Changes in / [9eb5eca:e1ea6b5] in sasmodels


Ignore:
Location:
sasmodels
Files:
10 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/compare.py

    rfe25eda r8c65a33  
    10631063    # Evaluate preset parameter expressions 
    10641064    context = MATH.copy() 
    1065     context['np'] = np 
    10661065    context.update(pars) 
    10671066    context.update((k,v) for k,v in presets.items() if isinstance(v, float)) 
  • sasmodels/details.py

    rccd5f01 r6dc78e4  
    230230    npars = kernel.info.parameters.npars 
    231231    nvalues = kernel.info.parameters.nvalues 
    232     scalars = [(v[0] if len(v) else np.NaN) for v, w in pairs] 
     232    scalars = [v[0][0] for v in pairs] 
    233233    values, weights = zip(*pairs[2:npars+2]) if npars else ((),()) 
    234234    length = np.array([len(w) for w in weights]) 
  • sasmodels/models/be_polyelectrolyte.py

    rbf9de53 r5df888c  
    6767* **Author:** NIST IGOR/DANSE **Date:** pre 2010 
    6868* **Last Modified by:** Paul Kienzle **Date:** July 24, 2016 
    69 * **Last Reviewed by:** Paul Butler and Richard Heenan **Date:**  
    70   October 07, 2016 
     69* **Last Reviewed by:** Piotr rozyczko **Date:** January 27, 2016 
    7170""" 
    7271 
  • sasmodels/models/core_multi_shell.py

    r2d73a53 rb0c4271  
    1313 
    1414The 2D scattering intensity is the same as $P(q)$ above, regardless of the 
    15 orientation of the $\vec q$ vector which is defined as 
     15orientation of the $q$ vector which is defined as 
    1616 
    1717.. math:: 
     
    2929 
    3030Our model uses the form factor calculations implemented in a c-library provided 
    31 by the NIST Center for Neutron Research (Kline, 2006) [#kline]_. 
     31by the NIST Center for Neutron Research (Kline, 2006). 
    3232 
    3333References 
     
    3535 
    3636.. [#] See the :ref:`core-shell-sphere` model documentation. 
    37 .. [#kline] S R Kline, *J Appl. Cryst.*, 39 (2006) 895 
    38 .. [#] L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and 
    39    Neutron Scattering*, Plenum Press, New York, 1987. 
     37.. [#] L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, 
     38   Plenum Press, New York, 1987. 
    4039 
    4140Authorship and Verification 
     
    4443* **Author:** NIST IGOR/DANSE **Date:** pre 2010 
    4544* **Last Modified by:** Paul Kienzle **Date:** September 12, 2016 
    46 * **Last Reviewed by:** Paul Kienzle **Date:** September 12, 2016 
     45* **Last Reviewed by:** Under Review **Date:** as of October 5, 2016 
    4746""" 
    4847 
  • sasmodels/models/core_shell_cylinder.py

    r755ecc2 r40a87fa  
     1# core shell cylinder model 
     2# Note: model title and parameter table are inserted automatically 
    13r""" 
     4The form factor is normalized by the particle volume. 
     5 
    26Definition 
    37---------- 
    48 
    59The output of the 2D scattering intensity function for oriented core-shell 
    6 cylinders is given by (Kline, 2006 [#kline]_). The form factor is normalized 
    7 by the particle volume. 
     10cylinders is given by (Kline, 2006) 
    811 
    912.. math:: 
     
    5861The $\theta$ and $\phi$ parameters are not used for the 1D output. 
    5962 
     63Validation 
     64---------- 
     65 
     66Validation of our code was done by comparing the output of the 1D model to 
     67the output of the software provided by the NIST (Kline, 2006). 
     68 
     69Averaging over a distribution of orientation is done by evaluating the 
     70equation above. Since we have no other software to compare the 
     71implementation of the intensity for fully oriented cylinders, we 
     72compared the result of averaging our 2D output using a uniform 
     73distribution $p(\theta,\phi) = 1.0$. 
     74 
    6075Reference 
    6176--------- 
     77see, for example, Ian Livsey  J. Chem. Soc., Faraday Trans. 2, 1987,83, 1445-1452 
    6278 
    63 .. [#] see, for example, Ian Livsey  J. Chem. Soc., Faraday Trans. 2, 1987,83, 
    64    1445-1452 
    65 .. [#kline] S R Kline, *J Appl. Cryst.*, 39 (2006) 895 
    66  
    67 Authorship and Verification 
    68 ---------------------------- 
    69  
    70 * **Author:** NIST IGOR/DANSE **Date:** pre 2010 
    71 * **Last Modified by:** Paul Kienzle **Date:** Aug 8, 2016 
    72 * **Last Reviewed by:** Richard Heenan **Date:** March 18, 2016 
     792016/03/18 - Description reviewed by RKH 
    7380""" 
    7481 
     
