- Timestamp:
- Jun 12, 2018 5:39:34 AM (6 years ago)
- Branches:
- master
- Children:
- 02e3c54
- Parents:
- 38935ec
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/sesans/sans_to_sesans.rst
rf0fc507 re46dde6 31 31 32 32 in which :math:`t` is the thickness of the sample and :math:`\lambda` is the wavelength of the neutrons. 33 34 Log Spaced SESANS 35 ----------------- 36 37 For computational efficiency, the integral in the Hankel transform is 38 converted into a Reimann sum 39 40 41 .. math:: G(\delta) \approx 42 2 \pi 43 \sum_{Q=q_{min}}^{q_{max}} J_0(Q \delta) 44 \frac{d \Sigma}{d \Omega} (Q) 45 Q \Delta Q \! 46 47 However, this model approximates more than is strictly necessary. 48 Specifically, it is approximating the entire integral, when it is only 49 the scattering function that cannot be handled analytically. A better 50 approximation might be 51 52 .. math:: G(\delta) \approx 53 \sum_{n=0} 2 \pi \frac{d \Sigma}{d \Omega} (q_n) 54 \int_{q_n}^{q_{n+1}} J_0(Q \delta) Q dQ 55 = 56 \sum_{n=0} \frac{2 \pi}{\delta} \frac{d \Sigma}{d \Omega} (q_n) 57 (q_{n+1}J_1(q_{n+1} \delta) - q_{n}J_1(q_{n} \delta))\!, 58 59 Assume that vectors :math:`q_n` and :math:`I_n` represent the q points 60 and corresponding intensity data, respectively. Further assume that 61 :math:`\delta_m` and :math:`G_m` are the spin echo lengths and 62 corresponding Hankel transform value. 63 64 .. math:: G_m = H_{nm} I_n 65 66 where 67 68 .. math:: H_{nm} = \frac{2 \pi}{\delta_m} 69 (q_{n+1} J_1(q_{n+1} \delta_m) - q_n J_1(q_n \delta_m))
Note: See TracChangeset
for help on using the changeset viewer.