Changes in / [68b8734:de97440] in sasmodels
- Files:
-
- 7 added
- 10 deleted
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
sasmodels/models/bessel.py
ra5af4e1 rcbd37a7 78 78 79 79 Iq = """ 80 return J1(q);80 return 2.0*j1(q)/q; 81 81 """ 82 82 -
sasmodels/models/lib/j1_cephes.c
ra5af4e1 re2af2a9 39 39 Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier 40 40 */ 41 double J1(double );42 43 double J1(double x) {41 double j1(double ); 42 43 double j1(double x) { 44 44 45 45 //Cephes double pression function … … 48 48 double w, z, p, q, xn; 49 49 50 const double DR1 = 5.78318596294678452118E0; 51 const double DR2 = 3.04712623436620863991E1; 50 52 const double Z1 = 1.46819706421238932572E1; 51 53 const double Z2 = 4.92184563216946036703E1; … … 53 55 const double SQ2OPI = 0.79788456080286535588; 54 56 57 double RP[8] = { 58 -8.99971225705559398224E8, 59 4.52228297998194034323E11, 60 -7.27494245221818276015E13, 61 3.68295732863852883286E15, 62 0.0, 63 0.0, 64 0.0, 65 0.0 66 }; 67 68 double RQ[8] = { 69 /* 1.00000000000000000000E0,*/ 70 6.20836478118054335476E2, 71 2.56987256757748830383E5, 72 8.35146791431949253037E7, 73 2.21511595479792499675E10, 74 4.74914122079991414898E12, 75 7.84369607876235854894E14, 76 8.95222336184627338078E16, 77 5.32278620332680085395E18, 78 }; 79 80 double PP[8] = { 81 7.62125616208173112003E-4, 82 7.31397056940917570436E-2, 83 1.12719608129684925192E0, 84 5.11207951146807644818E0, 85 8.42404590141772420927E0, 86 5.21451598682361504063E0, 87 1.00000000000000000254E0, 88 0.0, 89 }; 90 double PQ[8] = { 91 5.71323128072548699714E-4, 92 6.88455908754495404082E-2, 93 1.10514232634061696926E0, 94 5.07386386128601488557E0, 95 8.39985554327604159757E0, 96 5.20982848682361821619E0, 97 9.99999999999999997461E-1, 98 0.0, 99 }; 100 101 double QP[8] = { 102 5.10862594750176621635E-2, 103 4.98213872951233449420E0, 104 7.58238284132545283818E1, 105 3.66779609360150777800E2, 106 7.10856304998926107277E2, 107 5.97489612400613639965E2, 108 2.11688757100572135698E2, 109 2.52070205858023719784E1, 110 }; 111 112 double QQ[8] = { 113 /* 1.00000000000000000000E0,*/ 114 7.42373277035675149943E1, 115 1.05644886038262816351E3, 116 4.98641058337653607651E3, 117 9.56231892404756170795E3, 118 7.99704160447350683650E3, 119 2.82619278517639096600E3, 120 3.36093607810698293419E2, 121 0.0, 122 }; 123 55 124 w = x; 56 125 if( x < 0 ) … … 60 129 { 61 130 z = x * x; 62 w = polevl RP( z, 3 ) / p1evlRQ( z, 8 );131 w = polevl( z, RP, 3 ) / p1evl( z, RQ, 8 ); 63 132 w = w * x * (z - Z1) * (z - Z2); 64 133 return( w ); … … 67 136 w = 5.0/x; 68 137 z = w * w; 69 70 p = polevlPP( z, 6)/polevlPQ( z, 6 ); 71 q = polevlQP( z, 7)/p1evlQQ( z, 7 ); 72 138 p = polevl( z, PP, 6)/polevl( z, PQ, 6 ); 139 q = polevl( z, QP, 7)/p1evl( z, QQ, 7 ); 73 140 xn = x - THPIO4; 74 141 … … 88 155 89 156 157 double JP[8] = { 158 -4.878788132172128E-009, 159 6.009061827883699E-007, 160 -4.541343896997497E-005, 161 1.937383947804541E-003, 162 -3.405537384615824E-002, 163 0.0, 164 0.0, 165 0.0 166 }; 167 168 double