Changes in / [ec65dc81:de99a5f0] in sasview
- Files:
-
- 19 added
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
run.py
r64ca561 r168d359 62 62 def import_package(modname, path): 63 63 """Import a package into a particular point in the python namespace""" 64 logger.debug("Dynamicly importing: %s", path) 64 65 mod = imp.load_source(modname, abspath(joinpath(path,'__init__.py'))) 65 66 sys.modules[modname] = mod -
src/sas/sascalc/dataloader/manipulations.py
r959eb01 r168d359 1 from __future__ import division 1 2 """ 2 3 Data manipulations for 2D data sets. 3 4 Using the meta data information, various types of averaging 4 5 are performed in Q-space 6 7 To test this module use: 8 ``` 9 cd test 10 PYTHONPATH=../src/ python2 -m sasdataloader.test.utest_averaging DataInfoTests.test_sectorphi_quarter 11 ``` 5 12 """ 6 13 ##################################################################### 7 # This software was developed by the University of Tennessee as part of the8 # Distributed Data Analysis of Neutron Scattering Experiments (DANSE)9 # project funded by the US National Science Foundation.10 # See the license text in license.txt11 # copyright 2008, University of Tennessee14 # This software was developed by the University of Tennessee as part of the 15 # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) 16 # project funded by the US National Science Foundation. 17 # See the license text in license.txt 18 # copyright 2008, University of Tennessee 12 19 ###################################################################### 13 20 14 #TODO: copy the meta data from the 2D object to the resulting 1D object 21 22 # TODO: copy the meta data from the 2D object to the resulting 1D object 15 23 import math 16 import numpy 17 24 import numpy as np 25 import sys 26 18 27 #from data_info import plottable_2D 19 28 from data_info import Data1D … … 70 79 return phi_out 71 80 72 73 def reader2D_converter(data2d=None):74 """75 convert old 2d format opened by IhorReader or danse_reader76 to new Data2D format77 78 :param data2d: 2d array of Data2D object79 :return: 1d arrays of Data2D object80 81 """82 if data2d.data is None or data2d.x_bins is None or data2d.y_bins is None:83 raise ValueError, "Can't convert this data: data=None..."84 new_x = numpy.tile(data2d.x_bins, (len(data2d.y_bins), 1))85 new_y = numpy.tile(data2d.y_bins, (len(data2d.x_bins), 1))86 new_y = new_y.swapaxes(0, 1)87 88 new_data = data2d.data.flatten()89 qx_data = new_x.flatten()90 qy_data = new_y.flatten()91 q_data = numpy.sqrt(qx_data * qx_data + qy_data * qy_data)92 if data2d.err_data is None or numpy.any(data2d.err_data <= 0):93 new_err_data = numpy.sqrt(numpy.abs(new_data))94 else:95 new_err_data = data2d.err_data.flatten()96 mask = numpy.ones(len(new_data), dtype=bool)97 98 #TODO: make sense of the following two lines...99 #from sas.sascalc.dataloader.data_info import Data2D100 #output = Data2D()101 output = data2d102 output.data = new_data103 output.err_data = new_err_data104 output.qx_data = qx_data105 output.qy_data = qy_data106 output.q_data = q_data107 output.mask = mask108 109 return output110 111 112 class _Slab(object):113 """114 Compute average I(Q) for a region of interest115 """116 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0,117 y_max=0.0, bin_width=0.001):118 # Minimum Qx value [A-1]119 self.x_min = x_min120 # Maximum Qx value [A-1]121 self.x_max = x_max122 # Minimum Qy value [A-1]123 self.y_min = y_min124 # Maximum Qy value [A-1]125 self.y_max = y_max126 # Bin width (step size) [A-1]127 self.bin_width = bin_width128 # If True, I(|Q|) will be return, otherwise,129 # negative q-values are allowed130 self.fold = False131 132 def __call__(self, data2D):133 return NotImplemented134 135 def _avg(self, data2D, maj):136 """137 Compute average I(Q_maj) for a region of interest.138 The major axis is defined as the axis of Q_maj.139 The minor axis is the axis that we average over.140 141 :param data2D: Data2D object142 :param maj_min: min value on the major axis143 :return: Data1D object144 """145 if len(data2D.detector) > 1:146 msg = "_Slab._avg: invalid number of "147 msg += " detectors: %g" % len(data2D.detector)148 raise RuntimeError, msg149 150 # Get data151 data = data2D.data[numpy.isfinite(data2D.data)]152 err_data = data2D.err_data[numpy.isfinite(data2D.data)]153 qx_data = data2D.qx_data[numpy.isfinite(data2D.data)]154 qy_data = data2D.qy_data[numpy.isfinite(data2D.data)]155 156 # Build array of Q intervals157 if maj == 'x':158 if self.fold:159 x_min = 0160 else:161 x_min = self.x_min162 nbins = int(math.ceil((self.x_max - x_min) / self.bin_width))163 elif maj == 'y':164 if self.fold:165 y_min = 0166 else:167 y_min = self.y_min168 nbins = int(math.ceil((self.y_max - y_min) / self.bin_width))169 else:170 raise RuntimeError, "_Slab._avg: unrecognized axis %s" % str(maj)171 172 x = numpy.zeros(nbins)173 y = numpy.zeros(nbins)174 err_y = numpy.zeros(nbins)175 y_counts = numpy.zeros(nbins)176 177 # Average pixelsize in q space178 for npts in range(len(data)):179 # default frac180 frac_x = 0181 frac_y = 0182 # get ROI183 if self.x_min <= qx_data[npts] and self.x_max > qx_data[npts]:184 frac_x = 1185 if self.y_min <= qy_data[npts] and self.y_max > qy_data[npts]:186 frac_y = 1187 frac = frac_x * frac_y188 189 if frac == 0:190 continue191 # binning: find axis of q192 if maj == 'x':193 q_value = qx_data[npts]194 min_value = x_min195 if maj == 'y':196 q_value = qy_data[npts]197 min_value = y_min198 if self.fold and q_value < 0:199 q_value = -q_value200 # bin201 i_q = int(math.ceil((q_value - min_value) / self.bin_width)) - 1202 203 # skip outside of max bins204 if i_q < 0 or i_q >= nbins:205 continue206 207 #TODO: find better definition of x[i_q] based on q_data208 # min_value + (i_q + 1) * self.bin_width / 2.0209 x[i_q] += frac * q_value210 y[i_q] += frac * data[npts]211 212 if err_data == None or err_data[npts] == 0.0:213 if data[npts] < 0:214 data[npts] = -data[npts]215 err_y[i_q] += frac * frac * data[npts]216 else:217 err_y[i_q] += frac * frac * err_data[npts] * err_data[npts]218 y_counts[i_q] += frac219 220 # Average the sums221 for n in range(nbins):222 err_y[n] = math.sqrt(err_y[n])223 224 err_y = err_y / y_counts225 y = y / y_counts226 x = x / y_counts227 idx = (numpy.isfinite(y) & numpy.isfinite(x))228 229 if not idx.any():230 msg = "Average Error: No points inside ROI to average..."231 raise ValueError, msg232 return Data1D(x=x[idx], y=y[idx], dy=err_y[idx])233 234 235 class SlabY(_Slab):236 """237 Compute average I(Qy) for a region of interest238 """239 def __call__(self, data2D):240 """241 Compute average I(Qy) for a region of interest242 243 :param data2D: Data2D object244 :return: Data1D object245 """246 return self._avg(data2D, 'y')247 248 249 class SlabX(_Slab):250 """251 Compute average I(Qx) for a region of interest252 """253 def __call__(self, data2D):254 """255 Compute average I(Qx) for a region of interest256 :param data2D: Data2D object257 :return: Data1D object258 """259 return self._avg(data2D, 'x')260 261 262 class Boxsum(object):263 """264 Perform the sum of counts in a 2D region of interest.265 """266 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0):267 # Minimum Qx value [A-1]268 self.x_min = x_min269 # Maximum Qx value [A-1]270 self.x_max = x_max271 # Minimum Qy value [A-1]272 self.y_min = y_min273 # Maximum Qy value [A-1]274 self.y_max = y_max275 276 def __call__(self, data2D):277 """278 Perform the sum in the region of interest279 280 :param data2D: Data2D object281 :return: number of counts, error on number of counts,282 number of points summed283 """284 y, err_y, y_counts = self._sum(data2D)285 286 # Average the sums287 counts = 0 if y_counts == 0 else y288 error = 0 if y_counts == 0 else math.sqrt(err_y)289 290 # Added y_counts to return, SMK & PDB, 04/03/2013291 return counts, error, y_counts292 293 def _sum(self, data2D):294 """295 Perform the sum in the region of interest296 297 :param data2D: Data2D object298 :return: number of counts,299 error on number of counts, number of entries summed300 """301 if len(data2D.detector) > 1:302 msg = "Circular averaging: invalid number "303 msg += "of detectors: %g" % len(data2D.detector)304 raise RuntimeError, msg305 # Get data306 data = data2D.data[numpy.isfinite(data2D.data)]307 err_data = data2D.err_data[numpy.isfinite(data2D.data)]308 qx_data = data2D.qx_data[numpy.isfinite(data2D.data)]309 qy_data = data2D.qy_data[numpy.isfinite(data2D.data)]310 311 y = 0.0312 err_y = 0.0313 y_counts = 0.0314 315 # Average pixelsize in q space316 for npts in range(len(data)):317 # default frac318 frac_x = 0319 frac_y = 0320 321 # get min and max at each points322 qx = qx_data[npts]323 qy = qy_data[npts]324 325 # get the ROI326 if self.x_min <= qx and self.x_max > qx:327 frac_x = 1328 if self.y_min <= qy and self.y_max > qy:329 frac_y = 1330 #Find the fraction along each directions331 frac = frac_x * frac_y332 if frac == 0:333 continue334 y += frac * data[npts]335 if err_data == None or err_data[npts] == 0.0:336 if data[npts] < 0:337 data[npts] = -data[npts]338 err_y += frac * frac * data[npts]339 else:340 err_y += frac * frac * err_data[npts] * err_data[npts]341 y_counts += frac342 return y, err_y, y_counts343 344 345 class Boxavg(Boxsum):346 """347 Perform the average of counts in a 2D region of interest.348 """349 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0):350 super(Boxavg, self).