q)*, for a multi-lamellar vesicle with *N* shells where the core is filled with 
     728solvent and the shells are interleaved with layers of solvent. For *N* = 1, this returns the VesicleModel (above). 
     729 
     730.. image:: img/image020.JPG 
     731 
     732The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as 
     733 
     734.. image:: img/image008.PNG 
     735 
     736NB: The outer most radius (= *core_radius* + *n_pairs* \* *s_thickness* + (*n_pairs* - 1) \* *w_thickness*) is used 
     737as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied. 
     738 
     739The returned value is scaled to units of |cm^-1| and the parameters of the MultiShellModel are the following 
     740 
     741==============  ========  ============= 
     742Parameter name  Units     Default value 
     743==============  ========  ============= 
     744scale           None      1.0 
     745core_radius     |Ang|     60.0 
     746n_pairs         None      2.0 
     747core_sld        |Ang^-2|  6.3e-6 
     748shell_sld       |Ang^-2|  0.0 
     749background      |cm^-1|   0.0 
     750s_thickness     |Ang|     10 
     751w_thickness     |Ang|     10 
     752==============  ========  ============= 
     753 
     754NB: *s_thickness* is the shell thickness while the *w_thickness* is the solvent thickness, and *n_pair* 
     755is the number of shells. 
     756 
     757.. image:: img/image021.JPG 
     758 
     759*Figure. 1D plot using the default values (w/200 data point).* 
     760 
     761Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron 
     762Research (Kline, 2006). 
     763 
     764REFERENCE 
     765B. Cabane, *Small Angle Scattering Methods*, in *Surfactant Solutions: New Methods of Investigation*, Ch.2, 
     766Surfactant Science Series Vol. 22, Ed. R. Zana and M. Dekker, New York, (1987). 
     767 
     768 
     769 
     770.. _OnionExpShellModel: 
     771 
     772**2.1.9. OnionExpShellModel** 
     773 
     774This model provides the form factor, *P(q)*, for a multi-shell sphere where the scattering length density (SLD) of the 
     775each shell is described by an exponential (linear, or flat-top) function. The form factor is normalized by the volume 
     776of the sphere where the SLD is not identical to the SLD of the solvent. We currently provide up to 9 shells with this 
     777model. 
     778 
     779*2.1.9.1. Definition* 
     780 
    423781The 1D scattering intensity is calculated in the following way 
    424 (Guinier, 1955): 
    425  
    426 The returned value is scaled to units of [cm-1 sr-1], absolute scale. 
    427  
    428 The scattering intensity I(q) is calculated as: 
    429  
    430  
    431  
    432 where the amplitude A(q) is given as the typical sphere scattering 
    433 convoluted with a Gaussian to get a gradual drop-off in the scattering 
    434 length density: 
    435  
    436  
    437  
    438 Here A2(q) is the form factor, P(q). The scale is equivalent to the 
    439 volume fraction of spheres, each of volume, V. Contrast ( * ) is the 
    440 difference of scattering length densities of the sphere and the 
    441 surrounding solvent. 
    442  
    443 The poly-dispersion in radius and in fuzziness is provided. 
    444  
    445 (direct from the reference) 
    446  
    447 The "fuzziness" of the interface is defined by the parameter 
    448 (sigma)fuzzy. The particle radius R represents the radius of the 
    449 particle where the scattering length density profile decreased to 1/2 
    450 of the core density. The (sigma)fuzzy is the width of the smeared 
    451 particle surface: i.e., the standard deviation from the average height 
    452 of the fuzzy interface. The inner regions of the microgel that display 
    453 a higher density are described by the radial box profile extending to 
    454 a radius of approximately Rbox ~ R - 2(sigma). the profile approaches 
    455 zero as Rsans ~ R + 2(sigma). 
    456  
    457 For 2D data: The 2D scattering intensity is calculated in the same way 
    458 as 1D, where the *q* vector is defined as . 
     782 
     783.. image:: img/image022.GIF 
     784 
     785.. image:: img/image023.GIF 
     786 
     787where, for a spherically symmetric particle with a particle density |rho|\ *(r)* 
     788 
     789.. image:: img/image024.GIF 
     790 
     791so that 
     792 
     793.. image:: img/image025.GIF 
     794 
     795.. image:: img/image026.GIF 
     796 
     797.. image:: img/image027.GIF 
     798 
     799Here we assumed that the SLDs of the core and solvent are constant against *r*. 
     800 
     801Now lets consider the SLD of a shell, *r*\ :sub:`shelli`, defined by 
     802 
     803.. image:: img/image028.GIF 
     804 
     805An example of a possible SLD profile is shown below where *sld_in_shelli* (|rho|\ :sub:`in`\ ) and 
     806*thick_shelli* (|bigdelta|\ *t* :sub:`shelli`\ ) stand for the SLD of the inner side of the *i*\ th shell and the 
     807thickness of the *i*\ th shell in the equation above, respectively. 
     808 
     809For \| *A* \| > 0, 
     810 
     811.. image:: img/image029.GIF 
     812 
     813For *A* ~ 0 (eg., *A* = -0.0001), this function converges to that of the linear SLD profile (ie, 
     814|rho|\ :sub:`shelli`\ *(r)* = *A*\ :sup:`'` ( *r* - *r*\ :sub:`shelli` - 1) / |bigdelta|\ *t* :sub:`shelli`) + *B*\ :sup:`'`), 
     815so this case is equivalent to 
     816 
     817.. image:: img/image030.GIF 
     818 
     819.. image:: img/image031.GIF 
     820 
     821.. image:: img/image032.GIF 
     822 
     823.. image:: img/image033.GIF 
     824 
     825For *A* = 0, the exponential function has no dependence on the radius (so that *sld_out_shell* (|rho|\ :sub:`out`) is 
     826ignored this case) and becomes flat. We set the constant to |rho|\ :sub:`in` for convenience, and thus the form 
     827factor contributed by the shells is 
     828 
     829.. image:: img/image034.GIF 
     830 
     831.. image:: img/image035.GIF 
     832 
     833In the equation 
     834 
     835.. image:: img/image036.GIF 
     836 
     837Finally, the form factor can be calculated by 
     838 
     839.. image:: img/image037.GIF 
     840 
     841where 
     842 
     843.. image:: img/image038.GIF 
     844 
     845and 
     846 
     847.. image:: img/image039.GIF 
     848 
     849The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector which is 
     850defined as 
     851 
     852.. image:: img/image040.GIF 
     853 
     854NB: The outer most radius is used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied. 
     855 
     856The returned value is scaled to units of |cm^-1| and the parameters of this model (for only one shell) are the following 
     857 
     858==============  ========  ============= 
     859Parameter name  Units     Default value 
     860==============  ========  ============= 
     861A_shell1        None      1 
     862scale           None      1.0 
     863rad_core        |Ang|     200 
     864thick_shell1    |Ang|     50 
     865sld_core        |Ang^-2|  1.0e-06 
     866sld_in_shell1   |Ang^-2|  1.7e-06 
     867sld_out_shell1  |Ang^-2|  2.0e-06 
     868sld_solv        |Ang^-2|  6.4e-06 
     869background      |cm^-1|   0.0 
     870==============  ========  ============= 
     871 
     872NB: *rad_core* represents the core radius (*R1*) and *thick_shell1* (*R2* - *R1*) is the thickness of the shell1, etc. 
     873 
     874.. image:: img/image041.JPG 
     875 
     876*Figure. 1D plot using the default values (w/400 point).* 
     877 
     878.. image:: img/image042.JPG 
     879 
     880*Figure. SLD profile from the default values.* 
    459881 
    460882REFERENCE 
    461  
    462 M. Stieger, J. S. Pedersen, P. Lindner, W. Richtering, Langmuir 20 
    463 (2004) 7283-7292. 
    464  
    465 *2.1.3.2. Validation of the fuzzy sphere model* 
    466  
    467 This example dataset is produced by running the FuzzySphereModel, 
    468 using 200 data points, qmin = 0.001 -1, qmax = 0.7 A-1 and the default 
    469 values: 
    470  
    471 Parameter name 
    472  
    473 Units 
    474  
    475 Default value 
    476  
    477 scale 
    478  
    479 None 
    480  
    481 1.0 
    482  
    483 radius 
    484  
    485  
    486  
    487 60 
    488  
    489 fuzziness 
    490  
    491  
    492  
    493 10 
    494  
    495 sldSolv 
    496  
    497 -2 
    498  
    499 3e-6 
    500  
    501 sldSph 
    502  
    503 -2 
    504  
    505 1e-6 
    506  
    507 background 
    508  
    509 cm-1 
    510  
    511 0.001 
    512  
    513  
     883L. A. Feigin and D. I. Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, 
     884Plenum Press, New York, (1987). 
     885 
     886 
     887 
     888.. _VesicleModel: 
     889 
     890**2.1.10. VesicleModel** 
     891 
     892This model provides the form factor, *P(q)*, for an unilamellar vesicle. The form factor is normalized by the volume 
     893of the shell. 
     894 
     895*2.1.10.1. Definition* 
     896 
     897The 1D scattering intensity is calculated in the following way (Guinier, 1955) 
     898 
     899.. image:: img/image017.PNG 
     900 
     901where *scale* is a scale factor, *Vshell* is the volume of the shell, *V1* is the volume of the core, *V2* is the total 
     902volume, *R1* is the radius of the core, *R2* is the outer radius of the shell, |rho|\ :sub:`1` is the scattering 
     903length density of the core and the solvent, |rho|\ :sub:`2` is the scattering length density of the shell, *bkg* is 
     904the background level, and *J1* = (sin\ *x*- *x* cos\ *x*)/ *x* :sup:`2`\ . The functional form is identical to a 
     905"typical" core-shell structure, except that the scattering is normalized by the volume that is contributing to the 
     906scattering, namely the volume of the shell alone. Also, the vesicle is best defined in terms of a core radius (= *R1*) 
     907and a shell thickness, *t*. 
     908 
     909.. image:: img/image018.JPG 
     910 
     911The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector which is 
     912defined as 
     913 
     914.. image:: img/image008.PNG 
     915 
     916For P*S:  toward S(Q) when P(Q)*S(Q) is applied. 
     917 
     918NB: The outer most radius (= *radius* + *thickness*) is used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* 
     919is applied. 
     920 
     921The returned value is scaled to units of |cm^-1| and the parameters of the VesicleModel are the following 
     922 
     923==============  ========  ============= 
     924Parameter name  Units     Default value 
     925==============  ========  ============= 
     926scale           None      1.0 
     927radius          |Ang|     100 
     928thickness       |Ang|     30 
     929core_sld        |Ang^-2|  6.3e-6 
     930shell_sld       |Ang^-2|  0 
     931background      |cm^-1|   0.0 
     932==============  ========  ============= 
     933 
     934NB: *radius* represents the core radius (*R1*) and the *thickness* (*R2* - *R1*) is the shell thickness. 
     935 
     936.. image:: img/image019.JPG 
    514937 
    515938*Figure. 1D plot using the default values (w/200 data point).* 
    516  
    517  
    518  
    519 .. _RaspBerryModel: 
    520  
    521 **2.1.4. RaspBerryModel** 
    522  
    523 Calculates the form factor, P(q), for a "Raspberry-like" structure 
    524 where there are smaller spheres at the surface of a larger sphere, 
    525 such as the structure of a Pickering emulsion. 
    526  
    527 *2.1.4.1. Definition* 
    528  
    529 The structure is: 
    530  
    531  
    532  
    533 Ro = the radius of thelarge sphere 
    534 Rp = the radius of the smaller sphere on the surface 
    535 delta = the fractional penetration depth 
    536 surface coverage = fractional coverage of the large sphere surface 
    537 (0.9 max) 
    538  
    539  
    540 The large and small spheres have their own SLD, as well as the 
    541 solvent. The surface coverage term is a fractional coverage (maximum 
    542 of approximately 0.9 for hexagonally packed spheres on a surface). 
    543 Since not all of the small spheres are necessarily attached to the 
    544 surface, the excess free (small) spheres scattering is also included 
    545 in the calculation. The function calculated follows equations (8)-(12) 
    546 of the reference below, and the equations are not reproduced here. 
    547  
    548 The returned value is scaled to units of [cm-1]. No interparticle 
    549 scattering is included in this model. 
    550  
    551 For 2D data: The 2D scattering intensity is calculated in the same way 
    552 as 1D, where the *q* vector is defined as . 
    553  
    554 REFERENCE 
    555 Kjersta Larson-Smith, Andrew Jackson, and Danilo C Pozzo, "Small angle 
    556 scattering model for Pickering emulsions and raspberry particles." 
    557 Journal of Colloid and Interface Science (2010) vol. 343 (1) pp. 
    558 36-41. 
    559  