    151158            theta_pd=15, theta_pd_n=45, 
    152159            phi_pd=15, phi_pd_n=1) 
    153  
     160# ADDED by:  RKH  ON: 18Mar2016 renamed sld's etc 
  • sasmodels/models/core_shell_parallelepiped.py

    r5810f00 r14838a3  
     1# core_shell_parallelepiped model 
     2# Note: model title and parameter table are inserted automatically 
    13r""" 
    2 Definition 
    3 ---------- 
    4  
    54Calculates the form factor for a rectangular solid with a core-shell structure. 
    65**The thickness and the scattering length density of the shell or "rim" 
     
    1615of the rectangular solid. 
    1716 
     17An instrument resolution smeared version of the model is also provided. 
     18 
     19 
     20Definition 
     21---------- 
    1822 
    1923The function calculated is the form factor of the rectangular solid below. 
     
    3741**meaning that there are "gaps" at the corners of the solid.** 
    3842 
    39 The intensity calculated follows the :ref:`parallelepiped` model, with the 
    40 core-shell intensity being calculated as the square of the sum of the 
    41 amplitudes of the core and shell, in the same manner as a core-shell model. 
     43The intensity calculated follows the :ref:`parallelepiped` model, with the core-shell 
     44intensity being calculated as the square of the sum of the amplitudes of the 
     45core and shell, in the same manner as a core-shell model. 
    4246 
    43 .. math:: 
    44  
    45     F_{a}(Q,\alpha,\beta)= 
    46     \Bigg(\frac{sin(Q(L_A+2t_A)/2sin\alpha sin\beta)}{Q(L_A+2t_A)/2sin\alpha 
    47     sin\beta)} 
    48     - \frac{sin(QL_A/2sin\alpha sin\beta)}{QL_A/2sin\alpha sin\beta)} \Bigg) 
    49     + \frac{sin(QL_B/2sin\alpha sin\beta)}{QL_B/2sin\alpha sin\beta)} 
    50     + \frac{sin(QL_C/2sin\alpha sin\beta)}{QL_C/2sin\alpha sin\beta)} 
    51  
    52 .. note:: 
    53  
    54     For the calculation of the form factor to be valid, the sides of the solid 
    55     MUST be chosen such that** $A < B < C$. 
    56     If this inequality is not satisfied, the model will not report an error, 
    57     but the calculation will not be correct and thus the result wrong. 
     47**For the calculation of the form factor to be valid, the sides of the solid 
     48MUST be chosen such that** $A < B < C$. 
     49**If this inequality is not satisfied, the model will not report an error, 
     50and the calculation will not be correct.** 
    5851 
    5952FITTING NOTES 
    6053If the scale is set equal to the particle volume fraction, |phi|, the returned 
    6154value is the scattered intensity per unit volume, $I(q) = \phi P(q)$. 
    62 However, **no interparticle interference effects are included in this 
    63 calculation.** 
     55However, **no interparticle interference effects are included in this calculation.** 
    6456 
    6557There are many parameters in this model. Hold as many fixed as possible with 
     
    7668and length $(C+2t_C)$ values, and used as the effective radius 
    7769for $S(Q)$ when $P(Q) * S(Q)$ is applied. 
     70 
     71.. Comment by Miguel Gonzalez: 
     72   The later seems to contradict the previous statement that interparticle interference 
     73   effects are not included. 
    7874 
    7975To provide easy access to the orientation of the parallelepiped, we define the 
     