__init__(x_min=x_min, x_max=x_max,351 y_min=y_min, y_max=y_max)352 353 def __call__(self, data2D):354 """355 Perform the sum in the region of interest356 357 :param data2D: Data2D object358 :return: average counts, error on average counts359 360 """361 y, err_y, y_counts = self._sum(data2D)362 363 # Average the sums364 counts = 0 if y_counts == 0 else y / y_counts365 error = 0 if y_counts == 0 else math.sqrt(err_y) / y_counts366 367 return counts, error368 369 370 81 def get_pixel_fraction_square(x, xmin, xmax): 371 82 """ … … 390 101 return 1.0 391 102 392 393 class CircularAverage(object): 394 """ 395 Perform circular averaging on 2D data 396 397 The data returned is the distribution of counts 398 as a function of Q 399 """ 400 def __init__(self, r_min=0.0, r_max=0.0, bin_width=0.0005): 401 # Minimum radius included in the average [A-1] 402 self.r_min = r_min 403 # Maximum radius included in the average [A-1] 404 self.r_max = r_max 405 # Bin width (step size) [A-1] 406 self.bin_width = bin_width 407 408 def __call__(self, data2D, ismask=False): 409 """ 410 Perform circular averaging on the data 411 412 :param data2D: Data2D object 413 :return: Data1D object 414 """ 415 # Get data W/ finite values 416 data = data2D.data[numpy.isfinite(data2D.data)] 417 q_data = data2D.q_data[numpy.isfinite(data2D.data)] 418 err_data = data2D.err_data[numpy.isfinite(data2D.data)] 419 mask_data = data2D.mask[numpy.isfinite(data2D.data)] 420 421 dq_data = None 422 423 # Get the dq for resolution averaging 424 if data2D.dqx_data != None and data2D.dqy_data != None: 425 # The pinholes and det. pix contribution present 426 # in both direction of the 2D which must be subtracted when 427 # converting to 1D: dq_overlap should calculated ideally at 428 # q = 0. Note This method works on only pinhole geometry. 429 # Extrapolate dqx(r) and dqy(phi) at q = 0, and take an average. 430 z_max = max(data2D.q_data) 431 z_min = min(data2D.q_data) 432 x_max = data2D.dqx_data[data2D.q_data[z_max]] 433 x_min = data2D.dqx_data[data2D.q_data[z_min]] 434 y_max = data2D.dqy_data[data2D.q_data[z_max]] 435 y_min = data2D.dqy_data[data2D.q_data[z_min]] 436 # Find qdx at q = 0 437 dq_overlap_x = (x_min * z_max - x_max * z_min) / (z_max - z_min) 438 # when extrapolation goes wrong 439 if dq_overlap_x > min(data2D.dqx_data): 440 dq_overlap_x = min(data2D.dqx_data) 441 dq_overlap_x *= dq_overlap_x 442 # Find qdx at q = 0 443 dq_overlap_y = (y_min * z_max - y_max * z_min) / (z_max - z_min) 444 # when extrapolation goes wrong 445 if dq_overlap_y > min(data2D.dqy_data): 446 dq_overlap_y = min(data2D.dqy_data) 447 # get dq at q=0. 448 dq_overlap_y *= dq_overlap_y 449 450 dq_overlap = numpy.sqrt((dq_overlap_x + dq_overlap_y) / 2.0) 451 # Final protection of dq 452 if dq_overlap < 0: 453 dq_overlap = y_min 454 dqx_data = data2D.dqx_data[numpy.isfinite(data2D.data)] 455 dqy_data = data2D.dqy_data[numpy.isfinite(data2D.data)] - dq_overlap 456 # def; dqx_data = dq_r dqy_data = dq_phi 457 # Convert dq 2D to 1D here 458 dqx = dqx_data * dqx_data 459 dqy = dqy_data * dqy_data 460 dq_data = numpy.add(dqx, dqy) 461 dq_data = numpy.sqrt(dq_data) 462 463 #q_data_max = numpy.max(q_data) 464 if len(data2D.q_data) == None: 465 msg = "Circular averaging: invalid q_data: %g" % data2D.q_data 466 raise RuntimeError, msg 467 468 # Build array of Q intervals 469 nbins = int(math.ceil((self.r_max - self.r_min) / self.bin_width)) 470 471 x = numpy.zeros(nbins) 472 y = numpy.zeros(nbins) 473 err_y = numpy.zeros(nbins) 474 err_x = numpy.zeros(nbins) 475 y_counts = numpy.zeros(nbins) 476 477 for npt in range(len(data)): 478 479 if ismask and not mask_data[npt]: 480 continue 481 482 frac = 0 483 484 # q-value at the pixel (j,i) 485 q_value = q_data[npt] 486 data_n = data[npt] 487 488 ## No need to calculate the frac when all data are within range 489 if self.r_min >= self.r_max: 490 raise ValueError, "Limit Error: min > max" 491 492 if self.r_min <= q_value and q_value <= self.r_max: 493 frac = 1 494 if frac == 0: 495 continue 496 i_q = int(math.floor((q_value - self.r_min) / self.bin_width)) 497 498 # Take care of the edge case at phi = 2pi. 499 if i_q == nbins: 500 i_q = nbins - 1 501 y[i_q] += frac * data_n 502 # Take dqs from data to get the q_average 503 x[i_q] += frac * q_value 504 if err_data == None or err_data[npt] == 0.0: 505 if data_n < 0: 506 data_n = -data_n 507 err_y[i_q] += frac * frac * data_n 508 else: 509 err_y[i_q] += frac * frac * err_data[npt] * err_data[npt] 510 if dq_data != None: 511 # To be consistent with dq calculation in 1d reduction, 512 # we need just the averages (not quadratures) because 513 # it should not depend on the number of the q points 514 # in the qr bins. 515 err_x[i_q] += frac * dq_data[npt] 516 else: 517 err_x = None 518 y_counts[i_q] += frac 519 520 # Average the sums 521 for n in range(nbins): 522 if err_y[n] < 0: 523 err_y[n] = -err_y[n] 524 err_y[n] = math.sqrt(err_y[n]) 525 #if err_x != None: 526 # err_x[n] = math.sqrt(err_x[n]) 527 528 err_y = err_y / y_counts 529 err_y[err_y == 0] = numpy.average(err_y) 530 y = y / y_counts 531 x = x / y_counts 532 idx = (numpy.isfinite(y)) & (numpy.isfinite(x)) 533 534 if err_x != None: 535 d_x = err_x[idx] / y_counts[idx] 536 else: 537 d_x = None 538 539 if not idx.any(): 540 msg = "Average Error: No points inside ROI to average..." 541 raise ValueError, msg 542 543 return Data1D(x=x[idx], y=y[idx], dy=err_y[idx], dx=d_x) 544 545 546 class Ring(object): 547 """ 548 Defines a ring on a 2D data set. 549 The ring is defined by r_min, r_max, and 550 the position of the center of the ring. 551 552 The data returned is the distribution of counts 553 around the ring as a function of phi. 554 555 Phi_min and phi_max should be defined between 0 and 2*pi 556 in anti-clockwise starting from the x- axis on the left-hand side 557 """ 558 #Todo: remove center. 559 def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0, nbins=36): 560 # Minimum radius 561 self.r_min = r_min 562 # Maximum radius 563 self.r_max = r_max 564 # Center of the ring in x 565 self.center_x = center_x 566 # Center of the ring in y 567 self.center_y = center_y 568 # Number of angular bins 569 self.nbins_phi = nbins 570 571 572 def __call__(self, data2D): 573 """ 574 Apply the ring to the data set. 575 Returns the angular distribution for a given q range 576 577 :param data2D: Data2D object 578 579 :return: Data1D object 580 """ 581 if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: 582 raise RuntimeError, "Ring averaging only take plottable_2D objects" 583 584 Pi = math.pi 585 586 # Get data 587 data = data2D.data[numpy.isfinite(data2D.data)] 588 q_data = data2D.q_data[numpy.isfinite(data2D.data)] 589 err_data = data2D.err_data[numpy.isfinite(data2D.data)] 590 qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] 591 qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] 592 593 # Set space for 1d outputs 594 phi_bins = numpy.zeros(self.nbins_phi) 595 phi_counts = numpy.zeros(self.nbins_phi) 596 phi_values = numpy.zeros(self.nbins_phi) 597 phi_err = numpy.zeros(self.nbins_phi) 598 599 # Shift to apply to calculated phi values in order 600 # to center first bin at zero 601 phi_shift = Pi / self.nbins_phi 602 603 for npt in range(len(data)): 604 frac = 0 605 # q-value at the point (npt) 606 q_value = q_data[npt] 607 data_n = data[npt] 608 609 # phi-value at the point (npt) 610 phi_value = math.atan2(qy_data[npt], qx_data[npt]) + Pi 611 612 if self.r_min <= q_value and q_value <= self.r_max: 613 frac = 1 614 if frac == 0: 615 continue 616 # binning 617 i_phi = int(math.floor((self.nbins_phi) * \ 618 (phi_value + phi_shift) / (2 * Pi))) 619 620 # Take care of the edge case at phi = 2pi. 621 if i_phi >= self.nbins_phi: 622 i_phi = 0 623 phi_bins[i_phi] += frac * data[npt] 624 625 if err_data == None or err_data[npt] == 0.0: 626 if data_n < 0: 627 data_n = -data_n 628 phi_err[i_phi] += frac * frac * math.fabs(data_n) 629 else: 630 phi_err[i_phi] += frac * frac * err_data[npt] * err_data[npt] 631 phi_counts[i_phi] += frac 632 633 for i in range(self.nbins_phi): 634 phi_bins[i] = phi_bins[i] / phi_counts[i] 635 phi_err[i] = math.sqrt(phi_err[i]) / phi_counts[i] 636 phi_values[i] = 2.0 * math.pi / self.nbins_phi * (1.0 * i) 637 638 idx = (numpy.isfinite(phi_bins)) 639 640 if not idx.any(): 641 msg = "Average Error: No points inside ROI to average..." 642 raise ValueError, msg 643 #elif len(phi_bins[idx])!= self.nbins_phi: 644 # print "resulted",self.nbins_phi- len(phi_bins[idx]) 645 #,"empty bin(s) due to tight binning..." 646 return Data1D(x=phi_values[idx], y=phi_bins[idx], dy=phi_err[idx]) 647 103 def get_intercept(q, q_0, q_1): 104 """ 105 Returns the fraction of the side at which the 106 q-value intercept the pixel, None otherwise. 107 The values returned is the fraction ON THE SIDE 108 OF THE LOWEST Q. :: 109 110 A B 111 +-----------+--------+ <--- pixel size 112 0 1 113 Q_0 -------- Q ----- Q_1 <--- equivalent Q range 114 if Q_1 > Q_0, A is returned 115 if Q_1 < Q_0, B is returned 116 if Q is outside the range of [Q_0, Q_1], None is returned 117 118 """ 119 if q_1 > q_0: 120 if q > q_0 and q <= q_1: 121 return (q - q_0) / (q_1 - q_0) 122 else: 123 if q > q_1 and q <= q_0: 124 return (q - q_1) / (q_0 - q_1) 125 return None 648 126 649 127 def get_pixel_fraction(qmax, q_00, q_01, q_10, q_11): … … 710 188 return frac_max 711 189 712 713 def get_intercept(q, q_0, q_1): 714 """ 715 Returns the fraction of the side at which the 716 q-value intercept the pixel, None otherwise. 