    560 *2.1.4.2. Validation of the RaspBerry Model* 
    561  
    562 This example dataset is produced by running the RaspBerryModel, using 
    563 2000 data points, qmin = 0.0001 -1, qmax = 0.2 A-1 and the default 
    564 values, where Ssph/Lsph stands for Smaller/Large sphere 
    565 andsurfrac_Ssph for the surface fraction of the smaller spheres. 
    566  
    567 Parameter name 
    568  
    569 Units 
    570  
    571 Default value 
    572 delta_Ssph 0 radius_Lsph 5000 radius_Ssph 100 sld_Lsph -2 -4e-07 
    573 sld_Ssph 
    574  
    575 -2 
    576  
    577 3.5e-6 
    578  
    579 sld_solv 
    580  
    581 -2 
    582  
    583 6.3e-6 
    584  
    585 surfrac_Ssph 
    586  
    587  
    588  
    589 0.4 
    590  
    591 volf_Lsph 
    592  
    593 0.05 
    594  
    595 volf_Lsph 
    596  
    597  
    598  
    599 0.005 
    600  
    601 background 
    602  
    603 cm-1 
    604  
    605 0 
    606  
    607  
    608  
    609 *Figure. 1D plot using the values of /2000 data points.* 
    610  
    611  
    612  
    613 .. _CoreShellModel: 
    614  
    615 **2.1.5. CoreShellModel** 
    616  
    617 This model provides the form factor, P( *q*), for a spherical particle 
    618 with a core-shell structure. The form factor is normalized by the 
    619 particle volume. 
    620  
    621 For information about polarised and magnetic scattering, click here_. 
    622  
    623 *2.1.5.1. Definition* 
    624  
    625 The 1D scattering intensity is calculated in the following way 
    626 (Guinier, 1955): 
    627  
    628  
    629  
    630  
    631  
    632 where *scale* is a scale factor, *Vs* is the volume of the outer 
    633 shell, *Vc* is the volume of the core, *rs* is the radius of the 
    634 shell, *rc* is the radius of the core, *c* is the scattering length 
    635 density of the core, *s* is the scattering length density of the 
    636 shell, solv is the scattering length density of the solvent, and *bkg* 
    637 is the background level. 
    638  
    639 The 2D scattering intensity is the same as P(q) above, regardless of 
    640 the orientation of the q vector. 
    641  
    642 For P*S: The outer most radius (= radius + thickness) is used as the 
    643 effective radius toward S(Q) when P(Q)*S(Q) is applied. 
    644  
    645 The returned value is scaled to units of [cm-1] and the parameters of 
    646 the core-shell sphere model are the following: 
    647  
    648 Here, radius = the radius of the core and thickness = the thickness of 
    649 the shell. 
    650  
    651 Parameter name 
    652  
    653 Units 
    654  
    655 Default value 
    656  
    657 scale 
    658  
    659 None 
    660  
    661 1.0 
    662  
    663 (core) radius 
    664  
    665  
    666  
    667 60 
    668  
    669 thickness 
    670  
    671  
    672  
    673 10 
    674  
    675 core_sld 
    676  
    677 -2 
    678  
    679 1e-6 
    680  
    681 shell_sld 
    682  
    683 -2 
    684  
    685 2e-6 
    686  
    687 solvent_sld 
    688  
    689 -2 
    690  
    691 3e-6 
    692  
    693 background 
    694  
    695 cm-1 
    696  
    697 0.001 
    698939 
    699940Our model uses the form factor calculations implemented in a c-library 
    700941provided by the NIST Center for Neutron Research (Kline, 2006). 
    701942 
    702  
    703  
    704943REFERENCE 
    705  
    706 Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John 
    707 Wiley and Sons, New York, (1955). 
    708  
    709 *2.1.5.2. Validation of the core-shell sphere model* 
    710  
    711 Validation of our code was done by comparing the output of the 1D 
    712 model to the output of the software provided by the NIST (Kline, 
    713 2006). Figure 1 shows a comparison of the output of our model and the 
    714 output of the NIST software. 
    715  
    716  
    717  
    718 Figure 7: Comparison of the DANSE scattering intensity for a core- 
    719 shell sphere with the output of the NIST SANS analysis software. The 
    720 parameters were set to: Scale=1.0, Radius=60 , Contrast=1e-6 -2, and 
    721 Background=0.001 cm -1. 
    722  
    723  
    724  
    725 .. _CoreMultiShellModel: 
    726  
    727 **2.1.6. CoreMultiShellModel** 
    728  
    729 This model provides the scattering from spherical core with from 1 up 
    730 to 4 shell structures. Ithas a core of a specified radius, with four 
    731 shells. The SLDs of the core and each shell are individually 
    732 specified. 
    733  
    734 For information about polarised and magnetic scattering, click here_. 
    735  
    736 *1.1. Definition* 
    737  
    738 The returned value is scaled to units of [cm-1sr-1], absolute scale. 
    739  
    740 This model is a trivial extension of the CoreShell function to a 
    741 larger number of shells. See the CoreShell function for a diagram and 
    742 documentation. 
    743  
    744 Be careful that the SLDs and scale can be highly correlated. Hold as 
    745 many of these fixed as possible. 
    746  
    747 The 2D scattering intensity is the same as P(q) of 1D, regardless of 
    748 the orientation of the q vector. 
    749  
    750 For P*S: The outer most radius (= radius + 4 thicknesses) is used as 
    751 the effective radius toward S(Q) if P(Q)*S(Q) is applied. 
    752  
    753 The returned value is scaled to units of [cm-1] and the parameters of 
    754 the CoreFourshell sphere model are the following: 
    755  
    756 Here, rad_core = the radius of the core, thick_shelli = the thickness 
    757 of the shell i and sld_shelli = the SLD of the shell i. 
    758  
    759 And the sld_core and the sld_solv are the SLD of the core and the 
    760 solvent, respectively. 
    761  
    762 Parameter name 
    763  
    764 Units 
    765  
    766 Default value 
    767  
    768 scale 
    769  
    770 None 
    771  
    772 1.0 
    773  
    774 rad_core 
    775  
    776  
    777  
    778 60 
    779  
    780 sld_core 
    781  
    782 -2 
    783  
    784 6.4e-6 
    785  
    786 sld_shell1 
    787  
    788 -2 
    789  
    790 1e-6 
    791  
    792 sld_shell2 
    793  
    794 -2 
    795  
    796 2e-6 
    797  
    798 sld_shell3 
    799  
    800 -2 
    801  
    802 3e-6 
    803  
    804 sld_shell4 
    805  
    806 -2 
    807  
    808 4e-6 
    809  
    810 sld_solv 
    811  
    812 -2 
    813  
    814 6.4e-6 
    815  
    816 thick_shell1 
    817  
    818  
    819  
    820 10 
    821  
    822 thick_shell2 
    823  
    824  
    825  
    826 10 
    827  
    828 thick_shell3 
    829  
    830  
    831  
    832 10 
    833  
    834 thick_shell4 
    835  
    836  
    837  
    838 10 
    839  
    840 background 
    841  
    842 cm-1 
    843  
    844 0.001 
    845  
    846 Our model uses the form factor calculations implemented in a c-library 
    847 provided by the NIST Center for Neutron Research (Kline, 2006). 
    848  
    849  
     944A. Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955) 
     945 
     946 
     947 
     948.. _SphericalSLDModel: 
     949 
     950**2.1.11. SphericalSLDModel** 
     951 
     952Similarly to the OnionExpShellModel, this model provides the form factor, *P(q)*, for a multi-shell sphere, where the 
     953interface between the each neighboring shells can be described by one of a number of functions including error, 
     954power-law, and exponential functions. This model is to calculate the scattering intensity by building a continuous 
     955custom SLD profile against the radius of the particle. The SLD profile is composed of a flat core, a flat solvent, 
     956a number (up to 9 ) flat shells, and the interfacial layers between the adjacent flat shells (or core, and solvent) 
     957(see below). Unlike the OnionExpShellModel (using an analytical integration), the interfacial layers here are 
     958sub-divided and numerically integrated assuming each of the sub-layers are described by a line function. The number 
     959of the sub-layer can be given by users by setting the integer values of *npts_inter* in the GUI. The form factor is 
     960normalized by the total volume of the sphere. 
     961 
     962*2.1.11.1. Definition* 
     963 
     964The 1D scattering intensity is calculated in the following way: 
     965 
     966.. image:: img/image022.GIF 
     967 
     968.. image:: img/image043.GIF 
     969 
     970where, for a spherically symmetric particle with a particle density |rho|\ *(r)* 
     971 
     972.. image:: img/image024.GIF 
     973 
     974so that 
     975 
     976.. image:: img/image044.GIF 
     977 
     978.. image:: img/image045.GIF 
     979 
     980.. image:: img/image046.GIF 
     981 
     982.. image:: img/image047.GIF 
     983 
     984.. image:: img/image048.GIF 
     985 
     986.. image:: img/image027.GIF 
     987 
     988Here we assumed that the SLDs of the core and solvent are constant against *r*. The SLD at the interface between 
     989shells, |rho|\ :sub:`inter_i`, is calculated with a function chosen by an user, where the functions are 
     990 
     9911) Exp 
     992 
     993.. image:: img/image049.GIF 
     994 
     9952) Power-Law 
     996 
     997.. image:: img/image050.GIF 
     998 
     9993) Erf 
     1000 
     1001.. image:: img/image051.GIF 
     1002 
     1003The functions are normalized so that they vary between 0 and 1, and they are constrained such that the SLD is 
     1004continuous at the boundaries of the interface as well as each sub-layers. Thus *B* and *C* are determined. 
     1005 
     1006Once |rho|\ :sub:`rinter_i` is found at the boundary of the sub-layer of the interface, we can find its contribution 
     1007to the form factor *P(q)* 
     1008 
     1009.. image:: img/image052.GIF 
     1010 
     1011.. image:: img/image053.GIF 
     1012 
     1013.. image:: img/image054.GIF 
     1014 
     1015where we assume that |rho|\ :sub:`inter_i`\ *(r)* can be approximately linear within a sub-layer *j*. 
     1016 
     1017In the equation 
     1018 
     1019.. image:: img/image055.GIF 
     1020 
     1021Finally, the form factor can be calculated by 
     1022 
     1023.. image:: img/image037.GIF 
     1024 
     1025where 
     1026 
     1027.. image:: img/image038.GIF 
     1028 
     1029and 
     1030 
     1031.. image:: img/image056.GIF 
     1032 
     1033The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector which is 
     1034defined as 
     1035 
     1036.. image:: img/image040.GIF 
     1037 
     1038NB: The outer most radius is used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied. 
     1039 
     1040The returned value is scaled to units of |cm^-1| and the parameters of this model (for just one shell) are the following 
     1041 
     1042==============  ========  ============= 
     1043Parameter name  Units     Default value 
     1044==============  ========  ============= 
     1045background      |cm^-1|   0.0 
     1046npts_inter      None      35 
     1047scale           None      1 
     1048sld_solv        |Ang^-2|  1e-006 
     1049func_inter1     None      Erf 
     1050nu_inter        None      2.5 
     1051thick_inter1    |Ang|     50 
     1052sld_flat1       |Ang^-2|  4e-006 
     1053thick_flat1     |Ang|     100 
     1054func_inter0     None      Erf 
     1055nu_inter0       None      2.5 
     1056rad_core0       |Ang|     50 
     1057sld_core0       |Ang^-2|  2.07e-06 
     1058thick_core0     |Ang|     50 
     1059==============  ========  ============= 
     1060 
     1061NB: *rad_core0* represents the core radius (*R1*). 
     1062 
     1063.. image:: img/image057.JPG 
     1064 
     1065*Figure. 1D plot using the default values (w/400 point).* 
     1066 
     1067.. image:: img/image058.JPG 
     1068 
     1069*Figure. SLD profile from the default values.* 
    8501070 
    8511071REFERENCE 
    852  
    853 See the CoreShell documentation. 
    854  
    855 TEST DATASET 
    856  
    857 This example dataset is produced by running the CoreMultiShellModel 
    858 using 200 data points, qmin = 0.001 -1, qmax = 0.7 -1 and the above 
    859 default values. 
    860  
    861  
    862  
    863 *Figure: 1D plot using the default values (w/200 data point).* 
    864  
    865 The scattering length density profile for the default sld values (w/ 4 
    866 shells). 
    867  
    868  
    869  
    870 *Figure: SLD profile against the radius of the sphere for default 
    871 SLDs.* 
    872  
    873  
    874  
    875 .. _Core2ndMomentModel: 
    876  
    877 **2.1.7. Core2ndMomentModel** 
    878  
    879 This model describes the scattering from a layer of surfactant or 
    880 polymer adsorbed on spherical particles under the conditions that (i) 
    881 theparticles (cores) are contrast-matched to the dispersion medium, 
    882 (ii) S(Q)~1 (ie, the particle volume fraction is dilute), (iii) the 
    883 particle radius is >> layer thickness (ie, the interface is locally 
