Changes in / [2dcd6e7:e9b17b18] in sasmodels
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
sasmodels/resolution.py
r0b9c6df r9e7837a 20 20 MINIMUM_RESOLUTION = 1e-8 21 21 MINIMUM_ABSOLUTE_Q = 0.02 # relative to the minimum q in the data 22 PINHOLE_N_SIGMA = 2.5 # From: Barker & Pedersen 1995 JAC 22 # According to (Barker & Pedersen 1995 JAC), 2.5 sigma is a good limit. 23 # According to simulations with github.com:scattering/sansresolution.git 24 # it is better to use asymmetric bounds (2.5, 3.0) 25 PINHOLE_N_SIGMA = (2.5, 3.0) 23 26 24 27 class Resolution(object): … … 90 93 # from the geometry, they may appear since we are using a truncated 91 94 # gaussian to represent resolution rather than a skew distribution. 92 cutoff = MINIMUM_ABSOLUTE_Q*np.min(self.q)93 self.q_calc = self.q_calc[self.q_calc >= cutoff]95 #cutoff = MINIMUM_ABSOLUTE_Q*np.min(self.q) 96 #self.q_calc = self.q_calc[self.q_calc >= cutoff] 94 97 95 98 # Build weight matrix from calculated q values … … 188 191 cdf = erf((edges[:, None] - q[None, :]) / (sqrt(2.0)*q_width)[None, :]) 189 192 weights = cdf[1:] - cdf[:-1] 190 # Limit q range to +/- 2.5 sigma 191 qhigh = q + nsigma*q_width 192 #qlow = q - nsigma*q_width # linear limits 193 qlow = q*q/qhigh # log limits 193 # Limit q range to (-2.5,+3) sigma 194 try: 195 nsigma_low, nsigma_high = nsigma 196 except TypeError: 197 nsigma_low = nsigma_high = nsigma 198 qhigh = q + nsigma_high*q_width 199 qlow = q - nsigma_low*q_width # linear limits 200 ##qlow = q*q/qhigh # log limits 194 201 weights[q_calc[:, None] < qlow[None, :]] = 0. 195 202 weights[q_calc[:, None] > qhigh[None, :]] = 0. … … 365 372 366 373 367 def pinhole_extend_q(q, q_width, nsigma= 3):374 def pinhole_extend_q(q, q_width, nsigma=PINHOLE_N_SIGMA): 368 375 """ 369 376 Given *q* and *q_width*, find a set of sampling points *q_calc* so … … 371 378 function. 372 379 """ 373 q_min, q_max = np.min(q - nsigma*q_width), np.max(q + nsigma*q_width) 380 try: 381 nsigma_low, nsigma_high = nsigma 382 except TypeError: 383 nsigma_low = nsigma_high = nsigma 384 q_min, q_max = np.min(q - nsigma_low*q_width), np.max(q + nsigma_high*q_width) 374 385 return linear_extrapolation(q, q_min, q_max) 375 386
Note: See TracChangeset
for help on using the changeset viewer.