MO1[8] = { 169 6.913942741265801E-002, 170 -2.284801500053359E-001, 171 3.138238455499697E-001, 172 -2.102302420403875E-001, 173 5.435364690523026E-003, 174 1.493389585089498E-001, 175 4.976029650847191E-006, 176 7.978845453073848E-001 177 }; 178 179 double PH1[8] = { 180 -4.497014141919556E+001, 181 5.073465654089319E+001, 182 -2.485774108720340E+001, 183 7.222973196770240E+000, 184 -1.544842782180211E+000, 185 3.503787691653334E-001, 186 -1.637986776941202E-001, 187 3.749989509080821E-001 188 }; 189 90 190 xx = x; 91 191 if( xx < 0 ) … … 95 195 { 96 196 z = xx * xx; 97 p = (z-Z1) * xx * polevl JP( z, 4 );197 p = (z-Z1) * xx * polevl( z, JP, 4 ); 98 198 return( p ); 99 199 } … … 102 202 w = sqrt(q); 103 203 104 p = w * polevl MO1( q, 7);204 p = w * polevl( q, MO1, 7); 105 205 w = q*q; 106 xn = q * polevl PH1( w, 7) - THPIO4F;206 xn = q * polevl( w, PH1, 7) - THPIO4F; 107 207 p = p * cos(xn + xx); 108 208 … … 110 210 #endif 111 211 } 212 -
sasmodels/models/lib/polevl.c
r3b12dea re2af2a9 51 51 */ 52 52 53 double polevlRP(double x, int N ) { 53 double polevl( double x, double coef[8], int N ); 54 double p1evl( double x, double coef[8], int N ); 54 55 55 double coef[8] = { 56 -8.99971225705559398224E8, 57 4.52228297998194034323E11, 58 -7.27494245221818276015E13, 59 3.68295732863852883286E15, 60 0.0, 61 0.0, 62 0.0, 63 0.0 }; 64 65 int i = 0; 66 double ans = coef[i]; 67 68 while (i < N) { 69 i++; 70 ans = ans * x + coef[i]; 71 } 72 return ans ; 73 } 74 75 double polevlRQ(double x, int N ) { 76 77 double coef[8] = { 78 6.20836478118054335476E2, 79 2.56987256757748830383E5, 80 8.35146791431949253037E7, 81 2.21511595479792499675E10, 82 4.74914122079991414898E12, 83 7.84369607876235854894E14, 84 8.95222336184627338078E16, 85 5.32278620332680085395E18 86 }; 87 88 int i = 0; 89 double ans = coef[i]; 90 91 while (i < N) { 92 i++; 93 ans = ans * x + coef[i]; 94 } 95 return ans ; 96 } 97 98 double polevlPP(double x, int N ) { 99 100 double coef[8] = { 101 7.62125616208173112003E-4, 102 7.31397056940917570436E-2, 103 1.12719608129684925192E0, 104 5.11207951146807644818E0, 105 8.42404590141772420927E0, 106 5.21451598682361504063E0, 107 1.00000000000000000254E0, 108 0.0} ; 109 110 int i = 0; 111 double ans = coef[i]; 112 113 while (i < N) { 114 i++; 115 ans = ans * x + coef[i]; 116 } 117 return ans ; 118 } 119 120 double polevlPQ(double x, int N ) { 121 122 double coef[8] = { 123 5.71323128072548699714E-4, 124 6.88455908754495404082E-2, 125 1.10514232634061696926E0, 126 5.07386386128601488557E0, 127 8.39985554327604159757E0, 128 5.20982848682361821619E0, 129 9.99999999999999997461E-1, 130 0.0 }; 131 132 int i = 0; 133 double ans = coef[i]; 134 135 while (i < N) { 136 i++; 137 ans = ans * x + coef[i]; 138 } 139 return ans ; 140 } 141 142 double polevlQP(double x, int N ) { 143 144 double coef[8] = { 145 5.10862594750176621635E-2, 146 4.98213872951233449420E0, 147 7.58238284132545283818E1, 148 3.66779609360150777800E2, 149 7.10856304998926107277E2, 150 5.97489612400613639965E2, 151 2.11688757100572135698E2, 