    884 flat), and (iv) scattering from excess unadsorbed adsorbate in the 
    885 bulk medium is absent or has been corrected for. 
    886  
    887 Unlike a core-shell model, this model does not assume any form for the 
    888 density distribution of the adsorbed species normal to the interface 
    889 (cf, a core-shell model which assumes the density distribution to be a 
    890 homogeneous step-function). For comparison, if the thickness of a 
    891 (core-shell like) step function distribution is t, the second moment, 
    892 sigma = sqrt((t^2)/12). Thesigma is the second moment about the mean 
    893 of the density distribution (ie, the distance of the centre-of-mass of 
    894 the distribution from the interface). 
    895  
    896 *1.1. Definition* 
    897  
    898 The I0 is calculated in the following way (King, 2002): 
    899  
    900  
    901  
    902  
    903  
    904 where *scale* is a scale factor, *poly* is the sld of the polymer (or 
    905 surfactant) layer,solv is the sld of the solvent/medium and cores, 
    906 phi_cores is the volume fraction of the core paraticles, and Gamma and 
    907 delta arethe adsorbed amount and the bulk density of the polymers 
    908 respectively. The sigma is the second moment of the thickness 
    909 distribution. 
    910  
    911  
    912  
    913 Note that all parameters except the 'sigma' are correlated for fitting 
    914 so that fittingthose with more than one parameters will be generally 
    915 failed. And note that unlike other shape models, no volume 
    916 normalization was applied to this model. 
    917  
    918 The returned value is scaled to units of [cm-1] and the parameters are 
    919 the following: 
    920  
    921 Parameter name 
    922  
    923 Units 
    924  
    925 Default value 
    926  
    927 scale 
    928  
    929 None 
    930  
    931 1.0 
    932  
    933 density_poly 
    934  
    935 g/cm2 
    936  
    937 0.7 
    938  
    939 radius_core 
    940  
    941  
    942  
    943 500 
    944  
    945 ads_amount 
    946  
    947 mg/m2 
    948  
    949 1.9 
    950 second_moment 23.0 volf_cores None 0.14 
    951 sld_poly 
    952  
    953 -2 
    954  
    955 1.5e-6 
    956  
    957 sld_solv 
    958  
    959 -2 
    960  
    961 6.3e-6 
    962  
    963 background 
    964  
    965 cm-1 
    966  
    967 0.0 
    968  
    969  
     1072L. A. Feigin and D. I. Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, 
     1073Plenum Press, New York, (1987) 
     1074 
     1075 
     1076 
     1077.. _LinearPearlsModel: 
     1078 
     1079**2.1.12. LinearPearlsModel** 
     1080 
     1081This model provides the form factor for *N* spherical pearls of radius *R* linearly joined by short strings (or segment 
     1082length or edge separation) *l* (= *A* - 2\ *R*)). *A* is the center-to-center pearl separation distance. The thickness 
     1083of each string is assumed to be negligible. 
     1084 
     1085.. image:: img/linearpearls.jpg 
     1086 
     1087*2.1.12.1. Definition* 
     1088 
     1089The output of the scattering intensity function for the LinearPearlsModel is given by (Dobrynin, 1996) 
     1090 
     1091.. image:: img/linearpearl_eq1.gif 
     1092 
     1093where the mass *m*\ :sub:`p` is (SLD\ :sub:`pearl` - SLD\ :sub:`solvent`) \* (volume of *N* pearls). V is the total 
     1094volume. 
     1095 
     1096The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector. 
     1097 
     1098The returned value is scaled to units of |cm^-1| and the parameters of the LinearPearlsModel are the following 
     1099 
     1100===============  ========  ============= 
     1101Parameter name   Units     Default value 
     1102===============  ========  ============= 
     1103scale            None      1.0 
     1104radius           |Ang|     80.0 
     1105edge_separation  |Ang|     350.0 
     1106num_pearls       None      3 
     1107sld_pearl        |Ang^-2|  1e-6 
     1108sld_solv         |Ang^-2|  6.3e-6 
     1109background       |cm^-1|   0.0 
     1110===============  ========  ============= 
     1111 
     1112NB: *num_pearls* must be an integer. 
     1113 
     1114.. image:: img/linearpearl_plot.jpg 
    9701115 
    9711116REFERENCE 
    972  
    973 S. King, P. Griffiths, J. Hone, and T. Cosgrove, "SANS from Adsorbed 
    974 Polymer Lyaers", Macromol. Symp. 190, 33-42 (2002). 
    975  
    976  
    977  
    978 .. _MultiShellModel: 
    979  
    980 **2.1.8. MultiShellModel** 
    981  
    982 This model provides the form factor, P( *q*), for a multi-lamellar 
    983 vesicle with N shells where the core is filled with solvent and the 
    984 shells are interleaved with layers of solvent. For N = 1, this return 
    985 to the vesicle model (above). 
    986  
    987  
    988  
    989 The 2D scattering intensity is the same as 1D, regardless of the 
    990 orientation of the *q* vector which is defined as . 
    991  
    992 For P*S: The outer most radius (= core_radius + n_pairs * s_thickness 
    993 + (n_pairs -1) * w_thickness) is used as the effective radius toward 
    994 S(Q) when P(Q)*S(Q) is applied. 
    995  
    996 The returned value is scaled to units of [cm-1] and the parameters of 
    997 the multi-shell model are the following: 
    998  
    999 In the parameters, the s_thickness is the shell thickness while the 
    1000 w_thickness is the solvent thickness, and the n_pair is the number of 
    1001 shells. 
    1002  
    1003 Parameter name 
    1004  
    1005 Units 
    1006  
    1007 Default value 
    1008  
    1009 scale 
    1010  
    1011 None 
    1012  
    1013 1.0 
    1014  
    1015 core_radius 
    1016  
    1017  
    1018  
    1019 60.0 
    1020  
    1021 n_pairs 
    1022  
    1023 None 
    1024  
    1025 2.0 
    1026  
    1027 core_sld 
    1028  
    1029 -2 
    1030  
    1031 6.3e-6 
    1032  
    1033 shell_sld 
    1034  
    1035 -2 
    1036  
    1037 0.0 
    1038  
    1039 background 
    1040  
    1041 cm-1 
    1042  
    1043 0.0 
    1044  
    1045 s_thickness 
    1046  
    1047  
    1048  
    1049 10 
    1050  
    1051 w_thickness 
    1052  
    1053  
    1054  
    1055 10 
    1056  
    1057  
    1058  
    1059 *Figure. 1D plot using the default values (w/200 data point).* 
    1060  
    1061 Our model uses the form factor calculations implemented in a c-library 
    1062 provided by the NIST Center for Neutron Research (Kline, 2006). 
     1117A. V. Dobrynin, M. Rubinstein and S. P. Obukhov, *Macromol.*, 29 (1996) 2974-2979 
     1118 
     1119 
     1120 
     1121.. _PearlNecklaceModel: 
     1122 
     1123**2.1.13. PearlNecklaceModel** 
     1124 
     1125This model provides the form factor for a pearl necklace composed of two elements: *N* pearls (homogeneous spheres 
     1126of radius *R*) freely jointed by *M* rods (like strings - with a total mass *Mw* = *M* \* *m*\ :sub:`r` + *N* \* *m*\ :sub:`s`, 
     1127and the string segment length (or edge separation) *l* (= *A* - 2\ *R*)). *A* is the center-to-center pearl separation 
     1128distance. 
     1129 
     1130.. image:: img/pearl_fig.jpg 
     1131 
     1132*2.1.13.1. Definition* 
     1133 
     1134The output of the scattering intensity function for the PearlNecklaceModel is given by (Schweins, 2004) 
     1135 
     1136.. image:: img/pearl_eq1.gif 
     1137 
     1138where 
     1139 
     1140.. image:: img/pearl_eq2.gif 
     1141 
     1142.. image:: img/pearl_eq3.gif 
     1143 
     1144.. image:: img/pearl_eq4.gif 
     1145 
     1146.. image:: img/pearl_eq5.gif 
     1147 
     1148.. image:: img/pearl_eq6.gif 
     1149 
     1150and 
     1151 
     1152.. image:: img/pearl_eq7.gif 
     1153 
     1154where the mass *m*\ :sub:`i` is (SLD\ :sub:`i` - SLD\ :sub:`solvent`) \* (volume of the *N* pearls/rods). *V* is the 
     1155total volume of the necklace. 
     1156 
     1157The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector. 
     1158 
     1159The returned value is scaled to units of |cm^-1| and the parameters of the PearlNecklaceModel are the following 
     1160 
     1161===============  ========  ============= 
     1162Parameter name   Units     Default value 
     1163===============  ========  ============= 
     1164scale            None      1.0 
     1165radius           |Ang|     80.0 
     1166edge_separation  |Ang|     350.0 
     1167num_pearls       None      3 
     1168sld_pearl        |Ang^-2|  1e-6 
     1169sld_solv         |Ang^-2|  6.3e-6 
     1170sld_string       |Ang^-2|  1e-6 
     1171thick_string 
     1172(=rod diameter)  |Ang|     2.5 
     1173background       |cm^-1|   0.0 
     1174===============  ========  ============= 
     1175 
     1176NB: *num_pearls* must be an integer. 
     1177 
     1178.. image:: img/pearl_plot.jpg 
    10631179 
    10641180REFERENCE 
    1065  
    1066 Cabane, B., Small Angle Scattering Methods, Surfactant Solutions: New 
    1067 Methods of Investigation, Ch.2, Surfactant Science Series Vol. 22, Ed. 
    1068 R. Zana, M. Dekker, New York, 1987. 
    1069  
    1070  
    1071  
    1072 .. _OnionExpShellModel: 
    1073  
    1074 **2.1.9. OnionExpShellModel** 
    1075  
    1076 This model provides the form factor, *P*( *q*), for a multi-shell 
    1077 sphere where the scattering length density (SLD) of the each shell is 
    1078 described by an exponential (linear, or flat-top) function. The form 
    1079 factor is normalized by the volume of the sphere where the SLD is not 
    1080 identical to the SLD of the solvent. We currently provide up to 9 
    1081 shells with this model. 
    1082  
    1083 The 1D scattering intensity is calculated in the following way: 
    1084  
    1085  
    1086  
    1087  
    1088  
    1089 where, for a spherically symmetric particle with a particle density 
    1090 *r*( *r*) [L.A.Feigin and D.I.Svergun, Structure Analysis by Small- 
    1091 Angle X-Ray and Neutron Scattering, Plenum Press, New York, 1987], 
    1092  
    1093  
    1094  
    1095 so that 
    1096  
    1097  
    1098  
    1099  
    1100  
    1101  
    1102  
    1103  
    1104 Here we assumed that the SLDs of the core and solvent are constant 
    1105 against *r*. Now lets consider the SLD of a shell, *rshelli*, 
    1106 defineded by 
    1107  
    1108  
    1109  
    1110 An example of a possible SLD profile is shown below where 
    1111 sld_in_shelli ( *rin* ) and thick_shelli ( *Dtshelli* ) stand for the 
    1112 SLD of the inner side of the ith shell and the thickness of the ith 
    1113 shell in the equation above, respectively. 
    1114  
    1115 For \|A\|>0, 
    1116  
    1117  
    1118  
    1119 For A *~ *0 (eg., A = - 0.0001), this function converges to that of 
    1120 the linear SLD profile (ie, *rshelli*( *r*) = *A \*( *r* - 
    1121 *rshelli-1*) / *Dtshelli*) + *B \*), so this case it is equivalent 
    1122 to 
    1123  
    1124  
    1125  
    1126  
    1127  
    1128  
    1129  
    1130  
    1131  
    1132 For A = 0, the exponential function has no dependence on the radius 
    1133 (so that sld_out_shell# ( *rout*) is ignored this case) and becomes 
    1134 flat. We set the constant to *rin* for convenience, and thus the form 
    1135 factor contributed by the shells is 
    1136  
    1137  
    1138  
    1139  
    1140  
    1141 In the equation, 
    1142  
    1143  
    1144  
    1145 Finally, the form factor can be calculated by 
    1146  
    1147  
    1148  
    1149 where 
    1150  
    1151  
    1152  
    1153  
    1154  
    1155  
    1156  
    1157  
    1158  
    1159  
    1160  
    1161 The 2D scattering intensity is the same as *P*( *q*) above, regardless 
    1162 of the orientation of the *q* vector which is defined as . 
    1163  
    1164 For P*S: The outer most radius is used as the effective radius toward 
    1165 S(Q) when P(Q)*S(Q) is applied. 
    1166  
    1167 The returned value is scaled to units of [cm-1] and the parameters of 
    1168 this model are the following: 
    1169  
    1170 In the parameters, the rad_core represents the core radius (R1) and 
    1171 the thick_shell1 (R2 R1) is the thickness of the shell1, etc. 
    1172  
    1173 Note: Only No. of shells = 1 is given below. 
    1174  
    1175 Parameter name 
    1176  
    1177 Units 
    1178  
    1179 Default value 
    1180  
    1181 A_shell1 
    1182  
    1183 None 
    1184  
    1185 1 
    1186  
    1187 scale 
    1188  
    1189 None 
    1190  
    1191 1.0 
    1192  
    1193 rad_core 
    1194  
    1195  
    1196  
    1197 200 
    1198  
    1199 thick_shell1 
    1200  
    1201  
    1202  
    1203 50 
    1204  
    1205 sld_core 
    1206  
    1207 -2 
    1208  
    1209 1.0e-06 
    1210  
    1211 sld_in_shell1 
    1212  
    1213 -2 
    1214  
    1215 1.7e-06 
    1216  
    1217 sld_out_shell1 
    1218  
    1219 -2 
    1220  
    1221 2.0e-06 
    1222  
    1223 sld_solv 
    1224  