717 The values returned is the fraction ON THE SIDE 718 OF THE LOWEST Q. :: 719 720 A B 721 +-----------+--------+ <--- pixel size 722 0 1 723 Q_0 -------- Q ----- Q_1 <--- equivalent Q range 724 if Q_1 > Q_0, A is returned 725 if Q_1 < Q_0, B is returned 726 if Q is outside the range of [Q_0, Q_1], None is returned 727 728 """ 729 if q_1 > q_0: 730 if q > q_0 and q <= q_1: 731 return (q - q_0) / (q_1 - q_0) 190 def get_dq_data(data2D): 191 ''' 192 Get the dq for resolution averaging 193 The pinholes and det. pix contribution present 194 in both direction of the 2D which must be subtracted when 195 converting to 1D: dq_overlap should calculated ideally at 196 q = 0. Note This method works on only pinhole geometry. 197 Extrapolate dqx(r) and dqy(phi) at q = 0, and take an average. 198 ''' 199 z_max = max(data2D.q_data) 200 z_min = min(data2D.q_data) 201 x_max = data2D.dqx_data[data2D.q_data[z_max]] 202 x_min = data2D.dqx_data[data2D.q_data[z_min]] 203 y_max = data2D.dqy_data[data2D.q_data[z_max]] 204 y_min = data2D.dqy_data[data2D.q_data[z_min]] 205 # Find qdx at q = 0 206 dq_overlap_x = (x_min * z_max - x_max * z_min) / (z_max - z_min) 207 # when extrapolation goes wrong 208 if dq_overlap_x > min(data2D.dqx_data): 209 dq_overlap_x = min(data2D.dqx_data) 210 dq_overlap_x *= dq_overlap_x 211 # Find qdx at q = 0 212 dq_overlap_y = (y_min * z_max - y_max * z_min) / (z_max - z_min) 213 # when extrapolation goes wrong 214 if dq_overlap_y > min(data2D.dqy_data): 215 dq_overlap_y = min(data2D.dqy_data) 216 # get dq at q=0. 217 dq_overlap_y *= dq_overlap_y 218 219 dq_overlap = np.sqrt((dq_overlap_x + dq_overlap_y) / 2.0) 220 # Final protection of dq 221 if dq_overlap < 0: 222 dq_overlap = y_min 223 dqx_data = data2D.dqx_data[np.isfinite(data2D.data)] 224 dqy_data = data2D.dqy_data[np.isfinite( 225 data2D.data)] - dq_overlap 226 # def; dqx_data = dq_r dqy_data = dq_phi 227 # Convert dq 2D to 1D here 228 dq_data = np.sqrt(dqx_data**2 + dqx_data**2) 229 return dq_data 230 231 ################################################################################ 232 233 def reader2D_converter(data2d=None): 234 """ 235 convert old 2d format opened by IhorReader or danse_reader 236 to new Data2D format 237 This is mainly used by the Readers 238 239 :param data2d: 2d array of Data2D object 240 :return: 1d arrays of Data2D object 241 242 """ 243 if data2d.data is None or data2d.x_bins is None or data2d.y_bins is None: 244 raise ValueError("Can't convert this data: data=None...") 245 new_x = np.tile(data2d.x_bins, (len(data2d.y_bins), 1)) 246 new_y = np.tile(data2d.y_bins, (len(data2d.x_bins), 1)) 247 new_y = new_y.swapaxes(0, 1) 248 249 new_data = data2d.data.flatten() 250 qx_data = new_x.flatten() 251 qy_data = new_y.flatten() 252 q_data = np.sqrt(qx_data * qx_data + qy_data * qy_data) 253 if data2d.err_data is None or np.any(data2d.err_data <= 0): 254 new_err_data = np.sqrt(np.abs(new_data)) 732 255 else: 733 if q > q_1 and q <= q_0: 734 return (q - q_1) / (q_0 - q_1) 735 return None 736 256 new_err_data = data2d.err_data.flatten() 257 mask = np.ones(len(new_data), dtype=bool) 258 259 # TODO: make sense of the following two lines... 260 #from sas.sascalc.dataloader.data_info import Data2D 261 #output = Data2D() 262 output = data2d 263 output.data = new_data 264 output.err_data = new_err_data 265 output.qx_data = qx_data 266 output.qy_data = qy_data 267 output.q_data = q_data 268 output.mask = mask 269 270 return output 271 272 ################################################################################ 273 274 class Binning(object): 275 ''' 276 This class just creates a binning object 277 either linear or log 278 ''' 279 280 def __init__(self, min_value, max_value, n_bins, base=None): 281 ''' 282 if base is None: Linear binning 283 ''' 284 self.min = min_value if min_value > 0 else 0.0001 285 self.max = max_value 286 self.n_bins = n_bins 287 self.base = base 288 289 def get_bin_index(self, value): 290 ''' 291 The general formula logarithm binning is: 292 bin = floor(N * (log(x) - log(min)) / (log(max) - log(min))) 293 ''' 294 if self.base: 295 temp_x = self.n_bins * (math.log(value, self.base) - math.log(self.min, self.base)) 296 temp_y = math.log(self.max, self.base) - math.log(self.min, self.base) 297 else: 298 temp_x = self.n_bins * (value - self.min) 299 temp_y = self.max - self.min 300 # Bin index calulation 301 return int(math.floor(temp_x / temp_y)) 302 303 304 ################################################################################ 305 306 class _Slab(object): 307 """ 308 Compute average I(Q) for a region of interest 309 """ 310 311 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, 312 y_max=0.0, bin_width=0.001): 313 # Minimum Qx value [A-1] 314 self.x_min = x_min 315 # Maximum Qx value [A-1] 316 self.x_max = x_max 317 # Minimum Qy value [A-1] 318 self.y_min = y_min 319 # Maximum Qy value [A-1] 320 self.y_max = y_max 321 # Bin width (step size) [A-1] 322 self.bin_width = bin_width 323 # If True, I(|Q|) will be return, otherwise, 324 # negative q-values are allowed 325 self.fold = False 326 327 def __call__(self, data2D): 328 return NotImplemented 329 330 def _avg(self, data2D, maj): 331 """ 332 Compute average I(Q_maj) for a region of interest. 333 The major axis is defined as the axis of Q_maj. 334 The minor axis is the axis that we average over. 335 336 :param data2D: Data2D object 337 :param maj_min: min value on the major axis 338 :return: Data1D object 339 """ 340 if len(data2D.detector) > 1: 341 msg = "_Slab._avg: invalid number of " 342 msg += " detectors: %g" % len(data2D.detector) 343 raise RuntimeError(msg) 344 345 # Get data 346 data = data2D.data[np.isfinite(data2D.data)] 347 err_data = data2D.err_data[np.isfinite(data2D.data)] 348 qx_data = data2D.qx_data[np.isfinite(data2D.data)] 349 qy_data = data2D.qy_data[np.isfinite(data2D.data)] 350 351 # Build array of Q intervals 352 if maj == 'x': 353 if self.fold: 354 x_min = 0 355 else: 356 x_min = self.x_min 357 nbins = int(math.ceil((self.x_max - x_min) / self.bin_width)) 358 elif maj == 'y': 359 if self.fold: 360 y_min = 0 361 else: 362 y_min = self.y_min 363 nbins = int(math.ceil((self.y_max - y_min) / self.bin_width)) 364 else: 365 raise RuntimeError("_Slab._avg: unrecognized axis %s" % str(maj)) 366 367 x = np.zeros(nbins) 368 y = np.zeros(nbins) 369 err_y = np.zeros(nbins) 370 y_counts = np.zeros(nbins) 371 372 # Average pixelsize in q space 373 for npts in range(len(data)): 374 # default frac 375 frac_x = 0 376 frac_y = 0 377 # get ROI 378 if self.x_min <= qx_data[npts] and self.x_max > qx_data[npts]: 379 frac_x = 1 380 if self.y_min <= qy_data[npts] and self.y_max > qy_data[npts]: 381 frac_y = 1 382 frac = frac_x * frac_y 383 384 if frac == 0: 385 continue 386 # binning: find axis of q 387 if maj == 'x': 388 q_value = qx_data[npts] 389 min_value = x_min 390 if maj == 'y': 391 q_value = qy_data[npts] 392 min_value = y_min 393 if self.fold and q_value < 0: 394 q_value = -q_value 395 # bin 396 i_q = int(math.ceil((q_value - min_value) / self.bin_width)) - 1 397 398 # skip outside of max bins 399 if i_q < 0 or i_q >= nbins: 400 continue 401 402 # TODO: find better definition of x[i_q] based on q_data 403 # min_value + (i_q + 1) * self.bin_width / 2.0 404 x[i_q] += frac * q_value 405 y[i_q] += frac * data[npts] 406 407 if err_data is None or err_data[npts] == 0.0: 408 if data[npts] < 0: 409 data[npts] = -data[npts] 410 err_y[i_q] += frac * frac * data[npts] 411 else: 412 err_y[i_q] += frac * frac * err_data[npts] * err_data[npts] 413 y_counts[i_q] += frac 414 415 # Average the sums 416 for n in range(nbins): 417 err_y[n] = math.sqrt(err_y[n]) 418 419 err_y = err_y / y_counts 420 y = y / y_counts 421 x = x / y_counts 422 idx = (np.isfinite(y) & np.isfinite(x)) 423 424 if not idx.any(): 425 msg = "Average Error: No points inside ROI to average..." 426 raise ValueError(msg) 427 return Data1D(x=x[idx], y=y[idx], dy=err_y[idx]) 428 429 430 class SlabY(_Slab): 431 """ 432 Compute average I(Qy) for a region of interest 433 """ 434 435 def __call__(self, data2D): 436 """ 437 Compute average I(Qy) for a region of interest 438 439 :param data2D: Data2D object 440 :return: Data1D object 441 """ 442 return self._avg(data2D, 'y') 443 444 445 class SlabX(_Slab): 446 """ 447 Compute average I(Qx) for a region of interest 448 """ 449 450 def __call__(self, data2D): 451 """ 452 Compute average I(Qx) for a region of interest 453 :param data2D: Data2D object 454 :return: Data1D object 455 """ 456 return self._avg(data2D, 'x') 457 458 ################################################################################ 459 460 class Boxsum(object): 461 """ 462 Perform the sum of counts in a 2D region of interest. 