Changeset e7e9231 in sasmodels


Ignore:
Timestamp:
Sep 16, 2018 9:32:26 PM (6 years ago)
Author:
butler
Branches:
ticket_1156
Children:
0b906ea
Parents:
78f8308
Message:

Correct/update paracrystal docs

Correct BCC doc for lattice volume fraction and update all paracrystal
models docs reference and authorship sections.

Location:
sasmodels/models
Files:
3 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/bcc_paracrystal.py

    r6530963 re7e9231  
    3030.. math:: 
    3131 
    32     V_\text{lattice} = \frac{16\pi}{3} \frac{R^3}{\left(D\sqrt{2}\right)^3} 
     32    V_\text{lattice} = \frac{8\pi}{3} \frac{R^3}{\left(2D/\sqrt{3}\right)^3} 
    3333 
    3434 
     
    100100 
    101101* **Author:** NIST IGOR/DANSE **Date:** pre 2010 
    102 * **Last Modified by:** Paul Butler **Date:** September 29, 2016 
    103 * **Last Reviewed by:** Richard Heenan **Date:** March 21, 2016 
     102* **Last Modified by:** Paul Butler **Date:** September 16, 2018 
     103* **Last Reviewed by:** Paul Butler **Date:** September 16, 2018 
    104104""" 
    105105 
  • sasmodels/models/fcc_paracrystal.py

    r6530963 re7e9231  
    33#note - calculation requires double precision 
    44r""" 
     5Definition 
     6---------- 
     7 
    58Calculates the scattering from a **face-centered cubic lattice** with 
    69paracrystalline distortion. Thermal vibrations are considered to be 
    710negligible, and the size of the paracrystal is infinitely large. 
    811Paracrystalline distortion is assumed to be isotropic and characterized by 
    9 a Gaussian distribution. 
    10  
    11 Definition 
    12 ---------- 
     12a Gaussian distribution.  
    1313 
    1414The scattering intensity $I(q)$ is calculated as 
     
    2323is the paracrystalline structure factor for a face-centered cubic structure. 
    2424 
    25 Equation (1) of the 1990 reference is used to calculate $Z(q)$, using 
    26 equations (23)-(25) from the 1987 paper for $Z1$, $Z2$, and $Z3$. 
     25Equation (1) of the 1990 reference\ [#CIT1990]_ is used to calculate $Z(q)$, 
     26using equations (23)-(25) from the 1987 paper\ [#CIT1987]_ for $Z1$, $Z2$, and 
     27$Z3$. 
    2728 
    2829The lattice correction (the occupied volume of the lattice) for a 
     
    8889---------- 
    8990 
    90 Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765 
    91 (Original Paper) 
     91.. [#CIT1987] Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765 
     92   (Original Paper) 
     93.. [#CIT1990] Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856 
     94   (Corrections to FCC and BCC lattice structure calculation) 
    9295 
    93 Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856 
    94 (Corrections to FCC and BCC lattice structure calculation) 
     96Authorship and Verification 
     97---------------------------- 
     98 
     99* **Author:** NIST IGOR/DANSE **Date:** pre 2010 
     100* **Last Modified by:** Paul Butler **Date:** September 16, 2018 
     101* **Last Reviewed by:** Paul Butler **Date:** September 16, 2018 
    95102""" 
    96103 
  • sasmodels/models/sc_paracrystal.py

    r6530963 re7e9231  
    11r""" 
    2 Calculates the scattering from a **simple cubic lattice** with 
     2Definition 
     3---------- 
     4 
     5TCalculates the scattering from a **simple cubic lattice** with 
    36paracrystalline distortion. Thermal vibrations are considered to be 
    47negligible, and the size of the paracrystal is infinitely large. 
     
    69by a Gaussian distribution. 
    710 
    8 Definition 
    9 ---------- 
    10  
    11 The scattering intensity $I(q)$ is calculated as 
     11he scattering intensity $I(q)$ is calculated as 
    1212 
    1313.. math:: 
     
    2020$Z(q)$ is the paracrystalline structure factor for a simple cubic structure. 
    2121 
    22 Equation (16) of the 1987 reference is used to calculate $Z(q)$, using 
    23 equations (13)-(15) from the 1987 paper for Z1, Z2, and Z3. 
     22Equation (16) of the 1987 reference\ [#CIT1987]_ is used to calculate $Z(q)$, 
     23using equations (13)-(15) from the 1987 paper\ [#CIT1987]_ for Z1, Z2, and Z3. 
    2424 
    2525The lattice correction (the occupied volume of the lattice) for a simple cubic 
     
    9191Reference 
    9292--------- 
    93 Hideki Matsuoka et. al. *Physical Review B,* 36 (1987) 1754-1765 
    94 (Original Paper) 
    9593 
    96 Hideki Matsuoka et. al. *Physical Review B,* 41 (1990) 3854 -3856 
    97 (Corrections to FCC and BCC lattice structure calculation) 
     94.. [#CIT1987] Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765 
     95   (Original Paper) 
     96.. [#CIT1990] Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856 
     97   (Corrections to FCC and BCC lattice structure calculation) 
     98 
     99Authorship and Verification 
     100---------------------------- 
     101 
     102* **Author:** NIST IGOR/DANSE **Date:** pre 2010 
     103* **Last Modified by:** Paul Butler **Date:** September 16, 2018 
     104* **Last Reviewed by:** Paul Butler **Date:** September 16, 2018 
    98105""" 
    99106 
Note: See TracChangeset for help on using the changeset viewer.