Changes in / [0794ce3:e2b2473] in sasview


Ignore:
Location:
src/sas
Files:
7 edited

Legend:

Unmodified
Added
Removed
  • src/sas/sascalc/corfunc/corfunc_calculator.py

    rc728295 rff11b21  
    3434 
    3535        def __call__(self, x): 
    36             # If input is a single number, evaluate the function at that number 
    37             # and return a single number 
    38             if type(x) == float or type(x) == int: 
    39                 return self._smoothed_function(np.array([x]))[0] 
    40             # If input is a list, and is different to the last input, evaluate 
    41             # the function at each point. If the input is the same as last time 
    42             # the function was called, return the result that was calculated 
    43             # last time instead of explicity evaluating the function again. 
    44             elif self._lastx == [] or x.tolist() != self._lastx.tolist(): 
     36            if self._lastx == [] or x.tolist() != self._lastx.tolist(): 
    4537                self._lasty = self._smoothed_function(x) 
    4638                self._lastx = x 
     
    129121        extrapolation = Data1D(qs, iqs) 
    130122 
    131         return params, extrapolation, s2 
     123        return params, extrapolation 
    132124 
    133125    def compute_transform(self, extrapolation, trans_type, background=None, 
     
    139131        :param background: The background value (if not provided, previously 
    140132            calculated value will be used) 
    141         :param extrap_fn: A callable function representing the extraoplated data 
    142133        :param completefn: The function to call when the transform calculation 
    143134            is complete` 
     
    153144        if trans_type == 'fourier': 
    154145            self._transform_thread = FourierThread(self._data, extrapolation, 
    155             background, completefn=completefn, 
    156             updatefn=updatefn) 
     146            background, completefn=completefn, updatefn=updatefn) 
    157147        elif trans_type == 'hilbert': 
    158148            self._transform_thread = HilbertThread(self._data, extrapolation, 
  • src/sas/sascalc/corfunc/transform_thread.py

    ra309667 rd03228e  
    22from sas.sascalc.dataloader.data_info import Data1D 
    33from scipy.fftpack import dct 
    4 from scipy.integrate import trapz 
    54import numpy as np 
    65from time import sleep 
     
    1413        self.extrapolation = extrapolated_data 
    1514 
    16     def check_if_cancelled(self): 
    17         if self.isquit(): 
    18             self.update("Fourier transform cancelled.") 
    19             self.complete(transforms=None) 
    20             return True 
    21         return False 
    22  
    2315    def compute(self): 
    2416        qs = self.extrapolation.x 
     
    2719        background = self.background 
    2820 
    29         xs = np.pi*np.arange(len(qs),dtype=np.float32)/(q[1]-q[0])/len(qs) 
    30  
    3121        self.ready(delay=0.0) 
    32         self.update(msg="Fourier transform in progress.") 
     22        self.update(msg="Starting Fourier transform.") 
    3323        self.ready(delay=0.0) 
    34  
    35         if self.check_if_cancelled(): return 
     24        if self.isquit(): 
     25            return 
    3626        try: 
    37             # ----- 1D Correlation Function ----- 
    38             gamma1 = dct((iqs-background)*qs**2) 
    39             Q = gamma1.max() 
    40             gamma1 /= Q 
    41  
    42             if self.check_if_cancelled(): return 
    43  
    44             # ----- 3D Correlation Function ----- 
    45             # gamma3(R) = 1/R int_{0}^{R} gamma1(x) dx 
    46             # trapz uses the trapezium rule to calculate the integral 
    47             mask = xs <= 200.0 # Only calculate gamma3 up to x=200 (as this is all that's plotted) 
    48             gamma3 = [trapz(gamma1[:n], xs[:n])/xs[n-1] for n in range(2, len(xs[mask]) + 1)] 
    49             gamma3.insert(0, 1.0) # Gamma_3(0) is defined as 1 
    50             gamma3 = np.array(gamma3) 
    51  
    52             if self.check_if_cancelled(): return 
    53  
    54             # ----- Interface Distribution function ----- 
    55             idf = dct(-qs**4 * (iqs-background)) 
    56  
    57             if self.check_if_cancelled(): return 
    58  
    59             # Manually calculate IDF(0.0), since scipy DCT tends to give us a 
    60             # very large negative value. 
    61             # IDF(x) = int_0^inf q^4 * I(q) * cos(q*x) * dq 
    62             # => IDF(0) = int_0^inf q^4 * I(q) * dq 
    63             idf[0] = trapz(-qs**4 * (iqs-background), qs) 
    64             idf /= Q # Normalise using scattering invariant 
    65  
    66         except Exception as e: 
    67             import logging 
    68             logger = logging.getLogger(__name__) 
    69             logger.error(e) 
    70  
     27            gamma = dct((iqs-background)*qs**2) 
     28            gamma = gamma / gamma.max() 
     29        except: 
    7130            self.update(msg="Fourier transform failed.") 
    72             self.complete(transforms=None) 
     31            self.complete(transform=None) 
    7332            return 
    7433        if self.isquit(): 
     