    1225 -2 
    1226  
    1227 6.4e-06 
    1228  
    1229 background 
    1230  
    1231 cm-1 
    1232  
    1233 0.0 
    1234  
    1235  
    1236  
    1237 *Figure. 1D plot using the default values (w/400 point).* 
    1238  
    1239  
    1240  
    1241 *Figure. SLD profile from the default values.* 
    1242  
    1243 REFERENCE 
    1244  
    1245 L.A.Feigin and D.I.Svergun, Structure Analysis by Small-Angle X-Ray 
    1246 and Neutron Scattering, Plenum Press, New York, 1987 
    1247  
    1248  
    1249  
    1250 .. _VesicleModel: 
    1251  
    1252 **2.1.10. VesicleModel** 
    1253  
    1254 This model provides the form factor, P( *q*), for an unilamellar 
    1255 vesicle. The form factor is normalized by the volume of the shell. 
    1256  
    1257 The 1D scattering intensity is calculated in the following way 
    1258 (Guinier, 1955): 
    1259  
    1260  
    1261  
    1262  
    1263  
    1264 where *scale* is a scale factor, *Vshell* is the volume of the shell, *V1* is the volume of the core, *V2* is the total 
    1265 volume, *R1* is the radius of the core, *r2* is the outer radius of the shell, *1* is the scattering length density of 
    1266 the core and the solvent, *2* is the scattering length density of the shell, and *bkg* is the background level. And 
    1267 *J1* = (sin *x *- *x*cos *x*)/ *x*2. The functional form is identical to a "typical" core-shell structure, except that 
    1268 the scattering is normalized by the volume that is contributing to the scattering, namely the volume of the shell alone. 
    1269 Also, the vesicle is best defined in terms of a core radius (= R1) and a shell thickness, t. 
    1270  
    1271  
    1272  
    1273 The 2D scattering intensity is the same as *P*( *q*) above, regardless 
    1274 of the orientation of the *q* vector which is defined as . 
    1275  
    1276 For P*S: The outer most radius (= radius + thickness) is used as the 
    1277 effective radius toward S(Q) when P(Q)*S(Q) is applied. 
    1278  
    1279 The returned value is scaled to units of [cm-1] and the parameters of 
    1280 the vesicle model are the following: 
    1281  
    1282 In the parameters, the radius represents the core radius (R1) and the 
    1283 thickness (R2 R1) is the shell thickness. 
    1284  
    1285 Parameter name 
    1286  
    1287 Units 
    1288  
    1289 Default value 
    1290  
    1291 scale 
    1292  
    1293 None 
    1294  
    1295 1.0 
    1296  
    1297 radius 
    1298  
    1299  
    1300  
    1301 100 
    1302  
    1303 thickness 
    1304  
    1305  
    1306  
    1307 30 
    1308  
    1309 core_sld 
    1310  
    1311 -2 
    1312  
    1313 6.3e-6 
    1314  
    1315 shell_sld 
    1316  
    1317 -2 
    1318  
    1319 0 
    1320  
    1321 background 
    1322  
    1323 cm-1 
    1324  
    1325 0.0 
    1326  
    1327  
    1328  
    1329 *Figure. 1D plot using the default values (w/200 data point).* 
    1330  
    1331 Our model uses the form factor calculations implemented in a c-library 
    1332 provided by the NIST Center for Neutron Research (Kline, 2006). 
    1333  
    1334 REFERENCE 
    1335  
    1336 Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John 
    1337 Wiley and Sons, New York, (1955). 
    1338  
    1339  
    1340  
    1341 .. _SphericalSLDModel: 
    1342  
    1343 **2.1.11. SphericalSLDModel** 
    1344  
    1345 Similarly to the OnionExpShellModel, this model provides the form 
    1346 factor, *P*( *q*), for a multi-shell sphere, where the interface 
    1347 between the each neighboring shells can be described by one of the 
    1348 functions including error, power-law, and exponential functions. This 
    1349 model is to calculate the scattering intensity by building a 
    1350 continuous custom SLD profile against the radius of the particle. The 
    1351 SLD profile is composed of a flat core, a flat solvent, a number (up 
    1352 to 9 shells) of flat shells, and the interfacial layers between the 
    1353 adjacent flat shells (or core, and solvent) (See below). Unlike 
    1354 OnionExpShellModel (using an analytical integration), the interfacial 
    1355 layers are sub-divided and numerically integrated assuming each sub- 
    1356 layers are described by a line function. The number of the sub-layer 
    1357 can be given by users by setting the integer values of npts_inter# in 
    1358 GUI. The form factor is normalized by the total volume of the sphere. 
    1359  
    1360 The 1D scattering intensity is calculated in the following way: 
    1361  
    1362  
    1363  
    1364  
    1365  
    1366 where, for a spherically symmetric particle with a particle density 
    1367 *r*( *r*) [L.A.Feigin and D.I.Svergun, Structure Analysis by Small- 
    1368 Angle X-Ray and Neutron Scattering, Plenum Press, New York, 1987], 
    1369  
    1370  
    1371  
    1372 so that 
    1373  
    1374  
    1375  
    1376  
    1377  
    1378  
    1379  
    1380  
    1381  
    1382  
    1383  
    1384  
    1385  
    1386 Here we assumed that the SLDs of the core and solvent are constant 
    1387 against *r*. The SLD at the interface between shells, *rinter_i*, is 
    1388 calculated with a function chosen by an user, where the functions are: 
    1389  
    1390 1) Exp; 
    1391  
    1392  
    1393  
    1394 2) Power-Law; 
    1395  
    1396  
    1397  
    1398  
    1399  
    1400 3) Erf; 
    1401  
    1402  
    1403  
    1404  
    1405  
    1406  
    1407  
    1408 Then the functions are normalized so that it varies between 0 and 1 
    1409 and they are constrained such that the SLD is continuous at the 
    1410 boundaries of the interface as well as each sub-layers and thus the B 
    1411 and C are determined. 
    1412  
    1413 Once the *rinter_i* is found at the boundary of the sub-layer of the 
    1414 interface, we can find its contribution to the form factor P(q); 
    1415  
    1416  
    1417  
    1418  
    1419  
    1420  
    1421  
    1422 where we assume that rho_inter_i (r) can be approximately linear 
    1423 within a sub-layer j. 
    1424  
    1425 In the equation, 
    1426  
    1427  
    1428  
    1429 Finally, the form factor can be calculated by 
    1430  
    1431  
    1432  
    1433 where 
    1434  
    1435  
    1436  
    1437  
    1438  
    1439  
    1440  
    1441  
    1442  
    1443  
    1444  
    1445 The 2D scattering intensity is the same as *P*( *q*) above, regardless 
    1446 of the orientation of the *q* vector which is defined as . 
    1447  
    1448 For P*S: The outer most radius is used as the effective radius toward 
    1449 S(Q) when P(Q)*S(Q) is applied. 
    1450  
    1451 The returned value is scaled to units of [cm-1] and the parameters of 
    1452 this model are the following: 
    1453  
    1454 In the parameters, the rad_core0 represents the core radius (R1). 
    1455  
    1456 Note: Only No. of shells = 1 is given below. 
    1457  
    1458 Parameter name 
    1459  
    1460 Units 
    1461  
    1462 Default value 
    1463  
    1464 background 
    1465  
    1466 cm-1 
    1467  
    1468 0.0 
    1469  
    1470 npts_inter 
    1471  
    1472 35 
    1473  
    1474 scale 
    1475  
    1476 1 
    1477  
    1478 sld_solv 
    1479  
    1480 -2 
    1481  
    1482 1e-006 
    1483  
    1484 func_inter1 
    1485  
    1486 Erf 
    1487  
    1488 nu_inter 
    1489  
    1490 2.5 
    1491  
    1492 thick_inter1 
    1493  
    1494  
    1495  
    1496 50 
    1497  
    1498 sld_flat1 
    1499  
    1500 -2 
    1501  
    1502 4e-006 
    1503  
    1504 thick_flat1 
    1505  
    1506  
    1507  
    1508 100 
    1509  
    1510 func_inter0 
    1511  
    1512 Erf 
    1513  
    1514 nu_inter0 
    1515  
    1516 2.5 
    1517  
    1518 rad_core0 
    1519  
    1520  
    1521  
    1522 50 
    1523  
    1524 sld_core0 
    1525  
    1526 -2 
    1527  
    1528 2.07e-06 
    1529  
    1530 thick_core0 
    1531  
    1532  
    1533  
    1534 50 
    1535  
    1536  
    1537  
    1538 *Figure. 1D plot using the default values (w/400 point).* 
    1539  
    1540  
    1541  
    1542 *Figure. SLD profile from the default values.* 
    1543  
    1544 REFERENCE 
    1545  
    1546 L.A.Feigin and D.I.Svergun, Structure Analysis by Small-Angle X-Ray 
    1547 and Neutron Scattering, Plenum Press, New York, 1987 
    1548  
    1549  
    1550  
    1551 .. _LinearPearlsModel: 
    1552  
    1553 **2.1.12. LinearPearlsModel** 
    1554  
    1555 This model provides the form factor for pearls linearly joined by 
    1556 short strings: N pearls (homogeneous spheres), the radius R and the 
    1557 string segment length (or edge separation) l (= A- 2R)). The A is the 
    1558 center to center pearl separation distance. The thickness of each 
    1559 string is assumed to be negligable. 
    1560  
    1561  
    1562  
    1563  
    1564  
    1565 *1.1. Definition* 
    1566  
    1567  
    1568  
    1569 The output of the scattering intensity function for the linearpearls 
    1570 model is given by (Dobrynin, 1996): 
    1571  
    1572  
    1573  
    1574 where the mass mp is (sld(of a pearl) sld(of solvent)) * (volume of 
    1575 the N pearls), V is the total volume. 
    1576  
    1577 The 2D scattering intensity is the same as P(q) above, regardless of 
    1578 the orientation of the q vector. 
    1579  
    1580 The returned value is scaled to units of [cm-1] and the parameters are 
    1581 the following: 
    1582  
    1583 Parameter name 
    1584  
    1585 Units 
    1586  
    1587 Default value 
    1588  
    1589 scale 
    1590  
    1591 None 
    1592  
    1593 1.0 
    1594  
    1595 radius 
    1596  
    1597  
    1598  
    1599 80.0 
    1600  
    1601 edge_separation 
    1602  
    1603  
    1604  
    1605 350.0 
    1606  
    1607 num_pearls 
    1608  
    1609 (integer) 
    1610  
    1611 3 
    1612  
    1613 sld_pearl 
    1614  
    1615 -2 
    1616  
    1617 1e-6 
    1618  
    1619 sld_solv 
    1620  
    1621 -2 
    1622  
    1623 6.3e-6 
    1624  
    1625 background 
    1626  
    1627 cm-1 
    1628  
    1629 0.0 
    1630  
    1631  
    1632  
    1633  
    1634  
    1635 REFERENCE 
    1636  
    1637 A. V. Dobrynin, M. Rubinstein and S. P. Obukhov, Macromol. 29, 
    1638 2974-2979, 1996. 
    1639  
    1640  
    1641  
    1642 .. _PearlNecklaceModel: 
    1643  
    1644 **2.1.13. PearlNecklaceModel** 
    1645  
    1646 This model provides the form factor for a pearl necklace composed of 
    1647 two elements: N pearls (homogeneous spheres) freely jointed by M rods 
    1648 (like strings) (with a total mass Mw = M *mr + N * ms, the radius R 
    1649 and the string segment length (or edge separation) l (= A- 2R)). The A 
    1650 is the center to center pearl separation distance. 
    1651  
    1652  
    1653  
    1654  
    1655  
    1656 *1.1. Definition* 
    1657  
    1658 The output of the scattering intensity function for the pearlnecklace 
    1659 model is given by (Schweins, 2004): 
    1660  
    1661  
    1662  
    1663 where 
    1664  
    1665 , 
    1666  
    1667 , 
    1668  
    1669 , 
    1670  
    1671 , 
    1672  
    1673 , 
    1674  
    1675 and 
    1676  
    1677 . 
    1678  
    1679  
    1680  
    1681 where the mass mi is (sld(of i) sld(of solvent)) * (volume of the N 
    1682 pearls/rods), V is the total volume of the necklace. 
    1683  
    1684 The 2D scattering intensity is the same as P(q) above, regardless of 
    1685 the orientation of the q vector. 
    1686  
    1687 The returned value is scaled to units of [cm-1] and the parameters are 
    1688 the following: 
    1689  
    1690 Parameter name 
    1691  
    1692 Units 
    1693  
    1694 Default value 
    1695  
    1696 scale 
    1697  
    1698 None 
    1699  
    1700 1.0 
    1701  
    1702 radius 
    1703  
    1704  
    1705  
    1706 80.0 
    1707  
    1708 edge_separation 
    1709  
    1710  
    1711  
    1712 350.0 
    1713  
    1714 num_pearls 
    1715  
    1716 (integer) 
    1717  
    1718 3 
    1719  
    1720 sld_pearl 
    1721  
    1722 -2 
    1723  
    1724 1e-6 
    1725  
    1726 sld_solv 
    1727  
    1728 -2 
    1729  
    1730 6.3e-6 
    1731  
    1732 sld_string 
    1733  
    1734 -2 
    1735  
    1736 1e-6 
    1737  
    1738 thick_string 
    1739  
    1740 (=rod diameter) 
    1741  
    1742  
    1743  
    1744 2.5 
    1745  
    1746 background 
    1747  
    1748 cm-1 
    1749  
    1750 0.0 
    1751  
    1752  
    1753  
    1754  
    1755  
    1756 REFERENCE 
    1757  
    1758 R. Schweins and K. Huber, Particle Scattering Factor of Pearl Necklace 
    1759 Chains, Macromol. Symp., 211, 25-42, 2004. 
     1181R. Schweins and K. Huber, *Particle Scattering Factor of Pearl Necklace Chains*, *Macromol. Symp.* 211 (2004) 25-42 2004 
    17601182 
    17611183 
     