152 2.52070205858023719784E1 }; 153 154 int i = 0; 155 double ans = coef[i]; 156 157 while (i < N) { 158 i++; 159 ans = ans * x + coef[i]; 160 } 161 return ans ; 162 163 } 164 165 double polevlQQ(double x, int N ) { 166 167 double coef[8] = { 168 7.42373277035675149943E1, 169 1.05644886038262816351E3, 170 4.98641058337653607651E3, 171 9.56231892404756170795E3, 172 7.99704160447350683650E3, 173 2.82619278517639096600E3, 174 3.36093607810698293419E2, 175 0.0 }; 176 177 int i = 0; 178 double ans = coef[i]; 179 180 while (i < N) { 181 i++; 182 ans = ans * x + coef[i]; 183 } 184 return ans ; 185 186 } 187 188 double polevlJP( double x, int N ) { 189 double coef[8] = { 190 -4.878788132172128E-009, 191 6.009061827883699E-007, 192 -4.541343896997497E-005, 193 1.937383947804541E-003, 194 -3.405537384615824E-002, 195 0.0, 196 0.0, 197 0.0 198 }; 199 200 int i = 0; 201 double ans = coef[i]; 202 203 while (i < N) { 204 i++; 205 ans = ans * x + coef[i]; 206 } 207 return ans ; 208 209 } 210 211 double polevlMO1( double x, int N ) { 212 double coef[8] = { 213 6.913942741265801E-002, 214 -2.284801500053359E-001, 215 3.138238455499697E-001, 216 -2.102302420403875E-001, 217 5.435364690523026E-003, 218 1.493389585089498E-001, 219 4.976029650847191E-006, 220 7.978845453073848E-001 221 }; 222 223 int i = 0; 224 double ans = coef[i]; 225 226 while (i < N) { 227 i++; 228 ans = ans * x + coef[i]; 229 } 230 return ans ; 231 } 232 233 double polevlPH1( double x, int N ) { 234 235 double coef[8] = { 236 -4.497014141919556E+001, 237 5.073465654089319E+001, 238 -2.485774108720340E+001, 239 7.222973196770240E+000, 240 -1.544842782180211E+000, 241 3.503787691653334E-001, 242 -1.637986776941202E-001, 243 3.749989509080821E-001 244 }; 245 246 int i = 0; 247 double ans = coef[i]; 248 249 while (i < N) { 250 i++; 251 ans = ans * x + coef[i]; 252 } 253 return ans ; 254 } 255 256 /*double polevl( double x, double coef[8], int N ) { 56 double polevl( double x, double coef[8], int N ) { 257 57 258 58 int i = 0; … … 266 66 return ans ; 267 67 268 } */68 } 269 69 270 70 /* p1evl() */ … … 274 74 */ 275 75 276 double p1evlRP( double x, int N ) { 277 double coef[8] = { 278 -8.99971225705559398224E8, 279 4.52228297998194034323E11, 280 -7.27494245221818276015E13, 281 3.68295732863852883286E15, 282 0.0, 283 0.0, 284 0.0, 285 0.0 }; 286 76 double p1evl( double x, double coef[8], int N ) { 287 77 int i=0; 288 78 double ans = x+coef[i]; … … 296 86 297 87 } 298 299 double p1evlRQ( double x, int N ) {300 //1: RQ301 double coef[8] = {302 6.20836478118054335476E2,303 2.56987256757748830383E5,304 8.35146791431949253037E7,305 2.21511595479792499675E10,306 4.74914122079991414898E12,307 7.84369607876235854894E14,308 8.95222336184627338078E16,309 5.32278620332680085395E18};310 311 int i=0;312 double ans = x+coef[i];313 314 while (i < N-1) {315 i++;316 ans = ans*x + coef[i];317 }318 319 return( ans );320 }321 322 double p1evlPP( double x, int N ) {323 //3 : PP324 double coef[8] = {325 7.62125616208173112003E-4,326 7.31397056940917570436E-2,327 