463 """ 464 465 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): 466 # Minimum Qx value [A-1] 467 self.x_min = x_min 468 # Maximum Qx value [A-1] 469 self.x_max = x_max 470 # Minimum Qy value [A-1] 471 self.y_min = y_min 472 # Maximum Qy value [A-1] 473 self.y_max = y_max 474 475 def __call__(self, data2D): 476 """ 477 Perform the sum in the region of interest 478 479 :param data2D: Data2D object 480 :return: number of counts, error on number of counts, 481 number of points summed 482 """ 483 y, err_y, y_counts = self._sum(data2D) 484 485 # Average the sums 486 counts = 0 if y_counts == 0 else y 487 error = 0 if y_counts == 0 else math.sqrt(err_y) 488 489 # Added y_counts to return, SMK & PDB, 04/03/2013 490 return counts, error, y_counts 491 492 def _sum(self, data2D): 493 """ 494 Perform the sum in the region of interest 495 496 :param data2D: Data2D object 497 :return: number of counts, 498 error on number of counts, number of entries summed 499 """ 500 if len(data2D.detector) > 1: 501 msg = "Circular averaging: invalid number " 502 msg += "of detectors: %g" % len(data2D.detector) 503 raise RuntimeError(msg) 504 # Get data 505 data = data2D.data[np.isfinite(data2D.data)] 506 err_data = data2D.err_data[np.isfinite(data2D.data)] 507 qx_data = data2D.qx_data[np.isfinite(data2D.data)] 508 qy_data = data2D.qy_data[np.isfinite(data2D.data)] 509 510 y = 0.0 511 err_y = 0.0 512 y_counts = 0.0 513 514 # Average pixelsize in q space 515 for npts in range(len(data)): 516 # default frac 517 frac_x = 0 518 frac_y = 0 519 520 # get min and max at each points 521 qx = qx_data[npts] 522 qy = qy_data[npts] 523 524 # get the ROI 525 if self.x_min <= qx and self.x_max > qx: 526 frac_x = 1 527 if self.y_min <= qy and self.y_max > qy: 528 frac_y = 1 529 # Find the fraction along each directions 530 frac = frac_x * frac_y 531 if frac == 0: 532 continue 533 y += frac * data[npts] 534 if err_data is None or err_data[npts] == 0.0: 535 if data[npts] < 0: 536 data[npts] = -data[npts] 537 err_y += frac * frac * data[npts] 538 else: 539 err_y += frac * frac * err_data[npts] * err_data[npts] 540 y_counts += frac 541 return y, err_y, y_counts 542 543 544 class Boxavg(Boxsum): 545 """ 546 Perform the average of counts in a 2D region of interest. 547 """ 548 549 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): 550 super(Boxavg, self).__init__(x_min=x_min, x_max=x_max, 551 y_min=y_min, y_max=y_max) 552 553 def __call__(self, data2D): 554 """ 555 Perform the sum in the region of interest 556 557 :param data2D: Data2D object 558 :return: average counts, error on average counts 559 560 """ 561 y, err_y, y_counts = self._sum(data2D) 562 563 # Average the sums 564 counts = 0 if y_counts == 0 else y / y_counts 565 error = 0 if y_counts == 0 else math.sqrt(err_y) / y_counts 566 567 return counts, error 568 569 ################################################################################ 570 571 class CircularAverage(object): 572 """ 573 Perform circular averaging on 2D data 574 575 The data returned is the distribution of counts 576 as a function of Q 577 """ 578 579 def __init__(self, r_min=0.0, r_max=0.0, bin_width=0.0005): 580 # Minimum radius included in the average [A-1] 581 self.r_min = r_min 582 # Maximum radius included in the average [A-1] 583 self.r_max = r_max 584 # Bin width (step size) [A-1] 585 self.bin_width = bin_width 586 587 def __call__(self, data2D, ismask=False): 588 """ 589 Perform circular averaging on the data 590 591 :param data2D: Data2D object 592 :return: Data1D object 593 """ 594 # Get data W/ finite values 595 data = data2D.data[np.isfinite(data2D.data)] 596 q_data = data2D.q_data[np.isfinite(data2D.data)] 597 err_data = data2D.err_data[np.isfinite(data2D.data)] 598 mask_data = data2D.mask[np.isfinite(data2D.data)] 599 600 dq_data = None 601 if data2D.dqx_data is not None and data2D.dqy_data is not None: 602 dq_data = get_dq_data(data2D) 603 604 #q_data_max = np.max(q_data) 605 if len(data2D.q_data) is None: 606 msg = "Circular averaging: invalid q_data: %g" % data2D.q_data 607 raise RuntimeError(msg) 608 609 # Build array of Q intervals 610 nbins = int(math.ceil((self.r_max - self.r_min) / self.bin_width)) 611 612 x = np.zeros(nbins) 613 y = np.zeros(nbins) 614 err_y = np.zeros(nbins) 615 err_x = np.zeros(nbins) 616 y_counts = np.zeros(nbins) 617 618 for npt in range(len(data)): 619 620 if ismask and not mask_data[npt]: 621 continue 622 623 frac = 0 624 625 # q-value at the pixel (j,i) 626 q_value = q_data[npt] 627 data_n = data[npt] 628 629 # No need to calculate the frac when all data are within range 630 if self.r_min >= self.r_max: 631 raise ValueError("Limit Error: min > max") 632 633 if self.r_min <= q_value and q_value <= self.r_max: 634 frac = 1 635 if frac == 0: 636 continue 637 i_q = int(math.floor((q_value - self.r_min) / self.bin_width)) 638 639 # Take care of the edge case at phi = 2pi. 640 if i_q == nbins: 641 i_q = nbins - 1 642 y[i_q] += frac * data_n 643 # Take dqs from data to get the q_average 644 x[i_q] += frac * q_value 645 if err_data is None or err_data[npt] == 0.0: 646 if data_n < 0: 647 data_n = -data_n 648 err_y[i_q] += frac * frac * data_n 649 else: 650 err_y[i_q] += frac * frac * err_data[npt] * err_data[npt] 651 if dq_data is not None: 652 # To be consistent with dq calculation in 1d reduction, 653 # we need just the averages (not quadratures) because 654 # it should not depend on the number of the q points 655 # in the qr bins. 656 err_x[i_q] += frac * dq_data[npt] 657 else: 658 err_x = None 659 y_counts[i_q] += frac 660 661 # Average the sums 662 for n in range(nbins): 663 if err_y[n] < 0: 664 err_y[n] = -err_y[n] 665 err_y[n] = math.sqrt(err_y[n]) 666 # if err_x is not None: 667 # err_x[n] = math.sqrt(err_x[n]) 668 669 err_y = err_y / y_counts 670 err_y[err_y == 0] = np.average(err_y) 671 y = y / y_counts 672 x = x / y_counts 673 idx = (np.isfinite(y)) & (np.isfinite(x)) 674 675 if err_x is not None: 676 d_x = err_x[idx] / y_counts[idx] 677 else: 678 d_x = None 679 680 if not idx.any(): 681 msg = "Average Error: No points inside ROI to average..." 682 raise ValueError(msg) 683 684 return Data1D(x=x[idx], y=y[idx], dy=err_y[idx], dx=d_x) 685 686 ################################################################################ 687 688 class Ring(object): 689 """ 690 Defines a ring on a 2D data set. 691 The ring is defined by r_min, r_max, and 692 the position of the center of the ring. 693 694 The data returned is the distribution of counts 695 around the ring as a function of phi. 696 697 Phi_min and phi_max should be defined between 0 and 2*pi 698 in anti-clockwise starting from the x- axis on the left-hand side 699 """ 700 # Todo: remove center. 701 702 def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0, nbins=36): 703 # Minimum radius 704 self.r_min = r_min 705 # Maximum radius 706 self.r_max = r_max 707 # Center of the ring in x 708 self.center_x = center_x 709 # Center of the ring in y 710 self.center_y = center_y 711 # Number of angular bins 712 self.nbins_phi = nbins 713 714 def __call__(self, data2D): 715 """ 716 Apply the ring to the data set. 717 Returns the angular distribution for a given q range 718 719 :param data2D: Data2D object 720 721 :return: Data1D object 722 """ 723 if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: 724 raise RuntimeError("Ring averaging only take plottable_2D objects") 725 726 Pi = math.pi 727 728 # Get data 729 data = data2D.data[np.isfinite(data2D.data)] 730 q_data = data2D.q_data[np.isfinite(data2D.data)] 731 err_data = data2D.err_data[np.isfinite(data2D.data)] 732 qx_data = data2D.qx_data[np.isfinite(data2D.data)] 733 qy_data = data2D.qy_data[np.isfinite(data2D.data)] 734 735 # Set space for 1d outputs 736 phi_bins = np.zeros(self.nbins_phi) 737 phi_counts = np.zeros(self.nbins_phi) 738 phi_values = np.zeros(self.nbins_phi) 739 phi_err = np.zeros(self.nbins_phi) 740 741 # Shift to apply to calculated phi values in order 742 # to center first bin at zero 743 phi_shift = Pi / self.nbins_phi 744 745 for npt in range(len(data)): 746 frac = 0 747 # q-value at the point (npt) 748 q_value = q_data[npt] 749 data_n = data[npt] 750 751 # phi-value at the point (npt) 752 phi_value = math.atan2(qy_data[npt], qx_data[npt]) + Pi 753 754 if self.r_min <= q_value and q_value <= self.r_max: 755 frac = 1 756 if frac == 0: 757 continue 758 # binning 759 i_phi = int(math.floor((self.nbins_phi) * 760 (phi_value + phi_shift) / (2 * Pi))) 761 762 # Take care of the edge case at phi = 2pi. 763 if i_phi >= self.nbins_phi: 764 i_phi = 0 765 phi_bins[i_phi] += frac * data[npt] 766 767 if err_data is None or err_data[npt] == 0.0: 768 if data_n < 0: 769 data_n = -data_n 770 phi_err[i_phi] += frac * frac * math.fabs(data_n) 771 else: 772 phi_err[i_phi] += frac * frac * err_data[npt] * err_data[npt] 773 phi_counts[i_phi] += frac 774 775 for i in range(self.nbins_phi): 776 phi_bins[i] = phi_bins[i] / phi_counts[i] 777 phi_err[i] = math.sqrt(phi_err[i]) / phi_counts[i] 778 phi_values[i] = 2.0 * math.pi / self.nbins_phi * (1.0 * i) 779 780 idx = (np.isfinite(phi_bins)) 781 782 if not idx.any(): 783 msg = "Average Error: No points inside ROI to average..." 784 raise ValueError(msg) 785 # elif len(phi_bins[idx])!= self.nbins_phi: 786 # print "resulted",self.nbins_phi- len(phi_bins[idx]) 787 #,"empty bin(s) due to tight binning..." 