    7635        self.update(msg="Fourier transform completed.") 
    7736 
    78         transform1 = Data1D(xs, gamma1) 
    79         transform3 = Data1D(xs[xs <= 200], gamma3) 
    80         idf = Data1D(xs, idf) 
     37        xs = np.pi*np.arange(len(qs),dtype=np.float32)/(q[1]-q[0])/len(qs) 
     38        transform = Data1D(xs, gamma) 
    8139 
    82         transforms = (transform1, transform3, idf) 
    83  
    84         self.complete(transforms=transforms) 
     40        self.complete(transform=transform) 
    8541 
    8642class HilbertThread(CalcThread): 
     
    10864        self.update(msg="Hilbert transform completed.") 
    10965 
    110         self.complete(transforms=None) 
     66        self.complete(transform=None) 
  • src/sas/sasgui/perspectives/corfunc/corfunc.py

    r9b90bf8 r463e7ffc  
    189189            # Show the transformation as a curve instead of points 
    190190            new_plot.symbol = GUIFRAME_ID.CURVE_SYMBOL_NUM 
    191         elif label == IDF_LABEL: 
    192             new_plot.xaxis("{x}", 'A') 
    193             new_plot.yaxis("{g_1}", '') 
    194             # Linear scale 
    195             new_plot.xtransform = 'x' 
    196             new_plot.ytransform = 'y' 
    197             group_id = GROUP_ID_IDF 
    198             # Show IDF as a curve instead of points 
    199             new_plot.symbol = GUIFRAME_ID.CURVE_SYMBOL_NUM 
    200191        new_plot.id = label 
    201192        new_plot.name = label 
  • src/sas/sasgui/perspectives/corfunc/corfunc_panel.py

    r9b90bf8 r7432acb  
    5555        self._data = data # The data to be analysed (corrected fr background) 
    5656        self._extrapolated_data = None # The extrapolated data set 
    57         # Callable object of class CorfuncCalculator._Interpolator representing 
    58         # the extrapolated and interpolated data 
    59         self._extrapolated_fn = None 
    6057        self._transformed_data = None # Fourier trans. of the extrapolated data 
    6158        self._calculator = CorfuncCalculator() 
     
    221218 
    222219        try: 
    223             params, self._extrapolated_data, self._extrapolated_fn = \ 
    224                 self._calculator.compute_extrapolation() 
     220            params, self._extrapolated_data = self._calculator.compute_extrapolation() 
    225221        except Exception as e: 
    226222            msg = "Error extrapolating data:\n" 
     
    261257            StatusEvent(status=msg)) 
    262258 
    263     def transform_complete(self, transforms=None): 
     259    def transform_complete(self, transform=None): 
    264260        """ 
    265261        Called from FourierThread when calculation has completed 
    266262        """ 
    267263        self._transform_btn.SetLabel("Transform") 
    268         if transforms is None: 
     264        if transform is None: 
    269265            msg = "Error calculating Transform." 
    270266            if self.transform_type == 'hilbert': 
     
    274270            self._extract_btn.Disable() 
    275271            return 
    276  
    277         self._transformed_data = transforms 
    278         (transform1, transform3, idf) = transforms 
    279         plot_x = transform1.x[transform1.x <= 200] 
    280         plot_y = transform1.y[transform1.x <= 200] 
     272        self._transformed_data = transform 
     273        import numpy as np 
     274        plot_x = transform.x[np.where(transform.x <= 200)] 
     275        plot_y = transform.y[np.where(transform.x <= 200)] 
    281276        self._manager.show_data(Data1D(plot_x, plot_y), TRANSFORM_LABEL1) 
    282         # No need to shorten gamma3 as it's only calculated up to x=200 
    283         self._manager.show_data(transform3, TRANSFORM_LABEL3) 
    284  
    285         plot_x = idf.x[idf.x <= 200] 
    286         plot_y = idf.y[idf.x <= 200] 
    287         self._manager.show_data(Data1D(plot_x, plot_y), IDF_LABEL) 
    288  
    289277        # Only enable extract params button if a fourier trans. has been done 
    290278        if self.transform_type == 'fourier': 
     