1.12719608129684925192E0,328 5.11207951146807644818E0,329 8.42404590141772420927E0,330 5.21451598682361504063E0,331 1.00000000000000000254E0,332 0.0};333 334 int i=0;335 double ans = x+coef[i];336 337 while (i < N-1) {338 i++;339 ans = ans*x + coef[i];340 }341 342 return( ans );343 }344 345 double p1evlPQ( double x, int N ) {346 //4: PQ347 double coef[8] = {348 5.71323128072548699714E-4,349 6.88455908754495404082E-2,350 1.10514232634061696926E0,351 5.07386386128601488557E0,352 8.39985554327604159757E0,353 5.20982848682361821619E0,354 9.99999999999999997461E-1,355 0.0};356 357 int i=0;358 double ans = x+coef[i];359 360 while (i < N-1) {361 i++;362 ans = ans*x + coef[i];363 }364 365 return( ans );366 }367 368 double p1evlQP( double x, int N ) {369 //5: QP370 double coef[8] = {371 5.10862594750176621635E-2,372 4.98213872951233449420E0,373 7.58238284132545283818E1,374 3.66779609360150777800E2,375 7.10856304998926107277E2,376 5.97489612400613639965E2,377 2.11688757100572135698E2,378 2.52070205858023719784E1 };379 380 int i=0;381 double ans = x+coef[i];382 383 while (i < N-1) {384 i++;385 ans = ans*x + coef[i];386 }387 388 return( ans );389 }390 391 double p1evlQQ( double x, int N ) {392 double coef[8] = {393 7.42373277035675149943E1,394 1.05644886038262816351E3,395 4.98641058337653607651E3,396 9.56231892404756170795E3,397 7.99704160447350683650E3,398 2.82619278517639096600E3,399 3.36093607810698293419E2,400 0.0};401 402 int i=0;403 double ans = x+coef[i];404 405 while (i < N-1) {406 i++;407 ans = ans*x + coef[i];408 }409 410 return( ans );411 412 }413 414 double p1evlJP( double x, int N ) {415 double coef[8] = {416 -4.878788132172128E-009,417 6.009061827883699E-007,418 -4.541343896997497E-005,419 1.937383947804541E-003,420 -3.405537384615824E-002,421 0.0,422 0.0,423 0.0};424 425 int i=0;426 double ans = x+coef[i];427 428 while (i < N-1) {429 i++;430 ans = ans*x + coef[i];431 }432 433 return( ans );434 }435 436 double p1evlMO1( double x, int N ) {437 double coef[8] = {438 6.913942741265801E-002,439 -2.284801500053359E-001,440 3.138238455499697E-001,441 -2.102302420403875E-001,442 5.435364690523026E-003,443 1.493389585089498E-001,444 4.976029650847191E-006,445 7.978845453073848E-001};446 447 int i=0;448 double ans = x+coef[i];449 450 while (i < N-1) {451 i++;452 ans = ans*x + coef[i];453 }454 455 return( ans );456 457 }458 459 double p1evlPH1( double x, int N ) {460 double coef[8] = {461 -4.497014141919556E+001,462 5.073465654089319E+001,463 -2.485774108720340E+001,464 7.222973196770240E+000,465 -1.544842782180211E+000,466 3.503787691653334E-001,467 -1.637986776941202E-001,468 3.749989509080821E-001};469 int i=0;470 double ans = x+coef[i];471 472 while (i < N-1) {473 i++;474 ans = ans*x + coef[i];475 }476 477 return( ans );478 }479 480 /*double p1evl( double x, double coef[8], int N ) {481 int i=0;482 double ans = x+coef[i];483 484 while (i < N-1) {485 i++;486 ans = ans*x + coef[i];487 }488 489 return( ans );490 491 }*/
Note: See TracChangeset
for help on using the changeset viewer.