788 return Data1D(x=phi_values[idx], y=phi_bins[idx], dy=phi_err[idx]) 789 790 ################################################################################ 737 791 738 792 class _Sector(object): … … 748 802 starting from the x- axis on the left-hand side 749 803 """ 750 def __init__(self, r_min, r_max, phi_min=0, phi_max=2 * math.pi, nbins=20): 804 805 def __init__(self, r_min, r_max, phi_min=0, phi_max=2 * math.pi, nbins=20, base = None): 751 806 self.r_min = r_min 752 807 self.r_max = r_max … … 754 809 self.phi_max = phi_max 755 810 self.nbins = nbins 811 self.base = base 756 812 757 813 def _agv(self, data2D, run='phi'): … … 765 821 """ 766 822 if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: 767 raise RuntimeError, "Ring averaging only take plottable_2D objects" 768 Pi = math.pi 823 raise RuntimeError("Ring averaging only take plottable_2D objects") 769 824 770 825 # Get the all data & info 771 data = data2D.data[numpy.isfinite(data2D.data)] 772 q_data = data2D.q_data[numpy.isfinite(data2D.data)] 773 err_data = data2D.err_data[numpy.isfinite(data2D.data)] 774 qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] 775 qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] 826 data = data2D.data[np.isfinite(data2D.data)] 827 q_data = data2D.q_data[np.isfinite(data2D.data)] 828 err_data = data2D.err_data[np.isfinite(data2D.data)] 829 qx_data = data2D.qx_data[np.isfinite(data2D.data)] 830 qy_data = data2D.qy_data[np.isfinite(data2D.data)] 831 776 832 dq_data = None 777 778 # Get the dq for resolution averaging 779 if data2D.dqx_data != None and data2D.dqy_data != None: 780 # The pinholes and det. pix contribution present 781 # in both direction of the 2D which must be subtracted when 782 # converting to 1D: dq_overlap should calculated ideally at 783 # q = 0. 784 # Extrapolate dqy(perp) at q = 0 785 z_max = max(data2D.q_data) 786 z_min = min(data2D.q_data) 787 x_max = data2D.dqx_data[data2D.q_data[z_max]] 788 x_min = data2D.dqx_data[data2D.q_data[z_min]] 789 y_max = data2D.dqy_data[data2D.q_data[z_max]] 790 y_min = data2D.dqy_data[data2D.q_data[z_min]] 791 # Find qdx at q = 0 792 dq_overlap_x = (x_min * z_max - x_max * z_min) / (z_max - z_min) 793 # when extrapolation goes wrong 794 if dq_overlap_x > min(data2D.dqx_data): 795 dq_overlap_x = min(data2D.dqx_data) 796 dq_overlap_x *= dq_overlap_x 797 # Find qdx at q = 0 798 dq_overlap_y = (y_min * z_max - y_max * z_min) / (z_max - z_min) 799 # when extrapolation goes wrong 800 if dq_overlap_y > min(data2D.dqy_data): 801 dq_overlap_y = min(data2D.dqy_data) 802 # get dq at q=0. 803 dq_overlap_y *= dq_overlap_y 804 805 dq_overlap = numpy.sqrt((dq_overlap_x + dq_overlap_y) / 2.0) 806 if dq_overlap < 0: 807 dq_overlap = y_min 808 dqx_data = data2D.dqx_data[numpy.isfinite(data2D.data)] 809 dqy_data = data2D.dqy_data[numpy.isfinite(data2D.data)] - dq_overlap 810 # def; dqx_data = dq_r dqy_data = dq_phi 811 # Convert dq 2D to 1D here 812 dqx = dqx_data * dqx_data 813 dqy = dqy_data * dqy_data 814 dq_data = numpy.add(dqx, dqy) 815 dq_data = numpy.sqrt(dq_data) 816 817 #set space for 1d outputs 818 x = numpy.zeros(self.nbins) 819 y = numpy.zeros(self.nbins) 820 y_err = numpy.zeros(self.nbins) 821 x_err = numpy.zeros(self.nbins) 822 y_counts = numpy.zeros(self.nbins) 833 if data2D.dqx_data is not None and data2D.dqy_data is not None: 834 dq_data = get_dq_data(data2D) 835 836 # set space for 1d outputs 837 x = np.zeros(self.nbins) 838 y = np.zeros(self.nbins) 839 y_err = np.zeros(self.nbins) 840 x_err = np.zeros(self.nbins) 841 y_counts = np.zeros(self.nbins) # Cycle counts (for the mean) 823 842 824 843 # Get the min and max into the region: 0 <= phi < 2Pi 825 844 phi_min = flip_phi(self.phi_min) 826 845 phi_max = flip_phi(self.phi_max) 827 846 847 # binning object 848 if run.lower() == 'phi': 849 binning = Binning(self.phi_min, self.phi_max, self.nbins, self.base) 850 else: 851 binning = Binning(self.r_min, self.r_max, self.nbins, self.base) 852 828 853 for n in range(len(data)): 829 frac = 0830 854 831 855 # q-value at the pixel (j,i) … … 837 861 838 862 # phi-value of the pixel (j,i) 839 phi_value = math.atan2(qy_data[n], qx_data[n]) + Pi 840 841 ## No need to calculate the frac when all data are within range 842 if self.r_min <= q_value and q_value <= self.r_max: 843 frac = 1 844 if frac == 0: 863 phi_value = math.atan2(qy_data[n], qx_data[n]) + math.pi 864 865 # No need to calculate: data outside of the radius 866 if self.r_min > q_value or q_value > self.r_max: 845 867 continue 846 #In case of two ROIs (symmetric major and minor regions)(for 'q2') 868 869 # In case of two ROIs (symmetric major and minor regions)(for 'q2') 847 870 if run.lower() == 'q2': 848 # #For minor sector wing871 # For minor sector wing 849 872 # Calculate the minor wing phis 850 phi_min_minor = flip_phi(phi_min - Pi)851 phi_max_minor = flip_phi(phi_max - Pi)873 phi_min_minor = flip_phi(phi_min - math.pi) 874 phi_max_minor = flip_phi(phi_max - math.pi) 852 875 # Check if phis of the minor ring is within 0 to 2pi 853 876 if phi_min_minor > phi_max_minor: 854 is_in = (phi_value > phi_min_minor or \855 877 is_in = (phi_value > phi_min_minor or 878 phi_value < phi_max_minor) 856 879 else: 857 is_in = (phi_value > phi_min_minor and \858 859 860 # For all cases(i.e.,for 'q', 'q2', and 'phi')861 # Find pixels within ROI880 is_in = (phi_value > phi_min_minor and 881 phi_value < phi_max_minor) 882 883 # For all cases(i.e.,for 'q', 'q2', and 'phi') 884 # Find pixels within ROI 862 885 if phi_min > phi_max: 863 is_in = is_in or (phi_value > phi_min or \864 886 is_in = is_in or (phi_value > phi_min or 887 phi_value < phi_max) 865 888 else: 866 is_in = is_in or (phi_value >= phi_min and \ 867 phi_value < phi_max) 868 889 is_in = is_in or (phi_value >= phi_min and 890 phi_value < phi_max) 891 892 # data oustide of the phi range 869 893 if not is_in: 870 frac = 0871 if frac == 0:872 894 continue 873 # Check which type of averaging we need 895 896 # Get the binning index 874 897 if run.lower() == 'phi': 875 temp_x = (self.nbins) * (phi_value - self.phi_min) 876 temp_y = (self.phi_max - self.phi_min) 877 i_bin = int(math.floor(temp_x / temp_y)) 898 i_bin = binning.get_bin_index(phi_value) 878 899 else: 879 temp_x = (self.nbins) * (q_value - self.r_min) 880 temp_y = (self.r_max - self.r_min) 881 i_bin = int(math.floor(temp_x / temp_y)) 900 i_bin = binning.get_bin_index(q_value) 882 901 883 902 # Take care of the edge case at phi = 2pi. … … 885 904 i_bin = self.nbins - 1 886 905 887 # #Get the total y888 y[i_bin] += frac *data_n889 x[i_bin] += frac *q_value890 if err_data[n] ==None or err_data[n] == 0.0:906 # Get the total y 907 y[i_bin] += data_n 908 x[i_bin] += q_value 909 if err_data[n] is None or err_data[n] == 0.0: 891 910 if data_n < 0: 892 911 data_n = -data_n 893 y_err[i_bin] += frac * frac *data_n912 y_err[i_bin] += data_n 894 913 else: 895 y_err[i_bin] += frac * frac * err_data[n] * err_data[n]896 897 if dq_data !=None:914 y_err[i_bin] += err_data[n]**2 915 916 if dq_data is not None: 898 917 # To be consistent with dq calculation in 1d reduction, 899 918 # we need just the averages (not quadratures) because 900 919 # it should not depend on the number of the q points 901 920 # in the qr bins. 902 x_err[i_bin] += frac *dq_data[n]921 x_err[i_bin] += dq_data[n] 903 922 else: 904 923 x_err = None 905 y_counts[i_bin] += frac924 y_counts[i_bin] += 1 906 925 907 926 # Organize the results … … 923 942 #x[i] = math.sqrt((r_inner * r_inner + r_outer * r_outer) / 2) 924 943 x[i] = x[i] / y_counts[i] 925 y_err[y_err == 0] = n umpy.average(y_err)926 idx = (n umpy.isfinite(y) & numpy.isfinite(y_err))927 if x_err !=None:944 y_err[y_err == 0] = np.average(y_err) 945 idx = (np.isfinite(y) & np.isfinite(y_err)) 946 if x_err is not None: 928 947 d_x = x_err[idx] / y_counts[idx] 929 948 else: … … 931 950 if not idx.any(): 932 951 msg = "Average Error: No points inside sector of ROI to average..." 933 raise ValueError , msg934 # elif len(y[idx])!= self.nbins:952 raise ValueError(msg) 953 # elif len(y[idx])!= self.nbins: 935 954 # print "resulted",self.nbins- len(y[idx]), 936 955 #"empty bin(s) due to tight binning..." … … 946 965 The number of bin in phi also has to be defined. 947 966 """ 967 948 968 def __call__(self, data2D): 949 969 """ … … 965 985 The number of bin in Q also has to be defined. 966 986 """ 987 967 988 def __call__(self, data2D): 968 989 """ … … 975 996 return self._agv(data2D, 'q2') 976 997 998 ################################################################################ 977 999 978 1000 class Ringcut(object): … … 987 1009 in anti-clockwise starting from the x- axis on the left-hand side 988 1010 """ 1011 989 1012 def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0): 990 1013 # Minimum radius … … 1007 1030 """ 1008 1031 if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: 1009 raise RuntimeError , "Ring cut only take plottable_2D objects"1032 raise RuntimeError("Ring cut only take plottable_2D objects") 1010 1033 1011 1034 # Get data 1012 1035 qx_data = data2D.qx_data 1013 1036 qy_data = data2D.qy_data 1014 q_data = n umpy.sqrt(qx_data * qx_data + qy_data * qy_data)1037 q_data = np.sqrt(qx_data * qx_data + qy_data * qy_data) 1015 1038 1016 1039 # check whether or not the data point is inside ROI … … 1018 1041 return out 1019 1042 1043 ################################################################################ 1020 1044 1021 1045 class Boxcut(object): … … 1023 1047 Find a rectangular 2D region of interest. 1024 1048 """ 1049 1025 1050 def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): 1026 1051 # Minimum Qx value [A-1] … … 1055 1080 """ 1056 1081 if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: 1057 raise RuntimeError , "Boxcut take only plottable_2D objects"1082 raise RuntimeError("Boxcut take only plottable_2D objects") 1058 1083 # Get qx_ and qy_data 1059 1084 qx_data = data2D.qx_data … … 1066 1091 return outx & outy 1067 1092 1093 ################################################################################ 1068 1094 1069 1095 class Sectorcut(object): … … 1077 1103 and (phi_max-phi_min) should not be larger than pi 1078 1104 """ 1105 1079 1106 def __init__(self, phi_min=0, phi_max=math.pi): 1080 1107 self.phi_min = phi_min … … 1106 1133 """ 1107 1134 if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: 1108 raise RuntimeError , "Sectorcut take only plottable_2D objects"1135 raise RuntimeError("Sectorcut take only plottable_2D objects") 1109 1136 Pi = math.pi 1110 1137 # Get data … … 1113 1140 1114 1141 # get phi from data 1115 phi_data = n umpy.arctan2(qy_data, qx_data)1142 phi_data = np.arctan2(qy_data, qx_data) 1116 1143 1117 1144 # Get the min and max into the region: -pi <= phi < Pi … … 1120 1147 # check for major sector 1121 1148 if phi_min_major > phi_max_major: 1122 out_major = (phi_min_major <= phi_data) + (phi_max_major > phi_data) 1149 out_major = (phi_min_major <= phi_data) + \ 1150 (phi_max_major > phi_data) 1123 1151 else: 1124 out_major = (phi_min_major <= phi_data) & (phi_max_major > phi_data) 1152 out_major = (phi_min_major <= phi_data) & ( 1153 phi_max_major > phi_data) 1125 1154 1126 1155 # minor sector … … 1132 1161 if phi_min_minor > phi_max_minor: 1133 1162 out_minor = (phi_min_minor <= phi_data) + \ 1134 1163 (phi_max_minor >= phi_data) 1135 1164 else: 1136 1165 out_minor = (phi_min_minor <= phi_data) & \ 1137 1166 (phi_max_minor >= phi_data) 1138 1167 out = out_major + out_minor 1139 1168 -