    17741196 
    17751197The output of the 2D scattering intensity function for oriented 
    1776 cylinders is given by (Guinier, 1955): 
     1198cylinders is given by (Guinier, 1955) 
    17771199 
    17781200 
     
    18031225toward S(Q) when P(Q)*S(Q) is applied. 
    18041226 
    1805 The returned value is scaled to units of [cm-1] and the parameters of 
     1227The returned value is scaled to units of |cm^-1| and the parameters of 
    18061228the cylinder model are the following: 
    18071229 
     
    18381260background 
    18391261 
    1840 cm-1 
     1262|cm^-1| 
    18411263 
    184212640.0 
     
    18861308 
    18871309 
    1888 Figure 3: Comparison of the DANSE scattering intensity for a cylinder 
     1310Figure 3: Comparison of the SasView scattering intensity for a cylinder 
    18891311with the output of the NIST SANS analysis software. The parameters 
    18901312were set to: Scale=1.0, Radius=20 , Length=400 , Contrast=3e-6 -2, and 
     
    19161338hollow cylinder have the same SLD. 
    19171339 
    1918 The 1D scattering intensity is calculated in the following way 
    1919 (Guinier, 1955): 
    1920  
    1921  
    1922  
    1923  
    1924  
    1925 where *scale* is a scale factor, *J1* is the 1st order Bessel 
    1926 function, *J1* (x)= (sin *x *- *x*cos *x*)/ *x*2. 
     1340The 1D scattering intensity is calculated in the following way (Guinier, 1955) 
     1341 
     1342 
     1343 
     1344 
     1345 
     1346where *scale* is a scale factor, *J1* is the 1st order Bessel function, *J1(x)* = (sin *x - *x* cos *x*)/ *x*\ :sup:`2`. 
    19271347 
    19281348 
     