    10298---------- 
    10399 
    104 .. [#] P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211 
    105     Equations (1), (13-14). (in German) 
    106 .. [#] D Singh (2009). *Small angle scattering studies of self assembly in 
    107    lipid mixtures*, John's Hopkins University Thesis (2009) 223-225. `Available 
    108    from Proquest <http://search.proquest.com/docview/304915826?accountid 
    109    =26379>`_ 
     100P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211 
     101Equations (1), (13-14). (in German) 
    110102 
    111 Authorship and Verification 
    112 ---------------------------- 
    113  
    114 * **Author:** NIST IGOR/DANSE **Date:** pre 2010 
    115 * **Last Modified by:** Paul Butler **Date:** September 30, 2016 
    116 * **Last Reviewed by:** Miguel Gonzales **Date:** March 21, 2016 
    117103""" 
    118104 
  • sasmodels/models/fractal_core_shell.c

    rbdd08df r217590b  
    1616   double cor_length) 
    1717{ 
    18     //The radius for the building block of the core shell particle that is  
    19     //needed by the Teixeira fractal S(q) is the radius of the whole particle. 
    20     const double cs_radius = radius + thickness; 
    21     const double sq = fractal_sq(q, cs_radius, fractal_dim, cor_length); 
     18    const double sq = fractal_sq(q, radius, fractal_dim, cor_length); 
    2219    const double pq = core_shell_kernel(q, radius, thickness, 
    2320                                        core_sld, shell_sld, solvent_sld); 
  • sasmodels/models/fractal_core_shell.py

    rd6f60c3 r217590b  
    11r""" 
     2Calculates the scattering from a fractal structure with a primary building 
     3block of core-shell spheres, as opposed to just homogeneous spheres in 
     4the fractal model. 
     5This model could find use for aggregates of coated particles, or aggregates 
     6of vesicles. 
     7 
    28Definition 
    39---------- 
    4 Calculates the scattering from a fractal structure with a primary building 
    5 block of core-shell spheres, as opposed to just homogeneous spheres in 
    6 the fractal model. It is an extension of the well known Teixeira\ [#teixeira]_ 
    7 fractal model replacing the $P(q)$ of a solid sphere with that of a core-shell 
    8 sphere. This model could find use for aggregates of coated particles, or 
    9 aggregates of vesicles for example. 
    1010 
    1111.. math:: 
    1212 
    13     I(q) = P(q)S(q) + \text{background} 
     13    I(q) = \text{background} + P(q)S(q) 
    1414 
    15 Where $P(q)$ is the core-shell form factor and $S(q)$ is the 
    16 Teixeira\ [#teixeira]_ fractal structure factor both of which are given again 
    17 below: 
     15The form factor $P(q)$ is that from core_shell model with $bkg$ = 0 
     16 
    1817 
    1918.. math:: 
    2019 
    21     P(q) &= \frac{\phi}{V_s}\left[3V_c(\rho_c-\rho_s) 
     20    P(q)=\frac{scale}{V_s}\left[3V_c(\rho_c-\rho_s) 
    2221    \frac{\sin(qr_c)-qr_c\cos(qr_c)}{(qr_c)^3}+ 
    2322    3V_s(\rho_s-\rho_{solv}) 
    2423    \frac{\sin(qr_s)-qr_s\cos(qr_s)}{(qr_s)^3}\right]^2 
    2524 
    26     S(q) &= 1 + \frac{D_f\ \Gamma\!(D_f-1)}{[1+1/(q\xi)^2]^{(D_f-1)/2}}  
    27     \frac{\sin[(D_f-1)\tan^{-1}(q\xi)]}{(qr_s)^{D_f}} 
    2825 
    29 where $\phi$ is the volume fraction of particles, $V_s$ is the volume of the 
    30 whole particle, $V_c$ is the volume of the core, $\rho_c$, $\rho_s$, and 
    31 $\rho_{solv}$ are the scattering length densities of the core, shell, and 
    32 solvent respectively, $r_c$ and $r_s$ are the radius of the core and the radius 
    33 of the whole particle respectively, $D_f$ is the fractal dimension, and |xi| the 
    34 correlation length. 
    35   
    36 Polydispersity of radius and thickness are also provided for. 
     26while the fractal structure factor $S(q)$ is 
    3727 
    38 This model does not allow for anisotropy and thus the 2D scattering intensity 
    39 is calculated in the same way as 1D, where the $q$ vector is defined as 
     28.. math:: 
     29 
     30    S(q) = \frac{D_f\Gamma(D_f-1)\sin((D_f-1)\tan^{-1}(q\xi))} 
     31    {(qr_c)^{D_f}\left(1+\frac{1}{q^2\xi ^2} \right)^{\frac{D_f-1}{2}}} 
     32 
     33where $D_f$ = fractal_dim, |xi| = cor_length, $r_c$ = (core) radius, and 
     34$scale$ = volume fraction. 
     35 
     36The fractal structure is as documented in the fractal model. 
     37Polydispersity of radius and thickness is provided for. 
     38 
     39For 2D data: The 2D scattering intensity is calculated in the same way as 1D, 
     40where the $q$ vector is defined as 
    4041 
    4142.. math:: 
     