test/sasdataloader/test/utest_averaging.py
r9a5097c rfa4af76 1 1 2 import math 3 import os 2 4 import unittest 3 import math4 5 from sas.sascalc.dataloader.loader import Loader6 from sas.sascalc.dataloader.manipulations import Ring, CircularAverage, SectorPhi, get_q,reader2D_converter7 5 8 6 import numpy as np 7 9 8 import sas.sascalc.dataloader.data_info as data_info 9 from sas.sascalc.dataloader.loader import Loader 10 from sas.sascalc.dataloader.manipulations import (Boxavg, Boxsum, 11 CircularAverage, Ring, 12 SectorPhi, SectorQ, SlabX, 13 SlabY, get_q, 14 reader2D_converter) 15 10 16 11 17 class Averaging(unittest.TestCase): … … 13 19 Test averaging manipulations on a flat distribution 14 20 """ 21 15 22 def setUp(self): 16 23 """ … … 18 25 should return the predefined height of the distribution (1.0). 19 26 """ 20 x_0 = np.ones([100,100])21 dx_0 = np.ones([100, 100])22 27 x_0 = np.ones([100, 100]) 28 dx_0 = np.ones([100, 100]) 29 23 30 self.data = data_info.Data2D(data=x_0, err_data=dx_0) 24 31 detector = data_info.Detector() 25 detector.distance = 1000.0 # mm26 detector.pixel_size.x = 1.0 #mm27 detector.pixel_size.y = 1.0 #mm28 32 detector.distance = 1000.0 # mm 33 detector.pixel_size.x = 1.0 # mm 34 detector.pixel_size.y = 1.0 # mm 35 29 36 # center in pixel position = (len(x_0)-1)/2 30 detector.beam_center.x = (len(x_0) -1)/2 #pixel number31 detector.beam_center.y = (len(x_0) -1)/2 #pixel number37 detector.beam_center.x = (len(x_0) - 1) / 2 # pixel number 38 detector.beam_center.y = (len(x_0) - 1) / 2 # pixel number 32 39 self.data.detector.append(detector) 33 40 34 41 source = data_info.Source() 35 source.wavelength = 10.0 #A42 source.wavelength = 10.0 # A 36 43 self.data.source = source 37 38 # get_q(dx, dy, det_dist, wavelength) where units are mm,mm,mm,and A respectively. 44 45 # get_q(dx, dy, det_dist, wavelength) where units are mm,mm,mm,and A 46 # respectively. 39 47 self.qmin = get_q(1.0, 1.0, detector.distance, source.wavelength) 40 48 41 49 self.qmax = get_q(49.5, 49.5, detector.distance, source.wavelength) 42 50 43 51 self.qstep = len(x_0) 44 x = np.linspace(start= -1*self.qmax,45 stop=self.qmax,46 num=self.qstep,47 endpoint=True )48 y = np.linspace(start= -1*self.qmax,49 stop=self.qmax,50 num=self.qstep,51 endpoint=True)52 self.data.x_bins =x53 self.data.y_bins =y52 x = np.linspace(start=-1 * self.qmax, 53 stop=self.qmax, 54 num=self.qstep, 55 endpoint=True) 56 y = np.linspace(start=-1 * self.qmax, 57 stop=self.qmax, 58 num=self.qstep, 59 endpoint=True) 60 self.data.x_bins = x 61 self.data.y_bins = y 54 62 self.data = reader2D_converter(self.data) 55 63 56 64 def test_ring_flat_distribution(self): 57 65 """ 58 66 Test ring averaging 59 67 """ 60 r = Ring(r_min=2 *self.qmin, r_max=5*self.qmin,61 center_x=self.data.detector[0].beam_center.x, 68 r = Ring(r_min=2 * self.qmin, r_max=5 * self.qmin, 69 center_x=self.data.detector[0].beam_center.x, 62 70 center_y=self.data.detector[0].beam_center.y) 63 71 r.nbins_phi = 20 64 72 65 73 o = r(self.data) 66 74 for i in range(20): 67 75 self.assertEqual(o.y[i], 1.0) 68 76 69 77 def test_sectorphi_full(self): 70 78 """ 71 79 Test sector averaging 72 80 """ 73 r = SectorPhi(r_min=self.qmin, r_max=3 *self.qmin,74 phi_min=0, phi_max=math.pi *2.0)81 r = SectorPhi(r_min=self.qmin, r_max=3 * self.qmin, 82 phi_min=0, phi_max=math.pi * 2.0) 75 83 r.nbins_phi = 20 76 84 o = r(self.data) 77 85 for i in range(7): 78 86 self.assertEqual(o.y[i], 1.0) 79 80 87 81 88 def test_sectorphi_partial(self): 82 89 """ 83 90 """ 84 91 phi_max = math.pi * 1.5 85 r = SectorPhi(r_min=self.qmin, r_max=3 *self.qmin,92 r = SectorPhi(r_min=self.qmin, r_max=3 * self.qmin, 86 93 phi_min=0, phi_max=phi_max) 87 94 self.assertEqual(r.phi_max, phi_max) … … 91 98 for i in range(17): 92 99 self.assertEqual(o.y[i], 1.0) 93 94 95 96 class data_info_tests(unittest.TestCase): 97 100 101 102 class DataInfoTests(unittest.TestCase): 103 98 104 def setUp(self): 99 self.data = Loader().load('MAR07232_rest.ASC') 100 105 filepath = os.path.join(os.path.dirname( 106 os.path.realpath(__file__)), 'MAR07232_rest.ASC') 107 self.data = Loader().load(filepath) 108 101 109 def test_ring(self): 102 110 """ 103 111 Test ring averaging 104 112 """ 105 r = Ring(r_min=.005, r_max=.01, 106 center_x=self.data.detector[0].beam_center.x, 113 r = Ring(r_min=.005, r_max=.01, 114 center_x=self.data.detector[0].beam_center.x, 107 115 center_y=self.data.detector[0].beam_center.y, 108 nbins =20)116 nbins=20) 109 117 ##r.nbins_phi = 20 110 111 o = r(self.data) 112 answer = Loader().load('ring_testdata.txt') 113 118 119 o = r(self.data) 120 filepath = os.path.join(os.path.dirname( 121 os.path.realpath(__file__)), 'ring_testdata.txt') 122 answer = Loader().load(filepath) 123 114 124 for i in range(r.nbins_phi - 1): 115 125 self.assertAlmostEqual(o.x[i + 1], answer.x[i], 4) 116 126 self.assertAlmostEqual(o.y[i + 1], answer.y[i], 4) 117 127 self.assertAlmostEqual(o.dy[i + 1], answer.dy[i], 4) 118 128 119 129 def test_circularavg(self): 120 130 """ 131 Test circular averaging 132 The test data was not generated by IGOR. 133 """ 134 r = CircularAverage(r_min=.00, r_max=.025, 135 bin_width=0.0003) 136 r.nbins_phi = 20 137 138 o = r(self.data) 139 140 filepath = os.path.join(os.path.dirname( 141 os.path.realpath(__file__)), 'avg_testdata.txt') 142 answer = Loader().load(filepath) 143 for i in range(r.nbins_phi): 144 self.assertAlmostEqual(o.x[i], answer.x[i], 4) 145 self.assertAlmostEqual(o.y[i], answer.y[i], 4) 146 self.assertAlmostEqual(o.dy[i], answer.dy[i], 4) 147 148 def test_box(self): 149 """ 121 150 Test circular averaging 122 151 The test data was not generated by IGOR. 123 152 """ 124 r = CircularAverage(r_min=.00, r_max=.025, 125 bin_width=0.0003) 126 r.nbins_phi = 20 127 128 o = r(self.data) 129 130 answer = Loader().load('avg_testdata.txt') 131 for i in range(r.nbins_phi): 132 self.assertAlmostEqual(o.x[i], answer.x[i], 4) 133 self.assertAlmostEqual(o.y[i], answer.y[i], 4) 134 self.assertAlmostEqual(o.dy[i], answer.dy[i], 4) 135 136 def test_box(self): 137 """ 138 Test circular averaging 139 The test data was not generated by IGOR. 140 """ 141 from sas.sascalc.dataloader.manipulations import Boxsum, Boxavg 142 153 143 154 r = Boxsum(x_min=.01, x_max=.015, y_min=0.01, y_max=0.015) 144 155 s, ds, npoints = r(self.data) 145 156 self.assertAlmostEqual(s, 34.278990899999997, 4) 146 157 self.assertAlmostEqual(ds, 7.8007981835194293, 4) 147 self.assertAlmostEqual(npoints, 324.0000, 4) 148 158 self.assertAlmostEqual(npoints, 324.0000, 4) 159 149 160 r = Boxavg(x_min=.01, x_max=.015, y_min=0.01, y_max=0.015) 150 161 s, ds = r(self.data) 151 162 self.assertAlmostEqual(s, 0.10579935462962962, 4) 152 163 self.assertAlmostEqual(ds, 0.024076537603455028, 4) 153 164 154 165 def test_slabX(self): 155 166 """ … … 157 168 The test data was not generated by IGOR. 158 169 """ 159 from sas.sascalc.dataloader.manipulations import SlabX 160 161 r = SlabX(x_min=-.01, x_max=.01, y_min=-0.0002,y_max=0.0002, bin_width=0.0004)170 171 r = SlabX(x_min=-.01, x_max=.01, y_min=-0.0002, 172 y_max=0.0002, bin_width=0.0004) 162 173 r.fold = False 163 174 o = r(self.data) 164 175 165 answer = Loader().load('slabx_testdata.txt') 166 for i in range(len(o.x)): 167 self.assertAlmostEqual(o.x[i], answer.x[i], 4) 168 self.assertAlmostEqual(o.y[i], answer.y[i], 4) 169 self.assertAlmostEqual(o.dy[i], answer.dy[i], 4) 170 176 filepath = os.path.join(os.path.dirname( 177 os.path.realpath(__file__)), 'slabx_testdata.txt') 178 answer = Loader().load(filepath) 179 for i in range(len(o.x)): 180 self.assertAlmostEqual(o.x[i], answer.x[i], 4) 181 self.assertAlmostEqual(o.y[i], answer.y[i], 4) 182 self.assertAlmostEqual(o.dy[i], answer.dy[i], 4) 183 171 184 def test_slabY(self): 172 185 """ … … 174 187 The test data was not generated by IGOR. 175 188 """ 176 from sas.sascalc.dataloader.manipulations import SlabY 177 178 r = SlabY(x_min=.005, x_max=.01, y_min=-0.01, y_max=0.01, bin_width=0.0004)189 190 r = SlabY(x_min=.005, x_max=.01, y_min=- 191 0.01, y_max=0.01, bin_width=0.0004) 179 192 r.fold = False 180 193 o = r(self.data) 181 194 182 