    19861406background 
    19871407 
    1988 cm-1 
     1408|cm^-1| 
    19891409 
    199014100.01 
     
    20281448*1.1. Definition* 
    20291449 
    2030 The returned value is scaled to units of [cm-1sr-1], absolute scale. 
     1450The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale. 
    20311451 
    20321452The Capped Cylinder geometry is defined as: 
     
    20771497 
    20781498This example dataset is produced by running the Macro 
    2079 CappedCylinder(), using 200 data points, qmin = 0.001 -1, qmax = 0.7 
     1499CappedCylinder(), using 200 data points, *qmin* = 0.001 -1, *qmax* = 0.7 
    20801500-1 and the above default values. 
    20811501 
     
    21901610used as the effective radius toward S(Q) when P(Q)*S(Q) is applied. 
    21911611 
    2192 The returned value is scaled to units of [cm-1] and the parameters of 
     1612The returned value is scaled to units of |cm^-1| and the parameters of 
    21931613the core-shell cylinder model are the following: 
    21941614 
     
    22431663background 
    22441664 
    2245 cm-1 
     1665|cm^-1| 
    22461666 
    224716670.0 
     
    22841704 
    22851705 
    2286 Figure 8: Comparison of the DANSE scattering intensity for a core- 
     1706Figure 8: Comparison of the SasView scattering intensity for a core- 
    22871707shell cylinder with the output of the NIST SANS analysis software. The 
    22881708parameters were set to: Scale=1.0, Radius=20 , Thickness=10 , 
     
    23541774normalized by the particle volume: P(q) = scale*<f^2>/V . 
    23551775 
    2356 The returned value is scaled to units of [cm-1]. 
     1776The returned value is scaled to units of |cm^-1|. 
    23571777 
    23581778To provide easy access to the orientation of the elliptical, we define 
     
    24521872 
    24531873 
    2454 *Figure. The intensities averaged from 2D over different number * 
    2455  
    2456 *of points of binning of angles.* 
     1874*Figure. The intensities averaged from 2D over different numbers of bins and angles.* 
    24571875 
    24581876REFERENCE 
     
    24811899flexible cylinder can be considered a rigid rod. The Kuhn length (b = 
    248219002*lp) is also used to describe the stiffness of a chain. The returned 
    2483 value is in units of [cm-1], on absolute scale. In the parameters, the 
     1901value is in units of |cm^-1|, on absolute scale. In the parameters, the 
    24841902sldCyl and sldSolv represent SLD (chain/cylinder) and SLD (solvent) 
    24851903respectively. 
     
    25271945background 
    25281946 
    2529 cm-1 
     1947|cm^-1| 
    25301948 
    253119490.01 
     
    25681986**2.1.20 FlexCylEllipXModel** 
    25691987 
    2570 *Flexible Cylinder with Elliptical Cross-Section: *Calculates the 
     1988*Flexible Cylinder with Elliptical Cross-Section:* Calculates the 
    25711989form factor for a flexible cylinder with an elliptical cross section 
    25721990and a uniform scattering length density. The non-negligible diameter 
    25731991of the cylinder is included by accounting for excluded volume 
    25741992interactions within the walk of a single cylinder. The form factor is 
    2575 normalized by the particle volume such that P(q) = scale*<f^2>/Vol + 
     1993normalized by the particle volume such that P(q) = scale\*<f^2>/Vol + 
    25761994bkg, where < > is an average over all possible orientations of the 
    25771995flexible cylinder. 
     
    25862004for the details. 
    25872005 
    2588 NOTE: there are several typos in the original reference that have been 
     2006NB: there are several typos in the original reference that have been 
    25892007corrected by WRC. Details of the corrections are in the reference 
    25902008below. 
     
    26122030curve fitting to maintain this inequality. 
    26132031 
    2614 The returned value is in units of [cm-1], on absolute scale. 
     2032The returned value is in units of |cm^-1|, on absolute scale. 
    26152033 
    26162034The sldCyl = SLD (chain), sldSolv = SLD (solvent). The scale, and the 
     
    26442062 
    26452063This example dataset is produced by running the Macro 
    2646 FlexCylEllipXModel, using 200 data points, qmin = 0.001 -1, qmax = 0.7 
     2064FlexCylEllipXModel, using 200 data points, *qmin* = 0.001 -1, *qmax* = 0.7 
    26472065-1 and the default values below. 
    26482066 
     
    26592077background 
    26602078 
    2661 cm-1 
     2079|cm^-1| 
    26622080 
    266320810.0001 
     
    27172135 
    27182136 
    2719 The returned value is scaled to units of [cm-1] and the parameters of 
     2137The returned value is scaled to units of |cm^-1| and the parameters of 
    27202138the core-shell cylinder model are the following: 
    27212139 
     
    27702188background 
    27712189 
    2772 cm-1 
     2190|cm^-1| 
    27732191 
    277421920.0 
     
    28292247*1.1. Definition* 
    28302248 
    2831 The returned value is scaled to units of [cm-1sr-1], absolute scale. 
    2832  
    2833 The barbell geometry is defined as: 
     2249The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale. 
     2250 
     2251The barbell geometry is defined as 
    28342252 
    28352253 
     
    28372255r is the radius of the cylinder. All other parameters are as defined 
    28382256in the diagram. Since the end cap radius R >= r and by definition for 
    2839 this geometry h > 0, h is then defined by r and R as: 
     2257this geometry h > 0, h is then defined by r and R as 
    28402258 
    28412259h = sqrt(R^2 - r^2). 
     
    28802298 
    28812299This example dataset is produced by running the Macro PlotBarbell(), 
    2882 using 200 data points, qmin = 0.001 -1, qmax = 0.7 -1 and the above 
     2300using 200 data points, *qmin* = 0.001 -1, *qmax* = 0.7 -1 and the above 
    28832301default values. 
    28842302 
     
    29752393 
    29762394 
    2977 The returned value is in units of [cm-1 sr-1], on absolute scale. 
     2395The returned value is in units of [|cm^-1| |sr^-1|, on absolute scale. 
    29782396 
    29792397The scattering intensity I(q) is: 
     
    30222440background 
    30232441 
    3024 cm-1 
     2442|cm^-1| 
    30252443 
    302624440.001 
     
    31122530 
    31132531 
    3114 The returned value is in units of [cm-1], on absolute scale. 
     2532The returned value is in units of |cm^-1|, on absolute scale. 
    31152533 
    31162534The form factor calculated is: 
     
    31352553background 
    31362554 
    3137 cm-1 
     2555|cm^-1| 
    31382556 
    313925570.0 
     
    32232641effective radius toward S(Q) when P(Q)*S(Q) is applied. 
    32242642 
    3225 The returned value is scaled to units of [cm-1] and the parameters of 
     2643The returned value is scaled to units of |cm^-1| and the parameters of 
    32262644the ellipsoid model are the following: 
    32272645 
     
    32642682background 
    32652683 
    3266 cm-1 
     2684|cm^-1| 
    32672685 
    326826860.0 
     
    33142732The NIST software performs that integration with a 76-point Gaussian 
    33152733quadrature rule, which will become imprecise at high q where the 
    3316 amplitude varies quickly as a function of q. The DANSE result shown 
     2734amplitude varies quickly as a function of q. The SasView result shown 
    33172735has been obtained by summing over 501 equidistant points in . Our 
    33182736result was found to be stable over the range of q shown for a number 
     
    33212739* * 
    33222740 
    3323 Figure 5: Comparison of the DANSE scattering intensity for an 
     2741Figure 5: Comparison of the SasView scattering intensity for an 
    33242742ellipsoid with the output of the NIST SANS analysis software. The 
    33252743parameters were set to: Scale=1.0, Radius_a=20 , Radius_b=400 , 
     
    33512769 
    33522770 
    3353 The returned value is in units of [cm-1], on absolute scale. 
     2771The returned value is in units of |cm^-1|, on absolute scale. 
    33542772 
    33552773The form factor calculated is: 
     
    33862804background 
    33872805 
    3388 cm-1 
     2806|cm^-1| 
    33892807 
    339028080.001 
     
    34722890 
    34732891 
    3474 The returned value is in units of [cm-1], on absolute scale. 
     2892The returned value is in units of |cm^-1|, on absolute scale. 
    34752893 
    34762894The form factor calculated is: 
     
    35082926background 
    35092927 
    3510 cm-1 
     2928|cm^-1| 
    35112929 
    351229300.0 
     
    36013019 
    36023020 
    3603 The returned value is in units of [cm-1], on absolute scale. In the 
     3021The returned value is in units of |cm^-1|, on absolute scale. In the 
    36043022parameters, sld_bi = SLD of the bilayer, sld_sol = SLD of the solvent, 
    36053023and bi_thick = the thickness of the bilayer. 
     
    36153033background 
    36163034 
    3617 cm-1 
     3035|cm^-1| 
    36183036 
    361930370.0 
     
    36823100 
    36833101 
    3684 The returned value is in units of [cm-1], on absolute scale. In the 
     3102The returned value is in units of |cm^-1|, on absolute scale. In the 
    36853103parameters, sld_tail = SLD of the tail group, and sld_head = SLD of 
    36863104the head group. 
     
    36963114background 
    36973115 
    3698 cm-1 
     3116|cm^-1| 
    36993117 
    370031180.0 
     
    37813199B=compression modulus, and N = number of lamellar plates (n_plates). 
    37823200 
    3783 Note: When the Caille parameter is greater than approximately 0.8 to 
     3201NB: When the Caille parameter is greater than approximately 0.8 to 
    378432021.0, the assumptions of the model are incorrect. And due to the 
    37853203complication of the model function, users are responsible to make sure 
     
    37903208the *q* vector is defined as . 
    37913209 
    3792 The returned value is in units of [cm-1], on absolute scale. 
     3210The returned value is in units of |cm^-1|, on absolute scale. 
    37933211 
    37943212 
     
    38023220background 
    38033221 
    3804 cm-1 
     3222|cm^-1| 
    38053223 
    380632240.0 
     
    38883306(n_plates). 
    38893307 
    3890 Note: When the Caille parameter is greater than approximately 0.8 to 
     3308NB: When the Caille parameter is greater than approximately 0.8 to 
    389133091.0, the assumptions of the model are incorrect. And due to the 
    38923310complication of the model function, users are responsible to make sure 
     
    38993317 
    39003318 
    3901 The returned value is in units of [cm-1], on absolute scale. In the 
     3319The returned value is in units of |cm^-1|, on absolute scale. In the 
    39023320parameters, sld_tail = SLD of the tail group, sld_head = SLD of the 
    39033321head group, and sld_solvent = SLD of the solvent. 
     