    4344    q = \sqrt{q_x^2 + q_y^2} 
    4445 
    45 Our model is derived from the form factor calculations implemented in IGOR 
    46 macros by the NIST Center for Neutron Research\ [#Kline]_ 
    47  
    4846References 
    4947---------- 
    5048 
    51 .. [#teixeira] J Teixeira, *J. Appl. Cryst.*, 21 (1988) 781-785 
    52 .. [#Kline]  S R Kline, *J Appl. Cryst.*, 39 (2006) 895 
    53  
    54 Authorship and Verification 
    55 ---------------------------- 
    56  
    57 * **Author:** NIST IGOR/DANSE **Date:** pre 2010 
    58 * **Last Modified by:** Paul Butler and Paul Kienzle **on:** November 27, 2016 
    59 * **Last Reviewed by:** Paul Butler and Paul Kienzle **on:** November 27, 2016 
     49See the core_shell and fractal model descriptions 
    6050 
    6151""" 
     
    6454 
    6555name = "fractal_core_shell" 
    66 title = "Scattering from a fractal structure formed from core shell spheres" 
    67 description = """\ 
    68     Model for fractal aggregates of core-shell primary particles. It is based on 
    69     the Teixeira model for the S(q) of a fractal * P(q) for a core-shell sphere 
     56title = "" 
     57description = """ 
    7058 
    71     radius =  the radius of the core 
    72     thickness = thickness of the shell 
    73     thick_layer = thickness of a layer 
    74     sld_core = the SLD of the core 
    75     sld_shell = the SLD of the shell 
    76     sld_solvent = the SLD of the solvent 
    77     volfraction = volume fraction of core-shell particles 
    78     fractal_dim = fractal dimension 
    79     cor_length = correlation length of the fractal like aggretates 
    80     """ 
     59""" 
    8160category = "shape-independent" 
    8261 
     
    128107 
    129108tests = [[{'radius': 20.0, 'thickness': 10.0}, 'ER', 30.0], 
    130          [{'radius': 20.0, 'thickness': 10.0}, 'VR', 0.703703704]] 
     109         [{'radius': 20.0, 'thickness': 10.0}, 'VR', 0.703703704], 
    131110 
    132 #         # The SasView test result was 0.00169, with a background of 0.001 
    133 #         # They are however wrong as we now know.  IGOR might be a more 
    134 #         # appropriate source. Otherwise will just have to assume this is now 
    135 #         # correct and self generate a correct answer for the future. Until we 
    136 #         # figure it out leave the tests commented out 
    137 #         [{'radius': 60.0, 
    138 #           'thickness': 10.0, 
    139 #           'sld_core': 1.0, 
    140 #           'sld_shell': 2.0, 
    141 #           'sld_solvent': 3.0, 
    142 #           'background': 0.0 
    143 #          }, 0.015211, 692.84]] 
     111         # The SasView test result was 0.00169, with a background of 0.001 
     112         [{'radius': 60.0, 
     113           'thickness': 10.0, 
     114           'sld_core': 1.0, 
     115           'sld_shell': 2.0, 
     116           'sld_solvent': 3.0, 
     117           'background': 0.0 
     118          }, 0.4, 0.00070126]] 
  • sasmodels/models/stacked_disks.c

    r98ce141 r3ac4e1b  
    7171    // loop for the structure factor S(q) 
    7272    double qd_cos_alpha = q*d*cos_alpha; 
    73     //d*cos_alpha is the projection of d onto q (in other words the component 
    74     //of d that is parallel to q. 
    7573    double debye_arg = -0.5*square(qd_cos_alpha*sigma_dnn); 
    7674    double sq=0.0; 
     
