Ignore:
File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/core_shell_parallelepiped.c

    rc69d6d6 re077231  
    1 double form_volume(double length_a, double length_b, double length_c, 
    2                    double thick_rim_a, double thick_rim_b, double thick_rim_c); 
    3 double Iq(double q, double core_sld, double arim_sld, double brim_sld, double crim_sld, 
    4           double solvent_sld, double length_a, double length_b, double length_c, 
    5           double thick_rim_a, double thick_rim_b, double thick_rim_c); 
    6 double Iqxy(double qx, double qy, double core_sld, double arim_sld, double brim_sld, 
    7             double crim_sld, double solvent_sld, double length_a, double length_b, 
    8             double length_c, double thick_rim_a, double thick_rim_b, 
    9             double thick_rim_c, double theta, double phi, double psi); 
    10  
    11 double form_volume(double length_a, double length_b, double length_c, 
    12                    double thick_rim_a, double thick_rim_b, double thick_rim_c) 
     1// Set OVERLAPPING to 1 in order to fill in the edges of the box, with 
     2// c endcaps and b overlapping a.  With the proper choice of parameters, 
     3// (setting rim slds to sld, core sld to solvent, rim thickness to thickness 
     4// and subtracting 2*thickness from length, this should match the hollow 
     5// rectangular prism.)  Set it to 0 for the documented behaviour. 
     6#define OVERLAPPING 0 
     7static double 
     8form_volume(double length_a, double length_b, double length_c, 
     9    double thick_rim_a, double thick_rim_b, double thick_rim_c) 
    1310{ 
    14     //return length_a * length_b * length_c; 
    15     return length_a * length_b * length_c + 
    16            2.0 * thick_rim_a * length_b * length_c + 
    17            2.0 * thick_rim_b * length_a * length_c + 
    18            2.0 * thick_rim_c * length_a * length_b; 
     11    return 
     12#if OVERLAPPING 
     13        // Hollow rectangular prism only includes the volume of the shell 
     14        // so uncomment the next line when comparing.  Solid rectangular 
     15        // prism, or parallelepiped want filled cores, so comment when 
     16        // comparing. 
     17        //-length_a * length_b * length_c + 
     18        (length_a + 2.0*thick_rim_a) * 
     19        (length_b + 2.0*thick_rim_b) * 
     20        (length_c + 2.0*thick_rim_c); 
     21#else 
     22        length_a * length_b * length_c + 
     23        2.0 * thick_rim_a * length_b * length_c + 
     24        2.0 * length_a * thick_rim_b * length_c + 
     25        2.0 * length_a * length_b * thick_rim_c; 
     26#endif 
    1927} 
    2028 
    21 double Iq(double q, 
     29static double 
     30Iq(double q, 
    2231    double core_sld, 
    2332    double arim_sld, 
     
    3241    double thick_rim_c) 
    3342{ 
    34     // Code converted from functions CSPPKernel and CSParallelepiped in libCylinder.c_scaled 
     43    // Code converted from functions CSPPKernel and CSParallelepiped in libCylinder.c 
    3544    // Did not understand the code completely, it should be rechecked (Miguel Gonzalez) 
    36     //Code is rewritten,the code is compliant with Diva Singhs thesis now (Dirk Honecker) 
     45    // Code is rewritten, the code is compliant with Diva Singh's thesis now (Dirk Honecker) 
     46    // Code rewritten; cross checked against hollow rectangular prism and realspace (PAK) 
    3747 
    38     const double mu = 0.5 * q * length_b; 
     48    const double half_q = 0.5*q; 
    3949 
    40     //calculate volume before rescaling (in original code, but not used) 
    41     //double vol = form_volume(length_a, length_b, length_c, thick_rim_a, thick_rim_b, thick_rim_c); 
    42     //double vol = length_a * length_b * length_c + 
    43     //       2.0 * thick_rim_a * length_b * length_c + 
    44     //       2.0 * thick_rim_b * length_a * length_c + 
    45     //       2.0 * thick_rim_c * length_a * length_b; 
     50    const double tA = length_a + 2.0*thick_rim_a; 
     51    const double tB = length_b + 2.0*thick_rim_b; 
     52    const double tC = length_c + 2.0*thick_rim_c; 
    4653 
    47     // Scale sides by B 
    48     const double a_scaled = length_a / length_b; 
    49     const double c_scaled = length_c / length_b; 
    50  
    51     double ta = a_scaled + 2.0*thick_rim_a/length_b; // incorrect ta = (a_scaled + 2.0*thick_rim_a)/length_b; 
    52     double tb = 1+ 2.0*thick_rim_b/length_b; // incorrect tb = (a_scaled + 2.0*thick_rim_b)/length_b; 