answer = Loader().load('slaby_testdata.txt') 183 for i in range(len(o.x)): 184 self.assertAlmostEqual(o.x[i], answer.x[i], 4) 185 self.assertAlmostEqual(o.y[i], answer.y[i], 4) 186 self.assertAlmostEqual(o.dy[i], answer.dy[i], 4) 187 195 filepath = os.path.join(os.path.dirname( 196 os.path.realpath(__file__)), 'slaby_testdata.txt') 197 answer = Loader().load(filepath) 198 for i in range(len(o.x)): 199 self.assertAlmostEqual(o.x[i], answer.x[i], 4) 200 self.assertAlmostEqual(o.y[i], answer.y[i], 4) 201 self.assertAlmostEqual(o.dy[i], answer.dy[i], 4) 202 188 203 def test_sectorphi_full(self): 189 204 """ … … 193 208 The test data was not generated by IGOR. 194 209 """ 195 from sas.sascalc.dataloader.manipulations import SectorPhi 196 import math 197 210 198 211 nbins = 19 199 212 phi_min = math.pi / (nbins + 1) 200 213 phi_max = math.pi * 2 - phi_min 201 214 202 215 r = SectorPhi(r_min=.005, 203 216 r_max=.01, … … 207 220 o = r(self.data) 208 221 209 answer = Loader().load('ring_testdata.txt') 210 for i in range(len(o.x)): 211 self.assertAlmostEqual(o.x[i], answer.x[i], 4) 212 self.assertAlmostEqual(o.y[i], answer.y[i], 4) 213 self.assertAlmostEqual(o.dy[i], answer.dy[i], 4) 214 222 filepath = os.path.join(os.path.dirname( 223 os.path.realpath(__file__)), 'ring_testdata.txt') 224 answer = Loader().load(filepath) 225 for i in range(len(o.x)): 226 self.assertAlmostEqual(o.x[i], answer.x[i], 4) 227 self.assertAlmostEqual(o.y[i], answer.y[i], 4) 228 self.assertAlmostEqual(o.dy[i], answer.dy[i], 4) 229 215 230 def test_sectorphi_quarter(self): 216 231 """ … … 218 233 The test data was not generated by IGOR. 219 234 """ 220 from sas.sascalc.dataloader.manipulations import SectorPhi 221 import math222 223 r = SectorPhi(r_min=.005, r_max=.01, phi_min=0, phi_max=math.pi/2.0)224 r.nbins_phi = 20 225 o = r(self.data)226 227 answer = Loader().load( 'sectorphi_testdata.txt')228 for i in range(len(o.x)): 229 self.assertAlmostEqual(o.x[i], answer.x[i], 4) 230 self.assertAlmostEqual(o.y[i], answer.y[i], 4) 231 self.assertAlmostEqual(o.dy[i], answer.dy[i], 4) 232 235 236 r = SectorPhi(r_min=.005, r_max=.01, phi_min=0, phi_max=math.pi / 2.0) 237 r.nbins_phi = 20 238 o = r(self.data) 239 240 filepath = os.path.join(os.path.dirname( 241 os.path.realpath(__file__)), 'sectorphi_testdata.txt') 242 answer = Loader().load(filepath) 243 for i in range(len(o.x)): 244 self.assertAlmostEqual(o.x[i], answer.x[i], 4) 245 self.assertAlmostEqual(o.y[i], answer.y[i], 4) 246 self.assertAlmostEqual(o.dy[i], answer.dy[i], 4) 247 233 248 def test_sectorq_full(self): 234 249 """ … … 236 251 The test data was not generated by IGOR. 237 252 """ 238 from sas.sascalc.dataloader.manipulations import SectorQ 239 import math240 241 r = SectorQ(r_min=.005, r_max=.01, phi_min=0, phi_max=math.pi/2.0)242 r.nbins_phi = 20 243 o = r(self.data)244 245 answer = Loader().load( 'sectorq_testdata.txt')246 for i in range(len(o.x)): 247 self.assertAlmostEqual(o.x[i], answer.x[i], 4) 248 self.assertAlmostEqual(o.y[i], answer.y[i], 4) 249 self.assertAlmostEqual(o.dy[i], answer.dy[i], 4) 250 253 254 r = SectorQ(r_min=.005, r_max=.01, phi_min=0, phi_max=math.pi / 2.0) 255 r.nbins_phi = 20 256 o = r(self.data) 257 258 filepath = os.path.join(os.path.dirname( 259 os.path.realpath(__file__)), 'sectorq_testdata.txt') 260 answer = Loader().load(filepath) 261 for i in range(len(o.x)): 262 self.assertAlmostEqual(o.x[i], answer.x[i], 4) 263 self.assertAlmostEqual(o.y[i], answer.y[i], 4) 264 self.assertAlmostEqual(o.dy[i], answer.dy[i], 4) 265 251 266 252 267 if __name__ == '__main__': -
test/sasguiframe/test/utest_manipulations.py
r959eb01 r959eb01 2 2 Unit tests for data manipulations 3 3 """ 4 #TODO: what happens if you add a Data1D to a Data2D? 5 4 # TODO: what happens if you add a Data1D to a Data2D? 5 6 import math 7 import os.path 6 8 import unittest 7 import math 9 8 10 import numpy as np 9 from sas.sascalc.dataloader.loader import Loader 10 from sas.sas gui.guiframe.dataFitting import Data1D, Data2D11 from sas.sasgui.guiframe.dataFitting import Data1D as Theory1D12 13 import os.path 14 15 class data_info_tests(unittest.TestCase):16 11 12 from sas.sascalc.dataloader.loader import Loader 13 from sas.sasgui.guiframe.dataFitting import Data1D 14 from sas.sasgui.guiframe.dataFitting import Data2D 15 16 17 class DataInfoTests(unittest.TestCase): 18 17 19 def setUp(self): 18 20 data = Loader().load("cansas1d.xml") 19 21 self.data = data[0] 20 22 21 23 def test_clone1D(self): 22 24 """ … … 24 26 """ 25 27 clone = self.data.clone_without_data() 26 28 27 29 for i in range(len(self.data.detector)): 28 self.assertEqual(self.data.detector[i].distance, clone.detector[i].distance) 29 30 class theory1d_tests(unittest.TestCase): 31 30 self.assertEqual( 31 self.data.detector[i].distance, clone.detector[i].distance) 32 33 34 class Theory1DTests(unittest.TestCase): 35 32 36 def setUp(self): 33 37 data = Loader().load("cansas1d.xml") 34 38 self.data = data[0] 35 39 36 40 def test_clone_theory1D(self): 37 41 """ 38 42 Test basic cloning 39 43 """ 40 theory = Theory1D(x=[], y=[], dy=None)44 theory = Data1D(x=[], y=[], dy=None) 41 45 theory.clone_without_data(clone=self.data) 42 46 theory.copy_from_datainfo(data1d=self.data) 43 47 for i in range(len(self.data.detector)): 44 self.assertEqual(self.data.detector[i].distance, theory.detector[i].distance) 45 48 self.assertEqual( 49 self.data.detector[i].distance, theory.detector[i].distance) 50 46 51 for i in range(len(self.data.x)): 47 52 self.assertEqual(self.data.x[i], theory.x[i]) … … 49 54 self.assertEqual(self.data.dy[i], theory.dy[i]) 50 55 51 class manip_tests(unittest.TestCase): 52 56 57 class ManipTests(unittest.TestCase): 58 53 59 def setUp(self): 54 60 # Create two data sets to play with 55 61 x_0 = np.ones(5) 56 62 for i in range(5): 57 x_0[i] = x_0[i] *(i+1.0)58 59 y_0 = 2.0 *np.ones(5)60 dy_0 = 0.5 *np.ones(5)63 x_0[i] = x_0[i] * (i + 1.0) 64 65 y_0 = 2.0 * np.ones(5) 66 dy_0 = 0.5 * np.ones(5) 61 67 self.data = Data1D(x_0, y_0, dy=dy_0) 62 68 63 69 x = self.data.x 64 70 y = np.ones(5) 65 71 dy = np.ones(5) 66 72 self.data2 = Data1D(x, y, dy=dy) 67 68 73 69 74 def test_load(self): 70 75 """ … … 73 78 # There should be 5 entries in the file 74 79 self.assertEqual(len(self.data.x), 5) 75 80 76 81 for i in range(5): 77 82 # The x values should be from 1 to 5 78 self.assertEqual(self.data.x[i], float(i +1))79 83 self.assertEqual(self.data.x[i], float(i + 1)) 84 80 85 # All y-error values should be 0.5 81 self.assertEqual(self.data.dy[i], 0.5) 82 86 self.assertEqual(self.data.dy[i], 0.5) 87 83 88 # All y values should be 2.0 84 self.assertEqual(self.data.y[i], 2.0) 85 89 self.assertEqual(self.data.y[i], 2.0) 90 86 91 def test_add(self): 87 result = self.data2 +self.data92 result = self.data2 + self.data 88 93 for i in range(5): 89 94 self.assertEqual(result.y[i], 3.0) 90 self.assertEqual(result.dy[i], math.sqrt(0.5**2 +1.0))91 95 self.assertEqual(result.dy[i], math.sqrt(0.5**2 + 1.0)) 96 92 97 def test_sub(self): 93 result = self.data2 -self.data98 result = self.data2 - self.data 94 99 for i in range(5): 95 100 self.assertEqual(result.y[i], -1.0) 96 self.assertEqual(result.dy[i], math.sqrt(0.5**2 +1.0))97 101 self.assertEqual(result.dy[i], math.sqrt(0.5**2 + 1.0)) 102 98 103 def test_mul(self): 99 result = self.data2 *self.data104 result = self.data2 * self.data 100 105 for i in range(5): 101 106 self.assertEqual(result.y[i], 2.0) 102 self.assertEqual(result.dy[i], math.sqrt((0.5*1.0)**2+(1.0*2.0)**2)) 103 107 self.assertEqual(result.dy[i], math.sqrt( 108 (0.5 * 1.0)**2 + (1.0 * 2.0)**2)) 109 104 110 def test_div(self): 105 result = self.data2 /self.data111 result = self.data2 / self.data 106 112 for i in range(5): 107 113 self.assertEqual(result.y[i], 0.5) 108 self.assertEqual(result.dy[i], math.sqrt((1.0/2.0)**2+(0.5*1.0/4.0)**2)) 109 114 self.assertEqual(result.dy[i], math.sqrt( 115 (1.0 / 2.0)**2 + (0.5 * 1.0 / 4.0)**2)) 116 110 117 def test_radd(self): 111 result = self.data +3.0118 result = self.data + 3.0 112 119 for i in range(5): 113 120 self.assertEqual(result.y[i], 5.0) 114 121 self.assertEqual(result.dy[i], 0.5) 115 116 result = 3.0 +self.data122 123 result = 3.0 + self.data 117 124 for i in range(5): 118 125 self.assertEqual(result.y[i], 5.0) 119 126 self.assertEqual(result.dy[i], 0.5) 120 127 121 128 def test_rsub(self): 122 result = self.data -3.0129 result = self.data - 3.0 123 130 for i in range(5): 124 131 self.assertEqual(result.y[i], -1.0) 125 132 self.assertEqual(result.dy[i], 0.5) 126 127 result = 3.0 -self.data133 134 result = 3.0 - self.data 128 135 for i in range(5): 129 136 self.assertEqual(result.y[i], 1.0) 130 137 self.assertEqual(result.dy[i], 0.5) 131 138 132 139 def test_rmul(self): 133 result = self.data *3.0140 result = self.data * 3.0 134 141 for i in range(5): 135 142 self.assertEqual(result.y[i], 6.0) 136 143 self.assertEqual(result.dy[i], 1.5) 137 138 result = 3.0 *self.data144 145 result = 3.0 * self.data 139 146 for i in range(5): 140 147 self.assertEqual(result.y[i], 6.0) 141 148 self.assertEqual(result.dy[i], 1.5) 142 149 143 150 def test_rdiv(self): 144 result = self.data /4.0151 result = self.data / 4.0 145 152 for i in range(5): 146 153 self.assertEqual(result.y[i], 0.5) 147 154 self.assertEqual(result.dy[i], 0.125) 148 149 result = 6.0 /self.data155 156 result = 6.0 / self.data 150 157 for i in range(5): 151 158 self.assertEqual(result.y[i], 3.0) 152 