    8179    sq = 1.0 + 2.0*sq/n_stacking; 
    8280 
    83     return pq * sq * n_stacking; 
    84     // volume normalization should be per disk not per stack but form_volume 
    85     // is per stack so correct here for now.  Could change form_volume but 
    86     // if one ever wants to use P*S we need the ER based on the total volume 
     81    return pq * sq; 
    8782} 
    8883 
  • sasmodels/models/stacked_disks.py

    r07300ea ref5a314  
    11r""" 
     2This model provides the form factor, $P(q)$, for stacked discs (tactoids) 
     3with a core/layer structure where the form factor is normalized by the volume 
     4of the cylinder. Assuming the next neighbor distance (d-spacing) in a stack 
     5of parallel discs obeys a Gaussian distribution, a structure factor $S(q)$ 
     6proposed by Kratky and Porod in 1949 is used in this function. 
     7 
     8Note that the resolution smearing calculation uses 76 Gauss quadrature points 
     9to properly smear the model since the function is HIGHLY oscillatory, 
     10especially around the q-values that correspond to the repeat distance of 
     11the layers. 
     12 
     13The 2D scattering intensity is the same as 1D, regardless of the orientation 
     14of the q vector which is defined as 
     15 
     16.. math:: q = \sqrt{q_x^2 + q_y^2} 
     17 
    218Definition 
    319---------- 
    420 
    5 This model provides the form factor, $P(q)$, for stacked discs (tactoids) 
    6 with a core/layer structure which is constructed itself as $P(q) S(Q)$ 
    7 multiplying a $P(q)$ for individual core/layer disks by a structure factor 
    8 $S(q)$ proposed by Kratky and Porod in 1949\ [#CIT1949]_ assuming the next 
    9 neighbor distance (d-spacing) in the stack of parallel discs obeys a Gaussian 
    10 distribution. As such the normalization of this "composite" form factor is 
    11 relative to the individual disk volume, not the volume of the stack of disks. 
    12 This model is appropriate for example for non non exfoliated clay particles such 
    13 as Laponite. 
    14  
    1521.. figure:: img/stacked_disks_geometry.png 
    1622 
    17    Geometry of a single core/layer disk 
    18  
    1923The scattered intensity $I(q)$ is calculated as 
    2024 
     
    2226 
    2327    I(q) = N\int_{0}^{\pi /2}\left[ \Delta \rho_t 
    24     \left( V_t f_t(q,\alpha) - V_c f_c(q,\alpha)\right) + \Delta 
    25     \rho_c V_c f_c(q,\alpha)\right]^2 S(q,\alpha)\sin{\alpha}\ d\alpha 
    26     + \text{background} 
     28    \left( V_t f_t(q) - V_c f_c(q)\right) + \Delta \rho_c V_c f_c(q) 
     29    \right]^2 S(q)\sin{\alpha}\ d\alpha + \text{background} 
    2730 
    2831where the contrast 
     
    3235    \Delta \rho_i = \rho_i - \rho_\text{solvent} 
    3336 
    34 and $N$ is the number of individual (single) discs per unit volume, $\alpha$ is 
    35 the angle between the axis of the disc and $q$, and $V_t$ and $V_c$ are the 
    36 total volume and the core volume of a single disc, respectively, and 
    37  
    38 .. math:: 
    39  
    40     f_t(q,\alpha) = 
     37and $N$ is the number of discs per unit volume, 
     38$\alpha$ is the angle between the axis of the disc and $q$, 
     39and $V_t$ and $V_c$ are the total volume and the core volume of 
     40a single disc, respectively. 
     41 
     42.. math:: 
     43 
     44    \left\langle f_{t}^2(q)\right\rangle_{\alpha} = 
     45    \int_{0}^{\pi/2}\left[ 
    4146    \left(\frac{\sin(q(d+h)\cos{\alpha})}{q(d+h)\cos{\alpha}}\right) 
    4247    \left(\frac{2J_1(qR\sin{\alpha})}{qR\sin{\alpha}} \right) 
    43  
    44     f_c(q,\alpha) = 
     48    \right]^2 \sin{\alpha}\ d\alpha 
     49 
     50    \left\langle f_{c}^2(q)\right\rangle_{\alpha} = 
     51    \int_{0}^{\pi/2}\left[ 
    4552    \left(\frac{\sin(qh)\cos{\alpha})}{qh\cos{\alpha}}\right) 
    4653    \left(\frac{2J_1(qR\sin{\alpha})}{qR\sin{\alpha}}\right) 
     54    \right]^2 \sin{\alpha}\ d\alpha 
    4755 
    4856where $d$ = thickness of the layer (*thick_layer*), 
     