    53     double tc = c_scaled + 2.0*thick_rim_c/length_b; //not present 
    54  
    55     double Vin = length_a * length_b * length_c; 
    56     //double Vot = (length_a * length_b * length_c + 
    57     //            2.0 * thick_rim_a * length_b * length_c + 
    58     //            2.0 * length_a * thick_rim_b * length_c + 
    59     //            2.0 * length_a * length_b * thick_rim_c); 
    60     double V1 = (2.0 * thick_rim_a * length_b * length_c);    // incorrect V1 (aa*bb*cc+2*ta*bb*cc) 
    61     double V2 = (2.0 * length_a * thick_rim_b * length_c);    // incorrect V2(aa*bb*cc+2*aa*tb*cc) 
    62     double V3 = (2.0 * length_a * length_b * thick_rim_c);    //not present 
    63     double Vot = Vin + V1 + V2 + V3; 
    64  
    65     // Scale factors (note that drC is not used later) 
    66     const double drho0 = (core_sld-solvent_sld); 
    67     const double drhoA = (arim_sld-solvent_sld); 
    68     const double drhoB = (brim_sld-solvent_sld); 
    69     const double drhoC = (crim_sld-solvent_sld);  // incorrect const double drC_Vot = (crim_sld-solvent_sld)*Vot; 
    70  
    71  
    72     // Precompute scale factors for combining cross terms from the shape 
    73     const double scale23 = drhoA*V1; 
    74     const double scale14 = drhoB*V2; 
    75     const double scale24 = drhoC*V3; 
    76     const double scale11 = drho0*Vin; 
    77     const double scale12 = drho0*Vin - scale23 - scale14 - scale24; 
     54    // Scale factors 
     55    const double dr0 = (core_sld-solvent_sld); 
     56    const double drA = (arim_sld-solvent_sld); 
     57    const double drB = (brim_sld-solvent_sld); 
     58    const double drC = (crim_sld-solvent_sld); 
    7859 
    7960    // outer integral (with gauss points), integration limits = 0, 1 
    80     double outer_total = 0; //initialize integral 
     61    double outer_sum = 0; //initialize integral 
     62    for( int i=0; i<GAUSS_N; i++) { 
     63        const double cos_alpha = 0.5 * ( GAUSS_Z[i] + 1.0 ); 
     64        const double mu = half_q * sqrt(1.0-cos_alpha*cos_alpha); 
    8165 
    82     for( int i=0; i<76; i++) { 
    83         double sigma = 0.5 * ( Gauss76Z[i] + 1.0 ); 
    84         double mu_proj = mu * sqrt(1.0-sigma*sigma); 
     66        // inner integral (with gauss points), integration limits = 0, pi/2 
     67        const double siC = length_c * sas_sinx_x(length_c * cos_alpha * half_q); 
     68        const double siCt = tC * sas_sinx_x(tC * cos_alpha * half_q); 
     69        double inner_sum = 0.0; 
     70        for(int j=0; j<GAUSS_N; j++) { 
     71            const double beta = 0.5 * ( GAUSS_Z[j] + 1.0 ); 
     72            double sin_beta, cos_beta; 
     73            SINCOS(M_PI_2*beta, sin_beta, cos_beta); 
     74            const double siA = length_a * sas_sinx_x(length_a * mu * sin_beta); 
     75            const double siB = length_b * sas_sinx_x(length_b * mu * cos_beta); 
     76            const double siAt = tA * sas_sinx_x(tA * mu * sin_beta); 
     77            const double siBt = tB * sas_sinx_x(tB * mu * cos_beta); 
    8578 
    86         // inner integral (with gauss points), integration limits = 0, 1 
    87         double inner_total = 0.0; 
    88         double inner_total_crim = 0.0; 
    89         for(int j=0; j<76; j++) { 
    90             const double uu = 0.5 * ( Gauss76Z[j] + 1.0 ); 
    91             double sin_uu, cos_uu; 
    92             SINCOS(M_PI_2*uu, sin_uu, cos_uu); 
    93             const double si1 = sas_sinx_x(mu_proj * sin_uu * a_scaled); 
    94             const double si2 = sas_sinx_x(mu_proj * cos_uu ); 
    95             const double si3 = sas_sinx_x(mu_proj * sin_uu * ta); 
    96             const double si4 = sas_sinx_x(mu_proj * cos_uu * tb); 
     79#if OVERLAPPING 
     80            const double f = dr0*siA*siB*siC 
     81                + drA*(siAt-siA)*siB*siC 
     82                + drB*siAt*(siBt-siB)*siC 
     83                + drC*siAt*siBt*(siCt-siC); 
     84#else 
     85            const double f = dr0*siA*siB*siC 
     86                + drA*(siAt-siA)*siB*siC 
     87                + drB*siA*(siBt-siB)*siC 
     88                + drC*siA*siB*(siCt-siC); 
     89#endif 
    9790 
    98             // Expression in libCylinder.c (neither drC nor Vot are used) 
    99             const double form = scale12*si1*si2 + scale23*si2*si3 + scale14*si1*si4; 
    100             const double form_crim = scale11*si1*si2; 
    101  