self.assertEqual(result.dy[i], 6.0*0.5/4.0) 153 154 class manip_2D(unittest.TestCase): 155 159 self.assertEqual(result.dy[i], 6.0 * 0.5 / 4.0) 160 161 162 class Manin2DTests(unittest.TestCase): 163 156 164 def setUp(self): 157 165 # Create two data sets to play with 158 x_0 = 2.0 *np.ones(25)159 dx_0 = 0.5 *np.ones(25)166 x_0 = 2.0 * np.ones(25) 167 dx_0 = 0.5 * np.ones(25) 160 168 qx_0 = np.arange(25) 161 169 qy_0 = np.arange(25) 162 170 mask_0 = np.zeros(25) 163 dqx_0 = np.arange(25) /100164 dqy_0 = np.arange(25) /100171 dqx_0 = np.arange(25) / 100 172 dqy_0 = np.arange(25) / 100 165 173 q_0 = np.sqrt(qx_0 * qx_0 + qy_0 * qy_0) 166 self.data = Data2D(image=x_0, err_image=dx_0, qx_data=qx_0, 167 qy_data=qy_0, q_data=q_0, mask=mask_0, 174 self.data = Data2D(image=x_0, err_image=dx_0, qx_data=qx_0, 175 qy_data=qy_0, q_data=q_0, mask=mask_0, 168 176 dqx_data=dqx_0, dqy_data=dqy_0) 169 177 170 178 y = np.ones(25) 171 179 dy = np.ones(25) … … 174 182 mask = np.zeros(25) 175 183 q = np.sqrt(qx * qx + qy * qy) 176 self.data2 = Data2D(image=y, err_image=dy, qx_data=qx, qy_data=qy, 184 self.data2 = Data2D(image=y, err_image=dy, qx_data=qx, qy_data=qy, 177 185 q_data=q, mask=mask) 178 179 186 180 187 def test_load(self): 181 188 """ … … 184 191 # There should be 5 entries in the file 185 192 self.assertEqual(np.size(self.data.data), 25) 186 193 187 194 for i in range(25): 188 195 # All y-error values should be 0.5 189 self.assertEqual(self.data.err_data[i], 0.5) 190 196 self.assertEqual(self.data.err_data[i], 0.5) 197 191 198 # All y values should be 2.0 192 self.assertEqual(self.data.data[i], 2.0) 193 199 self.assertEqual(self.data.data[i], 2.0) 200 194 201 def test_add(self): 195 result = self.data2 +self.data202 result = self.data2 + self.data 196 203 for i in range(25): 197 204 self.assertEqual(result.data[i], 3.0) 198 self.assertEqual(result.err_data[i], math.sqrt(0.5**2 +1.0))199 205 self.assertEqual(result.err_data[i], math.sqrt(0.5**2 + 1.0)) 206 200 207 def test_sub(self): 201 result = self.data2 -self.data202 for i in range(25): 203 204 self.assertEqual(result.err_data[i], math.sqrt(0.5**2+1.0))205 208 result = self.data2 - self.data 209 for i in range(25): 210 self.assertEqual(result.data[i], -1.0) 211 self.assertEqual(result.err_data[i], math.sqrt(0.5**2 + 1.0)) 212 206 213 def test_mul(self): 207 result = self.data2 *self.data214 result = self.data2 * self.data 208 215 for i in range(25): 209 216 self.assertEqual(result.data[i], 2.0) 210 self.assertEqual(result.err_data[i], math.sqrt((0.5*1.0)**2+(1.0*2.0)**2)) 211 217 self.assertEqual(result.err_data[i], math.sqrt( 218 (0.5 * 1.0)**2 + (1.0 * 2.0)**2)) 219 212 220 def test_div(self): 213 result = self.data2 /self.data221 result = self.data2 / self.data 214 222 for i in range(25): 215 223 self.assertEqual(result.data[i], 0.5) 216 self.assertEqual(result.err_data[i], math.sqrt((1.0/2.0)**2+(0.5*1.0/4.0)**2)) 217 224 self.assertEqual(result.err_data[i], math.sqrt( 225 (1.0 / 2.0)**2 + (0.5 * 1.0 / 4.0)**2)) 226 218 227 def test_radd(self): 219 result = self.data +3.0228 result = self.data + 3.0 220 229 for i in range(25): 221 230 self.assertEqual(result.data[i], 5.0) 222 231 self.assertEqual(result.err_data[i], 0.5) 223 224 result = 3.0 +self.data232 233 result = 3.0 + self.data 225 234 for i in range(25): 226 235 self.assertEqual(result.data[i], 5.0) 227 236 self.assertEqual(result.err_data[i], 0.5) 228 237 229 238 def test_rsub(self): 230 result = self.data -3.0239 result = self.data - 3.0 231 240 for i in range(25): 232 241 self.assertEqual(result.data[i], -1.0) 233 242 self.assertEqual(result.err_data[i], 0.5) 234 235 result = 3.0 -self.data243 244 result = 3.0 - self.data 236 245 for i in range(25): 237 246 self.assertEqual(result.data[i], 1.0) 238 247 self.assertEqual(result.err_data[i], 0.5) 239 248 240 249 def test_rmul(self): 241 result = self.data *3.0250 result = self.data * 3.0 242 251 for i in range(25): 243 252 self.assertEqual(result.data[i], 6.0) 244 253 self.assertEqual(result.err_data[i], 1.5) 245 246 result = 3.0 *self.data254 255 result = 3.0 * self.data 247 256 for i in range(25): 248 257 self.assertEqual(result.data[i], 6.0) 249 258 self.assertEqual(result.err_data[i], 1.5) 250 259 251 260 def test_rdiv(self): 252 result = self.data /4.0261 result = self.data / 4.0 253 262 for i in range(25): 254 263 self.assertEqual(result.data[i], 0.5) 255 264 self.assertEqual(result.err_data[i], 0.125) 256 265 257 result = 6.0 /self.data266 result = 6.0 / self.data 258 267 for i in range(25): 259 268 self.assertEqual(result.data[i], 3.0) 260 self.assertEqual(result.err_data[i], 6.0*0.5/4.0) 261 262 class extra_manip_2D(unittest.TestCase): 263 269 self.assertEqual(result.err_data[i], 6.0 * 0.5 / 4.0) 270 271 272 class ExtraManip2DTests(unittest.TestCase): 273 264 274 def setUp(self): 265 275 # Create two data sets to play with 266 x_0 = 2.0 *np.ones(25)267 dx_0 = 0.5 *np.ones(25)276 x_0 = 2.0 * np.ones(25) 277 dx_0 = 0.5 * np.ones(25) 268 278 qx_0 = np.arange(25) 269 279 qy_0 = np.arange(25) 270 280 mask_0 = np.zeros(25) 271 dqx_0 = np.arange(25) /100272 dqy_0 = np.arange(25) /100281 dqx_0 = np.arange(25) / 100 282 dqy_0 = np.arange(25) / 100 273 283 q_0 = np.sqrt(qx_0 * qx_0 + qy_0 * qy_0) 274 self.data = Data2D(image=x_0, err_image=dx_0, qx_data=qx_0, 275 qy_data=qy_0, q_data=q_0, mask=mask_0, 284 self.data = Data2D(image=x_0, err_image=dx_0, qx_data=qx_0, 285 qy_data=qy_0, q_data=q_0, mask=mask_0, 276 286 dqx_data=dqx_0, dqy_data=dqy_0) 277 287 278 288 y = np.ones(25) 279 289 dy = np.ones(25) … … 282 292 mask = np.zeros(25) 283 293 q = np.sqrt(qx * qx + qy * qy) 284 self.data2 = Data2D(image=y, err_image=dy, qx_data=qx, qy_data=qy, 294 self.data2 = Data2D(image=y, err_image=dy, qx_data=qx, qy_data=qy, 285 295 q_data=q, mask=mask) 286 287 296 288 297 def test_load(self): 289 298 """ … … 292 301 # There should be 5 entries in the file 293 302 self.assertEqual(np.size(self.data.data), 25) 294 303 295 304 for i in range(25): 296 305 # All y-error values should be 0.5 297 self.assertEqual(self.data.err_data[i], 0.5) 298 306 self.assertEqual(self.data.err_data[i], 0.5) 307 299 308 # All y values should be 2.0 300 self.assertEqual(self.data.data[i], 2.0) 301 309 self.assertEqual(self.data.data[i], 2.0) 310 302 311 def test_add(self): 303 result = self.data2 +self.data312 result = self.data2 + self.data 304 313 for i in range(25): 305 314 self.assertEqual(result.data[i], 3.0) 306 self.assertEqual(result.err_data[i], math.sqrt(0.5**2 +1.0))307 315 self.assertEqual(result.err_data[i], math.sqrt(0.5**2 + 1.0)) 316 308 317 def test_sub(self): 309 result = self.data2 -self.data310 for i in range(25): 311 312 self.assertEqual(result.err_data[i], math.sqrt(0.5**2+1.0))313 318 result = self.data2 - self.data 319 for i in range(25): 320 self.assertEqual(result.data[i], -1.0) 321 self.assertEqual(result.err_data[i], math.sqrt(0.5**2 + 1.0)) 322 314 323 def test_mul(self): 315 result = self.data2 *self.data324 result = self.data2 * self.data 316 325 for i in range(25): 317 326 self.assertEqual(result.data[i], 2.0) 318 self.assertEqual(result.err_data[i], math.sqrt((0.5*1.0)**2+(1.0*2.0)**2)) 319 327 self.assertEqual(result.err_data[i], math.sqrt( 328 (0.5 * 1.0)**2 + (1.0 * 2.0)**2)) 329 320 330 def test_div(self): 321 result = self.data2 /self.data331 result = self.data2 / self.data 322 332 for i in range(25): 323 333 self.assertEqual(result.data[i], 0.5) 324 self.assertEqual(result.err_data[i], math.sqrt((1.0/2.0)**2+(0.5*1.0/4.0)**2)) 325 334 self.assertEqual(result.err_data[i], math.sqrt( 335 (1.0 / 2.0)**2 + (0.5 * 1.0 / 4.0)**2)) 336 326 337 def test_radd(self): 327 result = self.data +3.0338 result = self.data + 3.0 328 339 for i in range(25): 329 340 self.assertEqual(result.data[i], 5.0) 330 341 self.assertEqual(result.err_data[i], 0.5) 331 332 result = 3.0 +self.data342 343 result = 3.0 + self.data 333 344 for i in range(25): 334 345 self.assertEqual(result.data[i], 5.0) 335 346 self.assertEqual(result.err_data[i], 0.5) 336 347 337 348 def test_rsub(self): 338 result = self.data -3.0349 result = self.data - 3.0 339 350 for i in range(25): 340 351 self.assertEqual(result.data[i], -1.0) 341 352 self.assertEqual(result.err_data[i], 0.5) 342 343 result = 3.0 -self.data353 354 result = 3.0 - self.data 344 355 for i in range(25): 345 356 self.assertEqual(result.data[i], 1.0) 346 357 self.assertEqual(result.err_data[i], 0.5) 347 358 348 359 def test_rmul(self): 349 result = self.data *3.0360 result = self.data * 3.0 350 361 for i in range(25): 351 362 self.assertEqual(result.data[i], 6.0) 352 363 self.assertEqual(result.err_data[i], 1.5) 353 354 result = 3.0 *self.data364 365 result = 3.0 * self.data 355 366 for i in range(25): 356 367 self.assertEqual(result.data[i], 6.0) 357 368 self.assertEqual(result.err_data[i], 1.5) 358 369 359 370 def test_rdiv(self): 360 result = self.data /4.0371 result = self.data / 4.0 361 372 for i in range(25): 362 373 self.assertEqual(result.data[i], 0.5) 363 374 self.assertEqual(result.err_data[i], 0.125) 364 375 365 result = 6.0 /self.data376 result = 6.0 / self.data 366 377 for i in range(25): 367 378 self.assertEqual(result.data[i], 3.0) 368 self.assertEqual(result.err_data[i], 6.0*0.5/4.0) 379 self.assertEqual(result.err_data[i], 6.0 * 0.5 / 4.0) 380 369 381 370 382 if __name__ == '__main__': 371 383 unittest.main() 372
Note: See TracChangeset
for help on using the changeset viewer.