    298286        """ 
    299287        try: 
    300             params = self._calculator.extract_parameters(self._transformed_data[0]) 
     288            params = self._calculator.extract_parameters(self._transformed_data) 
    301289        except: 
    302290            params = None 
  • src/sas/sasgui/perspectives/corfunc/corfunc_state.py

    r457f735 r7432acb  
    5959        self.q = None 
    6060        self.iq = None 
     61        # TODO: Add extrapolated data and transformed data (when implemented) 
    6162 
    6263    def __str__(self): 
  • src/sas/sasgui/perspectives/corfunc/media/corfunc_help.rst

    rd78b5cb r1404cce  
    1010 
    1111This performs a correlation function analysis of one-dimensional 
    12 SAXS/SANS data, or generates a model-independent volume fraction 
     12SAXS/SANS data, or generates a model-independent volume fraction  
    1313profile from the SANS from an adsorbed polymer/surfactant layer. 
    1414 
    15 A correlation function may be interpreted in terms of an imaginary rod moving 
    16 through the structure of the material. Γ\ :sub:`1D`\ (R) is the probability that 
    17 a rod of length R moving through the material has equal electron/neutron scattering 
    18 length density at either end. Hence a frequently occurring spacing within a structure 
     15A correlation function may be interpreted in terms of an imaginary rod moving  
     16through the structure of the material. Γ\ :sub:`1D`\ (R) is the probability that  
     17a rod of length R moving through the material has equal electron/neutron scattering  
     18length density at either end. Hence a frequently occurring spacing within a structure  
    1919manifests itself as a peak. 
    2020 
     
    3030*  Fourier / Hilbert Transform of the smoothed data to give the correlation 
    3131   function / volume fraction profile, respectively 
    32 *  (Optional) Interpretation of the 1D correlation function based on an ideal 
     32*  (Optional) Interpretation of the 1D correlation function based on an ideal  
    3333   lamellar morphology 
    3434 
     
    7474   :align: center 
    7575 
    76  
     76    
    7777Smoothing 
    7878--------- 
    7979 
    80 The extrapolated data set consists of the Guinier back-extrapolation from Q~0 
     80The extrapolated data set consists of the Guinier back-extrapolation from Q~0  
    8181up to the lowest Q value in the original data, then the original scattering data, and the Porod tail-fit beyond this. The joins between the original data and the Guinier/Porod fits are smoothed using the algorithm below to avoid the formation of ripples in the transformed data. 
    8282 
     
    9393    h_i = \frac{1}{1 + \frac{(x_i-b)^2}{(x_i-a)^2}} 
    9494 
    95  
     95         
    9696Transform 
    9797--------- 
     
    102102If "Fourier" is selected for the transform type, the analysis will perform a 
    103103discrete cosine transform on the extrapolated data in order to calculate the 
    104 1D correlation function: 
     104correlation function 
    105105 
    106106.. math:: 
     
    115115    \left(n + \frac{1}{2} \right) k \right] } \text{ for } k = 0, 1, \ldots, 
    116116    N-1, N 
    117  
    118 The 3D correlation function is also calculated: 
    119  
    120 .. math:: 
    121     \Gamma _{3D}(R) = \frac{1}{Q^{*}} \int_{0}^{\infty}I(q) q^{2} 
    122     \frac{sin(qR)}{qR} dq 
    123117 
    124118Hilbert 
     
    171165.. figure:: profile1.png 
    172166   :align: center 
    173  
     167  
    174168.. figure:: profile2.png 
    175169   :align: center 
    176  
     170    
    177171 
    178172References 
     
    197191----- 
    198192Upon sending data for correlation function analysis, it will be plotted (minus 
    199 the background value), along with a *red* bar indicating the *upper end of the 
     193the background value), along with a *red* bar indicating the *upper end of the  
    200194low-Q range* (used for back-extrapolation), and 2 *purple* bars indicating the range to be used for forward-extrapolation. These bars may be moved my clicking and 
    201195dragging, or by entering appropriate values in the Q range input boxes. 
     
    227221    :align: center 
    228222 
    229  
     223         
    230224.. note:: 
    231225    This help document was last changed by Steve King, 08Oct2016 
  • src/sas/sasgui/perspectives/corfunc/plot_labels.py

    r7dda833 r1dc8ec9  
    44 
    55GROUP_ID_TRANSFORM = r"$\Gamma(x)$" 
    6 TRANSFORM_LABEL1 = r"$\Gamma_1(x)$" 
    7 TRANSFORM_LABEL3 = r"$\Gamma_3(x)$" 
    8  
    9 GROUP_ID_IDF = r"$g_1(x)$" 
    10 IDF_LABEL = r"$g_1(x)$" 
     6TRANSFORM_LABEL1 = r"$\Gamma1(x)$" 
     7TRANSFORM_LABEL3 = r"$\Gamma3(x)$" 
Note: See TracChangeset for help on using the changeset viewer.