    102  
    103             //  correct FF : sum of square of phase factors 
    104             inner_total += Gauss76Wt[j] * form * form; 
    105             inner_total_crim += Gauss76Wt[j] * form_crim * form_crim; 
     91            inner_sum += GAUSS_W[j] * f * f; 
    10692        } 
    107         inner_total *= 0.5; 
    108         inner_total_crim *= 0.5; 
     93        inner_sum *= 0.5; 
    10994        // now sum up the outer integral 
    110         const double si = sas_sinx_x(mu * c_scaled * sigma); 
    111         const double si_crim = sas_sinx_x(mu * tc * sigma); 
    112         outer_total += Gauss76Wt[i] * (inner_total * si * si + inner_total_crim * si_crim * si_crim); 
     95        outer_sum += GAUSS_W[i] * inner_sum; 
    11396    } 
    114     outer_total *= 0.5; 
     97    outer_sum *= 0.5; 
    11598 
    11699    //convert from [1e-12 A-1] to [cm-1] 
    117     return 1.0e-4 * outer_total; 
     100    return 1.0e-4 * outer_sum; 
    118101} 
    119102 
    120 double Iqxy(double qx, double qy, 
     103static double 
     104Iqabc(double qa, double qb, double qc, 
    121105    double core_sld, 
    122106    double arim_sld, 
     
    129113    double thick_rim_a, 
    130114    double thick_rim_b, 
    131     double thick_rim_c, 
    132     double theta, 
    133     double phi, 
    134     double psi) 
     115    double thick_rim_c) 
    135116{ 
    136     double q, zhat, yhat, xhat; 
    137     ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); 
    138  
    139117    // cspkernel in csparallelepiped recoded here 
    140118    const double dr0 = core_sld-solvent_sld; 
     
    143121    const double drC = crim_sld-solvent_sld; 
    144122 
    145     double Vin = length_a * length_b * length_c; 
    146     double V1 = 2.0 * thick_rim_a * length_b * length_c;    // incorrect V1(aa*bb*cc+2*ta*bb*cc) 
    147     double V2 = 2.0 * length_a * thick_rim_b * length_c;    // incorrect V2(aa*bb*cc+2*aa*tb*cc) 
    148     double V3 = 2.0 * length_a * length_b * thick_rim_c; 
    149     // As for the 1D case, Vot is not used 
    150     //double Vot = (length_a * length_b * length_c + 
    151     //              2.0 * thick_rim_a * length_b * length_c + 
    152     //              2.0 * length_a * thick_rim_b * length_c + 
    153     //              2.0 * length_a * length_b * thick_rim_c); 
     123    const double tA = length_a + 2.0*thick_rim_a; 
     124    const double tB = length_b + 2.0*thick_rim_b; 
     125    const double tC = length_c + 2.0*thick_rim_c; 
     126    const double siA = length_a*sas_sinx_x(0.5*length_a*qa); 
     127    const double siB = length_b*sas_sinx_x(0.5*length_b*qb); 
     128    const double siC = length_c*sas_sinx_x(0.5*length_c*qc); 
     129    const double siAt = tA*sas_sinx_x(0.5*tA*qa); 
     130    const double siBt = tB*sas_sinx_x(0.5*tB*qb); 
     131    const double siCt = tC*sas_sinx_x(0.5*tC*qc); 
    154132 
    155     // The definitions of ta, tb, tc are not the same as in the 1D case because there is no 
    156     // the scaling by B. 
    157     double ta = length_a + 2.0*thick_rim_a; 
    158     double tb = length_b + 2.0*thick_rim_b; 
    159     double tc = length_c + 2.0*thick_rim_c; 
    160     //handle arg=0 separately, as sin(t)/t -> 1 as t->0 
    161     double siA = sas_sinx_x(0.5*q*length_a*xhat); 
    162     double siB = sas_sinx_x(0.5*q*length_b*yhat); 
    163     double siC = sas_sinx_x(0.5*q*length_c*zhat); 
    164     double siAt = sas_sinx_x(0.5*q*ta*xhat); 
    165     double siBt = sas_sinx_x(0.5*q*tb*yhat); 
    166     double siCt = sas_sinx_x(0.5*q*tc*zhat); 
    167  
    168  
    169     // f uses Vin, V1, V2, and V3 and it seems to have more sense than the value computed 
    170     // in the 1D code, but should be checked! 
    171     double f = ( dr0*siA*siB*siC*Vin 
    172                + drA*(siAt-siA)*siB*siC*V1 
    173                + drB*siA*(siBt-siB)*siC*V2 
    174                + drC*siA*siB*(siCt-siC)*V3); 
     133#if OVERLAPPING 
     134    const double f = dr0*siA*siB*siC 
     135        + drA*(siAt-siA)*siB*siC 
     136        + drB*siAt*(siBt-siB)*siC 
     137        + drC*siAt*siBt*(siCt-siC); 
     138#else 
     139    const double f = dr0*siA*siB*siC 
     140        + drA*(siAt-siA)*siB*siC 
     141        + drB*siA*(siBt-siB)*siC 
     142        + drC*siA*siB*(siCt-siC); 
     143#endif 
    175144 
    176145    return 1.0e-4 * f * f; 
Note: See TracChangeset for help on using the changeset viewer.