    39133331background 
    39143332 
    3915 cm-1 
     3333|cm^-1| 
    39163334 
    391733350.001 
     
    40283446background 
    40293447 
    4030 cm-1 
     3448|cm^-1| 
    40313449 
    403234500 
     
    40953513characterized by a Gaussian distribution. 
    40963514 
    4097 The returned value is scaled to units of [cm-1sr-1], absolute scale. 
    4098  
    4099 The scattering intensity I(q) is calculated as: 
     3515The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale. 
     3516 
     3517The scattering intensity I(q) is calculated as 
    41003518 
    41013519 
     
    41353553 
    41363554 
    4137 NOTE: The calculation of Z(q) is a double numerical integral that must 
     3555NB: The calculation of Z(q) is a double numerical integral that must 
    41383556be carried out with a high density of points to properly capture the 
    41393557sharp peaks of the paracrystalline scattering. So be warned that the 
     
    41603578background 
    41613579 
    4162 cm-1 
     3580|cm^-1| 
    41633581 
    416435820 
     
    41983616TEST DATASET 
    41993617 
    4200 This example dataset is produced using 200 data points, qmin = 0.01 
    4201 -1, qmax = 0.1 -1 and the above default values. 
     3618This example dataset is produced using 200 data points, *qmin* = 0.01 
     3619-1, *qmax* = 0.1 -1 and the above default values. 
    42023620 
    42033621 
     
    42373655characterized by a Gaussian distribution. 
    42383656 
    4239 The returned value is scaled to units of [cm-1sr-1], absolute scale. 
     3657The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale. 
    42403658 
    42413659The scattering intensity I(q) is calculated as: 
     
    42793697 
    42803698 
    4281 NOTE: The calculation of Z(q) is a double numerical integral that must 
     3699NB: The calculation of Z(q) is a double numerical integral that must 
    42823700be carried out with a high density of points to properly capture the 
    42833701sharp peaks of the paracrystalline scattering. So be warned that the 
     
    43063724background 
    43073725 
    4308 cm-1 
     3726|cm^-1| 
    43093727 
    431037280 
     
    43443762TEST DATASET 
    43453763 
    4346 This example dataset is produced using 200 data points, qmin = 0.01 
    4347 -1, qmax = 0.1 -1 and the above default values. 
     3764This example dataset is produced using 200 data points, *qmin* = 0.01 
     3765-1, *qmax* = 0.1 -1 and the above default values. 
    43483766 
    43493767 
     
    43713789Paracrystalline distortion is assumed to be isotropic and 
    43723790characterized by a Gaussian distribution.The returned value is scaled 
    4373 to units of [cm-1sr-1], absolute scale. 
     3791to units of [|cm^-1|\ |sr^-1|, absolute scale. 
    43743792 
    43753793The scattering intensity I(q) is calculated as: 
     
    44133831 
    44143832 
    4415 NOTE: The calculation of Z(q) is a double numerical integral that must 
     3833NB: The calculation of Z(q) is a double numerical integral that must 
    44163834be carried out with a high density of points to properly capture the 
    44173835sharp peaks of the paracrystalline scattering. So be warned that the 
     
    44403858background 
    44413859 
    4442 cm-1 
     3860|cm^-1| 
    44433861 
    444438620 
     
    44783896TEST DATASET 
    44793897 
    4480 This example dataset is produced using 200 data points, qmin = 0.001 
    4481 -1, qmax = 0.1 -1 and the above default values. 
     3898This example dataset is produced using 200 data points, *qmin* = 0.001 
     3899-1, *qmax* = 0.1 -1 and the above default values. 
    44823900 
    44833901 
     
    45353953 
    45363954The scattering intensity per unit volume is returned in the unit of 
    4537 [cm-1]; I(q) = fP(q). 
     3955|cm^-1|; I(q) = fP(q). 
    45383956 
    45393957For P*S: The 2nd virial coefficient of the solid cylinder is calculate 
     
    45663984background 
    45673985 
    4568 cm-1 
     3986|cm^-1| 
    45693987 
    457039880.0 
     
    46814099an error, but the results will not be correct. 
    46824100 
    4683 The returned value is in units of [cm-1], on absolute scale. 
     4101The returned value is in units of |cm^-1|, on absolute scale. 
    46844102 
    46854103For P*S: The 2nd virial coefficient of this CSPP is calculate based on 
     
    47084126 
    47094127This example dataset is produced by running the Macro 
    4710 Plot_CSParallelepiped(), using 100 data points, qmin = 0.001 -1, qmax 
     4128Plot_CSParallelepiped(), using 100 data points, *qmin* = 0.001 -1, *qmax* 
    47114129= 0.7 -1 and the below default values. 
    47124130 
     
    47194137background 
    47204138 
    4721 cm-1 
     4139|cm^-1| 
    47224140 
    472341410.06 
     
    48564274background 
    48574275 
    4858 cm-1 
     4276|cm^-1| 
    48594277 
    486042780.0 
     
    48794297structures). 
    48804298 
    4881 The returned value is scaled to units of [cm-1sr-1], absolute scale. 
     4299The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale. 
    48824300 
    48834301The scattering intensity I(q) is calculated by: 
     
    49334351Background (=B) 
    49344352 
    4935 cm-1 
     4353|cm^-1| 
    49364354 
    493743550.1 
     
    49524370a low-Q signal and a high-Q signal 
    49534371 
    4954 The returned value is scaled to units of [cm-1sr-1], absolute scale. 
     4372The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale. 
    49554373 
    49564374The scattering intensity I(q) is calculated by: 
     
    50044422Background (=B) 
    50054423 
    5006 cm-1 
     4424|cm^-1| 
    50074425 
    500844260.1 
     
    50614479background 
    50624480 
    5063 cm-1 
     4481|cm^-1| 
    50644482 
    506544830.0 
     
    51134531background 
    51144532 
    5115 cm-1 
     4533|cm^-1| 
    51164534 
    511745350.0 
     
    513445522013/09/09 - Description reviewed by King, S. and Parker, P. 
    51354553 
    5136 *3.6.  Absolute Power_Law * 
     4554 
     4555 
     4556**3.6. AbsolutePowerLaw** 
    51374557 
    51384558This model describes a power law with background. 
     
    51664586Background 
    51674587 
    5168 cm-1 
     4588|cm^-1| 
    51694589 
    517045900.0 
     
    52174637background 
    52184638 
    5219 cm-1 
     4639|cm^-1| 
    52204640 
    522146410.0 
     
    52384658Calculates the scattering from fractal-like aggregates built from 
    52394659spherical building blocks following the Texiera reference. The value 
    5240 returned is in cm-1. 
     4660returned is in |cm^-1|. 
    52414661 
    52424662 
     
    53024722background 
    53034723 
    5304 cm-1 
     4724|cm^-1| 
    53054725 
    530647260.0 
     
    53394759scattering length density of particles. 
    53404760 
    5341 Note: The mass fractal dimension is valid for 1<mass_dim<6. 
     4761NB: The mass fractal dimension is valid for 1<mass_dim<6. 
    53424762 
    53434763 
     
    54164836scattering length density of particles. 
    54174837 
    5418 Note: The surface fractal dimension is valid for 1<surface_dim<3. Also 
     4838NB: The surface fractal dimension is valid for 1<surface_dim<3. Also 
    54194839it is valid in a limited q range (see the reference for details). 
    54204840 
     
    55074927length density of particles. 
    55084928 
    5509 Note: The surface and mass fractal dimensions are valid for 
     4929NB: The surface and mass fractal dimensions are valid for 
    551049300<surface_dim<6, 0<mass_dim<6, and (surface_mass+mass_dim)<6. 
    55114931 
     
    55835003provided. 
    55845004 
    5585 The returned value is scaled to units of [cm-1sr-1], absolute scale. 
     5005The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale. 
    55865006 
    55875007See each of these individual models for full documentation. 
     
    56415061background 
    56425062 
    5643 cm-1 
     5063|cm^-1| 
    56445064 
    564550650.0 
     
    56645084structures. 
    56655085 
    5666 The returned value is scaled to units of [cm-1sr-1], absolute scale. 
     5086The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale. 
    56675087 
    56685088The scattering intensity I(q) is calculated as (eqn 5 from the 
     
    57175137background 
    57185138 
    5719 cm-1 
     5139|cm^-1| 
    57205140 
    572151410.0 
     
    57385158Calculates the structure factor of a polyelectrolyte solution with the 
    57395159RPA expression derived by Borue and Erukhimovich. The value returned 
    5740 is in cm-1. 
     5160is in |cm^-1|. 
    57415161 
    57425162 
     
    58035223background 
    58045224 
    5805 cm-1 
     5225|cm^-1| 
    58065226 
    580752270.0 
     
    58445264scale 
    58455265 
    5846 cm-1 
     5266|cm^-1| 
    58475267 
    584852681.0 
     
    58635283 
    58645284The returned value is P(Q) as written in equation (1), plus the 
    5865 incoherent background term. The result is in the units of [cm-1sr-1], 
     5285incoherent background term. The result is in the units of [|cm^-1|\ |sr^-1|, 
    58665286absolute scale. 
    58675287 
     
    59255345Scale(=Guinier scale, G) 
    59265346 
    5927 cm-1 
     5347|cm^-1| 
    59285348 
    592953491.0 
     
    59905410background 
    59915411 
    5992 cm-1 
     5412|cm^-1| 
    59935413 
    599454140 
     
    60235443scale 
    60245444 
    6025 cm-1 
     5445|cm^-1| 
    60265446 
    60275447100 
     
    60805500scale 
    60815501 
    6082 cm-1 
     5502|cm^-1| 
    60835503 
    60845504100 
     
    61125532molecular weight distribution. 
    61135533 
    6114 The returned value is scaled to units of [cm-1sr-1], absolute scale. 
     5534The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale. 
    61155535 
    61165536 
     
    61355555 
    61365556This example dataset is produced by running the Poly_GaussCoil, using 
    6137 200 data points, qmin = 0.001 -1, qmax = 0.7 -1 and the default values 
     5557200 data points, *qmin* = 0.001 -1, *qmax* = 0.7 -1 and the default values 
    61385558below. 
    61395559 
     
    61645584background 
    61655585 
    6166 cm-1 
     5586|cm^-1| 
    61675587 
    616855880.001 
     
    61895609Calculates the scattering from polymers with excluded volume effects. 
    61905610 
    6191 The returned value is scaled to units of [cm-1sr-1], absolute scale. 
     5611The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale. 
    61925612 
    61935613The returned value is P(Q) as written in equation (2), plus the 
    6194 incoherent background term. The result is in the units of [cm-1sr-1], 
     5614incoherent background term. The result is in the units of [|cm^-1|\ |sr^-1|, 
    61955615absolute scale. 
    61965616 
     
    62605680TEST DATASET 
    62615681 
    6262 This example dataset is produced, using 200 data points, qmin = 0.001 
    6263 -1, qmax = 0.2 -1 and the default values below. 
     5682This example dataset is produced, using 200 data points, *qmin* = 0.001 
     5683-1, *qmax* = 0.2 -1 and the default values below. 
    62645684 
    62655685Parameter name 
     
    62875707background 
    62885708 
    6289 cm-1 
     5709|cm^-1| 
    62905710 
    629157110.0 
     
    63255745Case 9: A-B-C-D Four-block copolymer 
    63265746 
    6327 Note: the case numbers are different from the IGOR/NIST SANS package. 
     5747NB: the case numbers are different from the IGOR/NIST SANS package. 
    63285748 
    63295749 
     