    5159.. math:: 
    5260 
    53     S(q,\alpha) = 1 + \frac{1}{2}\sum_{k=1}^n(n-k)\cos{(kDq\cos{\alpha})} 
    54     \exp\left[ -k(q)^2(D\cos{\alpha}~\sigma_d)^2/2\right] 
     61    S(q) = 1 + \frac{1}{2}\sum_{k=1}^n(n-k)\cos{(kDq\cos{\alpha})} 
     62    \exp\left[ -k(q\cos{\alpha})^2\sigma_d/2\right] 
    5563 
    5664where $n$ is the total number of the disc stacked (*n_stacking*), 
    5765$D = 2(d+h)$ is the next neighbor center-to-center distance (d-spacing), 
    5866and $\sigma_d$ = the Gaussian standard deviation of the d-spacing (*sigma_d*). 
    59 Note that $D\cos(\alpha)$ is the component of $D$ parallel to $q$ and the last 
    60 term in the equation above is effectively a Debye-Waller factor term.  
    6167 
    6268.. note:: 
    63  
    64     1. Each assembly in the stack is layer/core/layer, so the spacing of the 
     69    Each assembly in the stack is layer/core/layer, so the spacing of the 
    6570    cores is core plus two layers. The 2nd virial coefficient of the cylinder 
    6671    is calculated based on the *radius* and *length* 
     
    6974    is applied. 
    7075 
    71     2. the resolution smearing calculation uses 76 Gaussian quadrature points 
    72     to properly smear the model since the function is HIGHLY oscillatory, 
    73     especially around the q-values that correspond to the repeat distance of 
    74     the layers. 
    75  
    7676To provide easy access to the orientation of the stacked disks, we define 
    7777the axis of the cylinder using two angles $\theta$ and $\varphi$. 
     
    7979.. figure:: img/cylinder_angle_definition.jpg 
    8080 
    81     Examples of the angles against the detector plane. 
    82  
    83  
    84 Our model is derived from the form factor calculations implemented in a 
    85 c-library provided by the NIST Center for Neutron Research\ [#CIT_Kline]_ 
     81    Examples of the angles against 
     82    the detector plane. 
     83 
     84 
     85Our model uses the form factor calculations implemented in a c-library provided 
     86by the NIST Center for Neutron Research (Kline, 2006) 
    8687 
    8788References 
    8889---------- 
    8990 
    90 .. [#CIT1949] O Kratky and G Porod, *J. Colloid Science*, 4, (1949) 35 
    91 .. [#CIT_Kline] S R Kline, *J Appl. Cryst.*, 39 (2006) 895 
    92 .. [#] J S Higgins and H C Benoit, *Polymers and Neutron Scattering*, 
    93    Clarendon, Oxford, 1994 
    94 .. [#] A Guinier and G Fournet, *Small-Angle Scattering of X-Rays*, 
    95    John Wiley and Sons, New York, 1955 
    96  
    97 Authorship and Verification 
    98 ---------------------------- 
    99  
    100 * **Author:** NIST IGOR/DANSE **Date:** pre 2010 
    101 * **Last Modified by:** Paul Butler and Paul Kienzle **on:** November 26, 2016 
    102 * **Last Reviewed by:** Paul Butler and Paul Kienzle **on:** November 26, 2016 
     91A Guinier and G Fournet, *Small-Angle Scattering of X-Rays*, 
     92John Wiley and Sons, New York, 1955 
     93 
     94O Kratky and G Porod, *J. Colloid Science*, 4, (1949) 35 
     95 
     96J S Higgins and H C Benoit, *Polymers and Neutron Scattering*, 
     97Clarendon, Oxford, 1994 
     98 
     99**Author:** NIST IGOR/DANSE **on:** pre 2010 
     100 
     101**Last Modified by:** Piotr Rozyczko **on:** February 18, 2016 
     102 
     103**Last Reviewed by:** Richard Heenan **on:** March 22, 2016 
    103104""" 
    104105 
     
    106107 
    107108name = "stacked_disks" 
    108 title = "Form factor for a stacked set of non exfoliated core/shell disks" 
     109title = "" 
    109110description = """\ 
    110111    One layer of disk consists of a core, a top layer, and a bottom layer. 
Note: See TracChangeset for help on using the changeset viewer.