    63325752will overwrite the original parameter waves. 
    63335753 
    6334 The returned value is scaled to units of [cm-1]. 
     5754The returned value is scaled to units of |cm^-1|. 
    63355755 
    63365756Component D is assumed to be the "background" component (all contrasts 
     
    63685788background 
    63695789 
    6370 cm-1 
     5790|cm^-1| 
    63715791 
    637257920.0 
     
    64475867a two Lorentzian functions. 
    64485868 
    6449 The returned value is scaled to units of [cm-1sr-1], absolute scale. 
     5869The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale. 
    64505870 
    64515871The scattering intensity I(q) is calculated by: 
     
    65045924Background(=B) 
    65055925 
    6506 cm-1 
     5926|cm^-1| 
    65075927 
    650859280.1 
     
    65255945two power laws. 
    65265946 
    6527 The returned value is scaled to units of [cm-1sr-1], absolute scale. 
     5947The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale. 
    65285948 
    65295949 
     
    65705990background 
    65715991 
    6572 cm-1 
     5992|cm^-1| 
    65735993 
    657459940.0 
     
    65866006*3.25. UnifiedPower(Law and)Rg(Model)* 
    65876007 
    6588 The returned value is scaled to units of [cm-1sr-1], absolute scale. 
     6008The returned value is scaled to units of [|cm^-1|\ |sr^-1|, absolute scale. 
    65896009 
    65906010Note that the level 0 is an extra function that is the inverse 
     
    66436063G2 
    66446064 
    6645 cm-1sr-1 
     6065|cm^-1|\ |sr^-1| 
    66466066 
    664760673 
     
    66496069B2 
    66506070 
    6651 cm-1sr-1 
     6071|cm^-1|\ |sr^-1| 
    66526072 
    665360730.0006 
     
    66656085G1 
    66666086 
    6667 cm-1sr-1 
     6087|cm^-1|\ |sr^-1| 
    66686088 
    66696089400 
     
    66716091B1 
    66726092 
    6673 cm-1sr-1 
     6093|cm^-1|\ |sr^-1| 
    66746094 
    667560954.5e-006 
     
    66776097background 
    66786098 
    6679 cm-1 
     6099|cm^-1| 
    66806100 
    668161010.0 
     
    67086128terms. 
    67096129 
    6710 *Note:* For 2D plot, I(q) = I(qx)*I(qy) which is defined differently 
     6130*NB:* For 2D plot, I(q) = I(qx)*I(qy) which is defined differently 
    67116131from other shape independent models. 
    67126132 
     
    67196139A 
    67206140 
    6721 cm-1 
     6141|cm^-1| 
    67226142 
    672361431.0 
     
    67436163sigma=roughness). 
    67446164 
    6745 Note: This model was contributed by an interested user. 
     6165NB: This model was contributed by an interested user. 
    67466166 
    67476167 
     
    67826202 
    67836203 
    6784 Note: This model was implemented by an interested user. 
     6204NB: This model was implemented by an interested user. 
    67856205 
    67866206*3.29. GelFitModel* 
     
    681262322.8. 
    68136233 
    6814 Note: This model was implemented by an interested user. 
     6234NB: This model was implemented by an interested user. 
    68156235 
    68166236*Default input parameter values* 
     
    68246244Background 
    68256245 
    6826 cm-1 
     6246|cm^-1| 
    68276247 
    682862480.01 
     
    68306250Guinier scale 
    68316251 
    6832 cm-1 
     6252|cm^-1| 
    68336253 
    683462541.7 
     
    68366256Lorentzian scale 
    68376257 
    6838 cm-1 
     6258|cm^-1| 
    68396259 
    684062603.5 
     
    68636283 
    68646284*Figure. 1D plot using the default values (w/300 data points, 
    6865 qmin=0.001, and qmax=0.3).* 
     6285*qmin*=0.001, and *qmax*=0.3).* 
    68666286 
    68676287 
     
    68776297 
    68786298 
    6879 *3.30.  Star Polymer with Gaussian Statistics * 
     6299**3.30. Star Polymer with Gaussian Statistics** 
    68806300 
    68816301For a star with *f* arms: 
     
    69036323------------------------------ 
    69046324 
    6905 The information in this section is originated from NIST SANS IgorPro 
    6906 package. 
    6907  
    6908 *5.1. HardSphere Structure * 
     6325The information in this section is originated from NIST SANS IgorPro package. 
     6326 
     6327**2.3.1. HardSphereStructure Factor** 
    69096328 
    69106329This calculates the interparticle structure factor for monodisperse spherical particles interacting through hard sphere (excluded volume) interactions. The calculation uses the Percus-Yevick closure where the interparticle potential is: 
     
    69426361Percus, J. K.; Yevick, J. Phys. Rev. 110, 1. (1958). 
    69436362 
    6944 *5.2. SquareWell Structure * 
     6363 
     6364 
     6365**2.3.2. SquareWellStructure Factor** 
    69456366 
    69466367This calculates the interparticle structure factor for a square well fluid spherical particles The mean spherical 
     
    70026423 
    70036424 
    7004 *5.3. HayterMSA Structure * 
     6425**2.3.3. HayterMSAStructure Factor** 
    70056426 
    70066427This calculates the Structure factor (the Fourier transform of the pair correlation function g(r)) for a system of 
     
    70626483JB Hayter and J Penfold, Molecular Physics 42, 109-118 (1981). 
    70636484 
    7064 *5.4. StickyHS Structure * 
     6485 
     6486 
     6487**2.3.4. StickyHSStructure Factor** 
    70656488 
    70666489This calculates the interparticle structure factor for a hard sphere 
     
    71496572 
    71506573 
    7151  
    7152  
    715365742.4 Customised Functions 
    71546575------------------------------ 
    71556576 
    71566577 
    7157 Customized model functions can be redefined or added by users (See 
    7158 SansView tutorial for details). 
    7159  
    7160 *4.1. testmodel* 
    7161  
    7162  
     6578Customized model functions can be redefined or added to by users (See SansView tutorial for details). 
     6579 
     6580.. _testmodel: 
     6581 
     6582**2.4.1. testmodel** 
    71636583 
    71646584This function, as an example of a user defined function, calculates 
    7165 the intensity = A + Bcos(2q) + Csin(2q). 
    7166  
    7167 *4.2. testmodel_2 * 
     6585 
     6586*I(q)* = *A* + *B* cos(2\ *q*\ ) + *C* sin(2\ *q*\ ) 
     6587 
     6588 
     6589 
     6590.. _testmodel_2: 
     6591 
     6592**4.2. testmodel_2** 
    71686593 
    71696594This function, as an example of a user defined function, calculates 
    7170 the intensity = scale * sin(f)/f, where f = A + Bq + Cq2 + Dq3 + Eq4 + 
    7171 Fq5. 
    7172  
    7173 *4.3. sum_p1_p2 * 
     6595 
     6596*I(q)* = *scale* * sin(*f*\ )/*f* 
     6597 
     6598where 
     6599 
     6600*f* = *A* + *Bq* + *Cq*\ :sup:`2` + *Dq*\ :sup:`3` + *Eq*\ :sup:`4` + *Fq*\ :sup:`5` 
     6601 
     6602 
     6603 
     6604.. _sum_p1_p2: 
     6605 
     6606**4.3. sum_p1_p2** 
    71746607 
    71756608This function, as an example of a user defined function, calculates 
    7176 the intensity = scale_factor * (CylinderModel + PolymerExclVolume 
    7177 model). To make your own sum(P1+P2) model, select 'Easy Custom Sum' 
    7178 from the Fitting menu, or modify and compile the file named 
    7179 'sum_p1_p2.py' from 'Edit Custom Model' in the 'Fitting' menu. It 
    7180 works only for single functional models. 
    7181  
    7182 *4.4. sum_Ap1_1_Ap2 * 
     6609 
     6610*I(q)* = *scale_factor* \* (CylinderModel + PolymerExclVolumeModel) 
     6611 
     6612To make your own (*p1 + p2*) model, select 'Easy Custom Sum' from the Fitting menu, or modify and compile the file 
     6613named 'sum_p1_p2.py' from 'Edit Custom Model' in the 'Fitting' menu. 
     6614 
     6615NB: Summing models only works only for single functional models (ie, single shell models, two-component RPA models, etc). 
     6616 
     6617 
     6618 
     6619.. _sum_Ap1_1_Ap2: 
     6620 
     6621**4.4. sum_Ap1_1_Ap2** 
    71836622 
    71846623This function, as an example of a user defined function, calculates 
    7185 the intensity = (scale_factor * CylinderModel + (1-scale_factor) * 
    7186 PolymerExclVolume model). To make your own A*p1+(1-A)*p2 model, modify 
    7187 and compile the file named 'sum_Ap1_1_Ap2.py' from 'Edit Custom Model' 
    7188 in the 'Fitting' menu. It works only for single functional models. 
    7189  
    7190 *4.5. polynomial5 * 
     6624 
     6625*I(q)* = (*scale_factor* \* CylinderModel + (1 - *scale_factor*\ ) \* PolymerExclVolume model) 
     6626 
     6627To make your own (*A*\ * *p1* + (1-*A*) \* *p2*) model, modify and compile the file named 'sum_Ap1_1_Ap2.py' from 
     6628'Edit Custom Model' in the 'Fitting' menu. 
     6629 
     6630NB: Summing models only works only for single functional models (ie, single shell models, two-component RPA models, etc). 
     6631 
     6632 
     6633 
     6634.. _polynomial5: 
     6635 
     6636**4.5. polynomial5** 
    71916637 
    71926638This function, as an example of a user defined function, calculates 
    7193 the intensity = A + Bq + Cq2 + Dq3 + Eq4 + Fq5. This model can be 
    7194 modified and compiled from 'Edit Custom Model' in the 'Fitting' menu. 
    7195  
    7196 *4.6. sph_bessel_jn * 
     6639 
     6640*I(q)* = *A* + *Bq* + *Cq*\ :sup:`2` + *Dq*\ :sup:`3` + *Eq*\ :sup:`4` + *Fq*\ :sup:`5` 
     6641 
     6642This model can be modified and compiled from 'Edit Custom Model' in the 'Fitting' menu. 
     6643 
     6644 
     6645 
     6646.. _sph_bessel_jn: 
     6647 
     6648**4.6. sph_bessel_jn** 
    71976649 
    71986650This function, as an example of a user defined function, calculates 
    7199 the intensity = C*sph_jn(Ax+B)+D where the sph_jn is spherical Bessel 
    7200 function of the order n. This model can be modified and compiled from 
    7201 'Edit Custom Model' in the 'Fitting' menu. 
     6651 
     6652*I(q)* = *C* \* *sph_jn(Ax+B)+D* 
     6653 
     6654where *sph_jn* is a spherical Bessel function of order *n*. 
     6655 
     6656This model can be modified and compiled from 'Edit Custom Model' in the 'Fitting' menu. 
Note: See TracChangeset for help on using the changeset viewer.